Using CSP to Verify Security-Critical Applications

Gordon Thomas Rohrmair
St Catherine’s College

Thesis submitted for the degree of Doctor of Philosophy

Hilary Term 2005

Using CSP to Verify Security-Critical Applications

Gordon Thomas Rohrmair, St. Catherine’s College
Hilary Term, 2005

Abstract

This thesis demonstrates how one can model and analyse security relevant pro-
cesses using the process algebra Communicating Sequential Processes (CSP)
[Hoa85, Ros98b] and its model checker FDR! [GGHT00]. We focus on two in-
creasingly important areas — Intrusion detection and trusted computing.

An Intrusion Detection System is a system that detects abuses, misuses and
unauthorised uses in a network. We show that our analysis can be used to discover
attack strategies that can be used to blind Intrusion Detection Systems, even a
hypothetically perfect one that knows all weaknesses of its protected host. We
give an exhaustive analysis of all such attack possibilities that are based on our
models and we discuss prevention techniques.

The second part of the thesis focuses on the verification process of trusted
platforms and their environment. There exist various approaches how one can
build a trusted platform. We will focus on the approaches that were suggested by
the Trusted Computing Platform Alliance [TCPA03d, TCPA02] and Microsoft
[Mic02, CJPL02]. We show how one can use a CSP based analysis to verify
certain parts of the trusted computing architecture. In particular we will focus
on authorisation protocols, session caching mechanisms and the generation of
chains of trust within and outside the trusted architecture. Finally, we will use
our technique to analyse digital rights management protocols that use trusted
computing techniques.

To perform our verifications we have to prune away certain details of our
systems. This leaves room for introducing a false sense of security. If we fail to find
an attack, it is sometimes unclear whether that is an artifact of the abstractions
used in the model, or whether there really is no attack. Data-independence within
the CSP framework was invented by Roscoe and Lazi¢ [Laz97]. It allows us to
project systems with an infinite state space onto a finite one. We use results from
this field to verify whether our analysis is complete.

!FDR is a commercial product of Formal Systems (Europe) Ltd.

Acknowledgements

I would like to thank my supervisor Dr. Gavin Lowe for many inspiring dis-
cussions, for collaborating with me on various papers [RL02, RL03, RL04] and
for introducing me to the field of formal verification. [am also grateful for his
support in my application for the Leatherseller’s and Dstl scholarship.

[am grateful to everybody at the Concurrency group for giving me the op-
portunity to participate in great discussions. I am especially indebted to Dr.
Philippa Hopcroft, Rob Delicata and Eldar Kleiner for not only proof-reading
my thesis, but also for the many fruitful discussions we have had.

Many thanks are due to Dr. Jeff Sanders and Dr. Michael Goldsmith for being
the examiners for my confirmation of status thesis. Additionally, Dr. Jeff Sanders
has always had an open ear for my problems whether they were of academic or
of another nature. He gave me many valuable insights.

I would like to thank Dr. Tom McCutcheon from Dstl for having faith in my
research and supporting me financially.

I thank Holger Witte for supporting me in various technical ways, Jonathan
Yonan for being my communication officer to the Great Lord himself and, of
course, Ashley Arensdorf for improving my written english and for making Cowley
Road 253 such a hilarious place. At this point I have to apologise to Ashley for
not being able to bring light to the extremely difficult question of whether HK’s
P2000 or Sig’s P228 is the better choice for him — I hope he can forgive me.

And last, but not least, I want to thank my parents, my sister (that little
devil) and Frl. Briel for their support and encouragement.

This thesis was funded by a doctorate scholarship from Dstl (St Andrew’s
Road, Malvern, Worcester, WR14 3PS) and the Leatherseller’s scholarship of St
Catherine’s. I wish to offer a warm dept of gratitude for their support.

Declaration

Hereby, I declare that I have done this work by my own and that I did not use
any other help than that I have stated.

Gordon Thomas Rohrmair
Dasing, 1. November 2005

Table 1: Acronyms

AACP
ADIP
ADCP
AES
BBB
BIOS
CA
CBC
CD
CE
CIDF
CPU
CRTM
CSp
CSS
DES
DIR
DLL
DMZ
DRM
FDR
FIFO
FO
GUI
HIDS
HMAC
I/0
ID
IDS
IIK
IKE
IPSEC
IPv4
IPv6
KISS
LAN
LHS
MAN
MF
NCA
NIDS

Asynchronous Authorisation Change Protocol
Authorisation Data Injection Protocol
Authorisation Data Change Protocol
Advanced Encryption Standard
BIOS-Boot-Block

Basic Input Output System
Certification Authority

Cipher Block Chaining

Compact Disk

Conformance Entity

Common Intrusion Detection Framework
Central Processing Unit

Core Root Trusted Measurement
Communicating Sequential Processes
Content Scramble System

Data Encryption Standard

Data Integrity Register

Dynamic Link Library

Demilitarized Zone

Data Rights Management

Failures Divergences Refinement
First In First Out

Fragment Offset

Graphic User Interface

Host Intrusion Detection Protocol
Hashed Message Authentication Code
Input / Output

Identities

Intrusion Detection Protocol

Initial Intruder Knowledge

Internet Key Exchange

IP Security Protocol

Internet Protocol version 4

Internet Protocol version 6

Keep It Small and Simple

Local Area Network

Left Hand Side

Metropolitan Area Network

More Fragments

Nexus Computing Agents

Network Intrusion Detection Protocol

Table 2: Acronyms

NGSCB
NoEqT
OI-AP
OS
OS-AP
P-CA
PCR
PE
PKI
PP
PVP
RAM
RHS
RFC
RMS
RNG
ROM
RTM
RTS
S-MIME
SHA-1
SPAN
SRK
SSC
SSL
TA
TCB
TCG
TCSP
TCP
TCP
TCPA
TDES
TLS
TOR
TPM
TPME
TPS
TSS
TTL
VE
VPN
WAN

Next Generation Secure Computing Base
No Equality Testing

Object Independent Authorisation Protocol
Operating System

Object Specific Authorisation Protocol
Privacy Certification Authority

Program Control Register

Platform Entity

Private Key Infrastructure

Protection Profile

Parameterized Verification Problem
Random Access Memory

Right Hand Side

Request For Comment

Rights Management System

Random Number Generator

Read Only Memory

Root of Trust for Measurement

Root of Trust for Storing

Secure Multipurpose Internet Mail Extensions
Secure Hash Algorithm 1

Configuring the Catalyst Switched Port Analyzer
Storage Root Key

Security Support Component

Secure Socket Layer

Trusted Agent

Trusted Computing Block

Trusted Computing Computer

Timed CSP

Transport Control Protocol

Trusted Computing Platform

Trusted Computing Platform Association
Triple Data Encryption Standard
Transport Layer Security

Trusted Operating Root

Trusted Platform Module

Trusts Platform Module Entity

Trusted Platform System

Trusted Sub System

Time To Live

Validation Entity

Virtual Private Network

Wide Area Network

For

BM — who has been a beacon in the darkest hour even when her own light faded.

Contents

1 Introduction

1.1 Intrusion detection systems
1.2 Trusted Computing Lo
1.3 Scope of this thesis
1.4 Overview

2 Background

2.1 Communicating Sequential Processes
211 Syntax
2.1.2 Semantic modelso
2.1.3 Data-independence

2.2 Intrusion detection systems
2.2.1 Detection principles L.
2.2.2 Different kinds of raw event sources

2.3 SUmMmary . o.o.o. ..o e

3 Intrusion detection systems CSP models

3.1 Internet protocol version 4
3.2 Modelling assumptions
3.3 Time-to-live model
331 CSPmodel
332 Results.
3.3.3 Discussion
3.4 Fragment-overlapping modelo
341 CSPmodel,
342 Results.
3.4.3 Discussion
3.5 Using CSP to test specifications
3.5.1 The re-assembly algorithm based on RFC 815
3.5.2 Description of the RFC 791 versus RFC 815 model
353 Results.
3.5.4 Discussion
3.6 Conclusion

Tt W W~ -

4 Towards a more complete analysis 51

4.1 Generalising the types of packets and signatures 51
4.2 'The packet reassembly model 53
4.3 Remaining points Lo 23
4.3.1 The TTL-valuerange 54
4.3.2 Buffersizeo o L o 54
4.3.3 Network topology 56
4.3.4 Protocol abstractions L. o7
4.3.5 Verification of abstract counterexamples o7

4.4 Summary e 58
5 Unexpected timing issues 60
5.1 Using the interrupt operator for simulating timing issues 60
5.1.1 Componentso 61
5.1.2 Result 62
5.1.3 Discussion 63

5.2 Discrete-timemodel oo L 63
5.2.1 Components 63
5.22 Results. 65
5.2.3 Discussion 67

5.3 Towards a more complete analysis 67
6 Generalisation 74
6.1 Conclusion 78
7 Trusted Computing Architectures 80
7.1 The directive of TCPA 80
711 Scope 81
7.1.2 Design features oL 81
7.1.3 Definition of trust 82
7.1.4 Usage Scenariosot 83

7.2 The trusted platform 83
7.2.1 Relations within the TCPA architecture (Root of Trust) . 85
7.2.2 Creating a trusted identity for common interaction purposes 86
7.2.3 Integrity Verification and Reporting 88
7.2.4 Protected Storage 89
7.2.5 The physical structure of the TPM 90
7.2.6 Palladium or NGSCB 92
727 Conclusion. 96

7.3 Introduction to Casper 97
7.3.1 Casper protocol description language 98
7.3.2 Casper and FDRresults 103

i

8 Authorisation protocols

8.1 Object Specific Authorisation Protocol
8.1.1 Description
8.1.2 Basicmodel,
81.3 Thefinal model
814 Results.
8.1.5 Discussion

8.2 Object Independent Authorisation Protocol
8.2.1 Description
8.2.2 Discussion

8.3 Authorization Data Insertion Protocol
8.3.1 Description L
8.3.2 Discussion

8.4 Authorisation Change
8.4.1 Authorization Data Change Protocol
8.4.2 Asymmetric Authorization Change Protocol

8.5 Conclusion

9 Session Caching

9.1 The real world model oL
9.1.1 The TPM context management
9.1.2 The internal session data storage
9.1.3 TheTPM
9.1.4 The session management meta processes
9.1.5 The protected storage
9.1.6 The external session manager
9.1.7 The external session storage
9.1.8 The TPM owner
9.1.9 Theintruder.o
9.1.10 The system

9.2 The finite model oL o

9.3 Results.

9.4 Abstracting low-level protocols.
9.4.1 Properties of protocols
9.4.2 Authenticationonlyo
9.4.3 Secrecyonly
9.4.4 Authentication and secrecy
945 Conclusiono

10 Boot sequence
10.1 Model . .
10.2 Results . .
10.3 Discussion

il

105
106
107
109
116
116
117
119
119
121
121
122
123
123
124
127
130

132
132
134
136
138
141
144
144
146
147
148
149
150
151
153
154
158
163
167
169

10.4 Conclusion

11 Digital Rights Manage

ment

11.1 Review of current problems and solutions

11.2 The integrity challen
11.3 The AACP version

ge-response protocol L.

11.3.1 Analysis of the protocol

11.3.2 Results . . .
11.3.3 Discussion .
11.4 Conclusion

12 Conclusion
12.1 Summary
12.2 Related work . . .
12.3 Future work - IDS
12.4 Future work - TCPA

A Appendix

v

185
185
187
189
190
193
194
195

196
196
198
200
202

204

Chapter 1

Introduction

The research presented in this thesis centres around the field of computer secu-
rity. In today’s Internet driven world, computer security has become a facet of
daily life, a prerequisite for protection in daily communication and transactions.
Research in this field is critical, as poor security continues to be a major deterrent
in e-commerce, both in on-line banking and shopping. A famous example is the
break-in at the World Economic Forum [Sym01], where the credit card numbers
of Bill Clinton and Yasser Arafat were stolen.

While it is essential for all sites to try to keep out trespassers, the survey
[Utt96] observes that only 4 percent of attacks against US government computers
were detected. Furthermore, only in about 1 percent of these breaches did a
security officer respond to the incident. A few years ago the cracking of a site
required a lot of time and know-how. Nowadays, where many crackers boast
their exploitations by making the attack programmes available on the Internet,
intrusion detection has become increasingly important [JMOO].

Another approach to improve the security is to introduce reliable chains of
trust. The core of these chains is a hardware component that can give remote
entities trustworthy information about the security of the platform with which
they are about to interact.

1.1 Intrusion detection systems

An Intrusion Detection System is used to detect abuses, misuses and unauthorised
uses in a network, caused by either insiders or outsiders. These systems identify
intrusions by spotting known patterns or by revealing anomalous behaviour of
protected resources (e.g., network traffic or main memory usage).

Verification problems within the Intrusion Detection area. Ideally, in-
trusion detection systems have to keep track of every event in the network. This
clearly results in a complex architecture. The complexity is even further increased

CHAPTER 1. INTRODUCTION 2

by the fact that today’s networks are becoming more and more distributed; hence
more agents have to be deployed to monitor the protected system. These agents
have to communicate with each other. Furthermore, they have to be highly in-
teractive, not only with their closest environment, but also with more centralised
stations to update their knowledge base. This is of special significance, since
the knowledge base represents the foundation for every agent’s decision-making
process.

Additionally, the malicious activities that should be detected are becoming
more and more complex; for example the distributed attacks presented in [Dit05].
These attacks require agents to continuously monitor information of other agents.
The future promises even more complicated systems, since they are expected to
learn to detect novel attacks by employing complex self-learning algorithms.

Today’s testing methods can be summarised under the category trial-and—
error, defined as a set of predefined attack routines that are launched against
a test site. Upon completion, the IDS log files reveal whether all attacks were
detected. There exists a broad range of tools such as [Nes, FS90, SN98| or more
specific tools [RFP02], that examine whether or not it is possible to encode a
known attack in such a way that the IDS can not detect it anymore.

The advantages of the trial-and—error method are:

1. they retrieve quick results;
2. they are (usually) quick and easy to set up;
3. the results obtained are (usually) easy to use.
On the other hand this approach falls short on the following important points:

1. they are largely unable to find more complex attacks such as emergent faults
[AKS96];

2. they are usually unable to find new attacks;

3. they can only be used to verify already existing programs. Thus, concepts or
ideas lacking a concrete prototype cannot be verified with such techniques.
This renders them utterly useless for the purpose of verifying architectures
in the earlier stages of development.

A more desirable approach is one that is able to eradicate these vital disadvan-
tages as well as satisfying the advantages listed above. More information on
testing IDSs in the real world setting can be obtained from [Ran01].

! An emergent fault is defined as an specification violation that occurs because of unindented
interaction between processes, whereas the participating processes individually satisfy their own
security specification.

CHAPTER 1. INTRODUCTION 3

1.2 Trusted Computing

A trusted platform is a computing device that can communicate electronically
with other devices, and that includes a non-compromisable element that functions
as a foundation of trust for its platform. It allows the user to monitor the state
of the system and to enforce a security policy upon the collected information. In
addition, it guarantees other users a certain degree of trust.

Verification problems within the trusted computing area Solutions that
can forge chains of trust within a platform have to keep track of every security
relevant event that takes place. Looking at today’s computer architectures it
becomes obvious that many interactions between various parts of these systems
occur. The fact that operating systems have to provide more and more function-
ality and that hardware has to offer more and more services increases this trend
for the foreseeable future. Subsequently the logging and reporting mechanisms
that should present reliable information about the events that take place increase
as well.

Furthermore, these chains of trust should be extendable for reaching other
platforms to form virtual clusters of reliable counterparts. Therefore, the security
mechanisms have to interact with each other in such a way that no dishonest
user can falsify the system state of his platform. Additionally, the transactions
between these platforms become progressively complex. Hence, the methods
that guarantee that no dishonest user can spread illicit information about his
platform’s system state increase in complexity.

Finally, only a few prototypes for the most prominent examples of trusted
computing architectures exist at the moment. Thus, if one wants to verify these
methods one is confined to the verification techniques that do not require a pro-
totype.

1.3 Scope of this thesis

There are various approaches to analysing security relevant components in a
network. However, nearly all of them have severe problems, such as: the inability
to detect completely new attacks, the environment of a certain component can
hide attack possibilities, these techniques can be used at the earliest after a fully
functional prototype has been created. We want to develop a framework using
CSP to spot complex vulnerabilities that are caused by unexpected feature and
component interactions within a network. The resulting errors are often called
emergent faults, meaning that although every component within a network is
working according to a certain specification, when put together possibilities of
erroneous interactions arise.

CHAPTER 1. INTRODUCTION 4

The second part of the thesis is concerned with the application of CSP-based
verification techniques of security components to Trusted Computing Platforms
(TCPs).

We will split these objectives into the following parts:

Firstly, we investigate whether CSP is a suitable calculus to model intrusion
detection infrastructures with all its operating activities (e.g. spotting attacks).
We achieve this by building small networks to spot already known attacks and
then use the gathered data to extend our models to detect unknown attacks.
Unfortunately, this is not possible for our TCPA analysis, since there are no well
known attacks (as far as the author is aware). Therefore, we will follow a different
path. We will analyse smaller parts of the trusted platform to determine whether
our technique can also be applied to larger models. Once that is established, we
will include more features and interactions.

Secondly, model checkers such as FDR have shown their usefulness and effi-
ciency for modelling and verifying security relevant processes [RSG101]. However,
since FDR explores the whole state space of its models, the state space has to
be finite; even more, the scopes of data types involved have to remain small,
otherwise the processes reach an unmanageable complexity. This leaves us with
a serious problem: it is often required to provide a supply of many different data
values of some type to spot an attack, or more generally, to detect a specifica-
tion violation. Consequently, after pruning away details, we can never be certain
whether the real-world system is absolutely free from flaws. Some researchers
use this drawback to justify their claim that serious processes or protocols can-
not be verified by this method [Arc02]. The IDS, the trusted platform and the
environments in which they are embedded can only be modelled accurately by
processes that have infinite states. Thus, we have to find appropriate ways to
prune away details that are not required to spot policy violations. Additionally,
we have to establish a technique to formally justify that these simplifications are
not covering attacks. To do so we will use data independence techniques [Laz97].
The TCPA part will only use standard data independence techniques. The IDS
analysis, however, requires more. We have to find a way to investigate the net-
work topology, various data fields and the payload of the required communication
protocols.

The third goal is to investigate the property of time in relation to intrusion
detection. Usually processes or security relevant elements are validated without
a notion of time, especially when the trial-and—error approach is used. In the
history of various other fields, this has proven to be a fatal mistake. We suspect
that time is not only a simple attribute in our intrusion detection models, but a
complete dimension that can hide various vulnerabilities. We want to show that
even in the case of a successful validation of our IDS model, by abstracting away

CHAPTER 1. INTRODUCTION Y

time, serious side-effects can remain undiscovered. To do so we will use two ap-
proaches: firstly, we will design an easy-to-build CSP model, and secondly, we will
introduce a discrete time CSP model. The models themselves are kept as simple
as possible. Finally, from this specific result, we will derive a method to reduce
the complexity of a discrete timed process without losing attack possibilities, or
more generally, without losing specification violations.

The fourth goal is to find a way to reduce the complexity of models, particu-
larly those that evaluate internal hardware processes which act on external input
provided by some security protocol. The internal transactions are usually com-
plex enough to bring a complete state space exploration to it limits. In addition,
the focus of such models lies not on the protocols themselves, but rather on the
internal response of the addressed hardware component. Therefore, we have to
find a way to reduce the external communication to only the necessary stimuli
for exercising all possible behaviors (responses) of the hardware component, ab-
stracting away from the details of the design of the protocols, and just modelling
the services they provide.

1.4 Overview

Our general approach for analysing security mechanisms makes use of the process
algebra CSP and its model checker FDR, as follows:

1. We model the honest participants in the security mechanisms using CSP;

2. We model the most general attacker who can interact with the security
mechanisms;

3. We create a CSP specification of the security requirements;

4. We use FDR to explore the state space of the system, seeing whether or
not it can reach an insecure state;

5. If FDR finds a reachable insecure state, then it returns the trace of actions
that leads to that state, i.e. a successful attack.

Organisation Chapter 2 provides the reader with the relevant background in-
formation about Communicating Sequential Processes (CSP). CSP is a formal
algebra that is used to model various communicating systems, such as Intrusion
Detection Systems. The CSP part elaborates on the syntax and semantic models,
more precisely on the traces, stable failures and the failures / divergences model
of that calculus. Explaining the concept of data-independence, a technique to
reduce the data complexity of the model, closes the CSP introduction.

CHAPTER 1. INTRODUCTION 6

In our introduction of intrusion detection systems, we classify them according
to a very simple taxonomy. We distinguish between data source and detection
method. Within these two classes we discuss the advantages and disadvantages
of the most prominent subclasses, such as host versus network intrusion detection
systems.

Chapters 3 — 5 represent the main part of the intrusion detection research
in this thesis. In order to show that CSP is suitable to verify IDSs, we first
consider the reproduction of known attacks. Once we reach that goal, we try
to determine whether it is possible to apply the collected data to other areas of
intrusion detection. To understand the first model, knowledge of IPv4 is required;
therefore information on the basic functionality of this protocol is provided as
well.

In section 3.3, we present a simple CSP model and show how FDR is used to
detect flaws in that model. We consider whether the Internet Protocol version 4
(IPv4) [dR81] gives an attacker the opportunity to launch an undetected attack
against the target. This model is based on a very simple packet structure, only
consisting of the data and the Time-to-live field.

Section 3.4 describes a more complex CSP model. The packet structure of
this model is greatly expanded now consisting of all fields relevant for packet
reassembly. The algorithm that accomplishes the reassembling is based on RFC
791 [dR81].

The models thus far reveal attacks that were covered by [PN98]. In section 3.5
we reveal new attacks on heterogeneous networks, consisting of hosts that support
different reassembly algorithms. We will construct a reassembly process based on
RFC 815. However, we will only discuss the impact of weak specifications rather
than suggesting any particular work-around, since there is no real work-around
except that the RFCs should always be as unambiguous as possible.

In chapter 4 we discuss proof techniques for our models and the impact of
feature abstraction on our survey. The disadvantage of using tools like FDR is
that they explore every state of the model and therefore cannot deal with infinite
state systems. As mentioned earlier solutions to this problem include applying
abstractions on the general structure of the model, e.g. modelling fewer fields
of IPv4, or restricting the scope of the modelled fields. However by applying
these techniques it remains uncertain whether these restrictions do not cover
other vulnerabilities. We show that detail we pruned away did not contain more
attacks. We do so by showing how to generalise the network packet and attack
signatures parameters for the time-to-live model. Additionally we show that
precisely the same technique works for the packet reassembly model.

Afterwards we change the focus of the time-to-live model from Section 3.3, in
order to move towards a more complete analysis, independent of the set of attack
signatures. We show that a fairly restricted type for the T'TL values is sufficient
to capture all relevant behaviours of the system. We further show that a fairly
limited buffer size for our reassembly buffer suffices. We also discuss why our

CHAPTER 1. INTRODUCTION 7

network topology is not as restricted as it appears to be and only hides obvious
attacks.

In chapter 5 we inspect not only different ways to model time within the
intrusion detection environment but we also derive from our very specific results
tools for a more general case. More precisely, first we design an easy-to-build CSP
model, and second we introduce an IDS model using discrete time. The models
themselves are kept as simple as possible, consisting only of the required time-out
mechanism that is used in IPv4 data transfers. However, we discuss them in more
detail, since they are proof-of-concept designs. They should act as guidelines for
more difficult problems. This examination closes with a discussion about how the
two models are related to each other. From this we derive a function that converts
every untimed timeout process using a sliding choice operator into a process that
uses discrete time. The proof given shows that whenever the untimed model
refines the specification then the discrete-time model does also. Thus giving us
the option, for untimed safety specs, only to verify the process using the simpler
timeout version without having to fear to miss a specification violation in the
more complex discrete time model.

In chapter 7 we introduce the concept of trusted computing. We discuss
current architectures proposed by Microsoft, the Trusted Computing Platform
Association and Intel. The emphasis will lie on the TCPA solution. Moreover,
we will describe scope, design features and various definitions of trust that are
necessary for this architecture. This is followed by a more detailed overview of
the different subsections of the TCPA model, such as integrity verification and
reporting, creation of trusted identities and the protected storage. Since the
architecture uses various protocols that have to be verified, we will also intro-
duce Casper as a protocol verification tool that converts a protocol description
language that is easy to write into machine readable CSP. Additionally, we will
introduce common verification and abstraction techniques to evaluate the correct-
ness of these protocols. The chapter finishes with a summary and a discussion
about the relationships between the various trusted computing concepts.

Chapter 8 covers the authorization protocols. Every protected object on a
trusted platform can only be accessed via an authorisation secret. TCPA defines
five standard protocols that specify how one can generate, access and modify
these secure objects. We will generate a CSP model of all five. More precisely,
we will evaluate the Authorisation Data Injection Protocol (ADIP), the Object
Specific - Authorisation Protocol (OS-AP), the Object Independent - Authori-
sation Protocol (OI-AP), the Authorisation Data Change Protocol (ADCP) and
the Asymmetric Authorisation Change Protocol (AACP). Except for ADIP, all
protocols are so called stream authentication protocols. Generally, they establish
a shared secret and use this to encrypt an endless supply of nonces, consequently
being able to generate a stream of authenticated commands. Therefore, special
attention will be given to the abstractions that are applied to reduce the state
space of these protocols.

CHAPTER 1. INTRODUCTION 8

Chapter 9 evaluates the context management of the Trusted Platform Module
(TPM). The TCPA architecture [TCPA02, TCPA03d] tries to be as cost effective
as possible. Consequently, it only demands that the TPM can store state informa-
tion about two authorisation sessions. In practice, however, it is highly probable
that the TPM has to deal with more parallel sessions. Hence, the TCPA intro-
duces a caching model that allows the TPM to suspend sessions and externalise
the state information. We generate a CSP model of all elements involved and
verify whether or not the caching mechanism is secure. The problem with such
a verification is that it not only involves the internal elements of the hardware
component, but also authorisation protocol sessions. Hence, we use Casper to
generate a CSP description of the authorisation protocol in use, and then add the
internal transactions to the responder process (TPM). If one wants to evaluate a
hardware component whose internal transactions depend on external input, this
kind of scenario is very common. Therefore, we present a way to simplify these
communications.

In chapter 10 we verify the boot sequence of a trusted platform. The CSP
model we present includes an integrity-challenge response scenario to test whether
or not the integrity reporting during the boot cycle can be used to vouch for the
security of a platform. The term integrity-challenge response protocol is used by
the TCPA to term the process in which a platform requests reliable information
about another platform’s system state. For this complete chapter we use a movie
on demand system as an example set up. This chapter concludes with a discussion
about the information value of the TCPA’s integrity metrics and about various
problems that could occur if one wants to rate them.

Chapter 11 discusses one usage scenario of TCPA — Digital Rights Manage-
ment (DRM). Under the term DRM we understand: ’a system of information
technology components and services that strive to distribute and control digital
products’ [LyoO1]. First, we will present issues and classification techniques of
DRMs. Then we will discuss a protocol that could enable DRM; for this we
will extend the AAC protocol. We will elaborate on the various advantages and
disadvantages of our system.

Chapter 12 contains the conclusion of the thesis and a summary of the con-
tributions made. It also presents related work and discusses how our own work
relates to it. Finally, we present a forecast of avenues which we are interested to
address in the near future.

Chapter 2

Background

This chapter provides the reader with necessary background information. We
only introduce concepts that are essential for the proper understanding of the
thesis. We proceed by giving an overview of the process calculus Communicating
Sequential Processes. We will introduce its syntax and the semantic models
used throughout this thesis. More precise we will elaborate on the traces, stable
failures and the failures / divergences model. Since nearly all of our models use
the traces model we will focus more on that model than on the others. The CSP
overview is concluded by a brief introduction of data-independence. Further we
will introduce Intrusion Detection Systems (IDSs) and classify them according
to a very simple taxonomy that uses only data source and detection method as
criteria. Within these two classes, we discuss the advantages and disadvantages
of each member.

2.1 Communicating Sequential Processes

The motivation for using formal methods is that conventional ways of specifying
systems rely heavily on natural language and diagrammatic methods. Such ap-
proaches make it harder to write unambiguous specifications and make it more
difficult to analyse them. If omissions and errors introduced during the specifi-
cation phase go undetected until late in the development cycle they become very
expensive to rectify.

One well known formal method is Communicating Sequential Processes
(CSP), invented by C.A.R. Hoare [Hoa78]. This version of CSP uses the con-
cept of communication between processes by passing messages. This is currently
the most widely used approach for inter-process communication (e.g., LAN, MAN
and WAN). When Hoare published his first paper information was exchanged by
handshaken communication. The book, Communicating Sequential Processes,
the foundation of CSP version 2, was published in 1985 [Hoa85|. Since then vast
amounts of theoretical work has been undertaken to improve CSP in order to

CHAPTER 2. BACKGROUND 10

become more powerful and to cope with the new trials of the recent invention of
concurrent programming [Ros98b|. We understand concurrency as the simulta-
neous execution of independent programmes / processes. These processes may
or may not communicate with each other.

It is easy to imagine that to understand the behaviour of a system that consists
of more than one process — processes that may be running at the same time —
is much more difficult than mastering a system consisting of a single process.
Unfortunately, because of the Internet and the fast growing use of distributed
applications this is precisely what is required, especially if we want to understand
the impact of certain environmental events on our system.

CSP is a language that describes processes. Additionally, it provides us with
a great variety of semantic models to reason about the behaviour of processes.
Since we do not assume any prior knowledge of CSP, we begin by introducing its
notation. (For further information see, [Ros98b, Hoa85].)

2.1.1 Syntax

Events An event is a single, atomic, and instantaneously occurring action that
a process engages in. There are two kinds of events; those that are external and
those that are internal. The latter indicates that the system or process makes a
decision without the environment. Such a decision can not be observed by the
environment. The external event is chosen by the environment and is therefore
observable.

Example 1 A cash change machine, is able to do two things — take_cash
and deliver_change. A corresponding CSP process would look like:

CashChangel = take_cash — deliver_change — CashChangel

This process is prepared to communicate the event take_cash and then engage
in the event deliver_change. After performing these two actions it behaves like
the process CashChangel, which means that it returns to its initial state.

The external choice Sometimes the defined process offers the environment
the choice between performing two events. This choice is called external choice
and represented by the symbol O.

Example 2 We could enhance our cash changing machine so that it is now
possible for the user to decide between two different change possibilities.

CashChange2 = take_cash — (deliver_change_one — CashChange2
O deliver_change_two — CashChange2)

CHAPTER 2. BACKGROUND 11

After the event take_cash takes place, this process gives the client the oppor-
tunity to decide between the events deliver_change_one and deliver_change_two.
After that decision has taken place the process behaves like CashChange2; its
initial state.

The non-deterministic choice The non-deterministic choice is similar to the
external choice operator; the only difference is that the choice is taken internally,
hidden from the environment. Therefore, the external system can not bias this
choice. The symbol for internal choice is .

Example 3 If we replace the external choice operator in Example 2 by
internal choice, we get the following process:

CashChange3 = take_cash — (deliver_change_one — CashChange3
M deliver_change_two — CashChange3)

In contrast to the process CashChange?2, CashChange3 does not give the user the
opportunity to choose. The process makes the decision internally, hence we call
such processes non-deterministic.

The hiding operator Sometimes it is necessary to hide events from the envi-
ronment. This can be the case, for example, if we want to narrow our inspection
to specific events. CSP has the hiding operator to manage this abstraction. For
example, P \ {a,b} stands for hiding all events a and b from the environment
that are occurring in process P.

Example 4 Assume our CashChange process, is extended to introduce in-
ternal events such as sorting the received money (sort_money) or booking the
delivered money in an account (book_money). However, these operations are not
observable from the environment, therefore we make use of the hiding operator.
The resulting process would be:

CashChange4 = take_cash — sort_money —
(deliver_change_one — book_money — CashChange4
M deliver_change_two — book_money — CashChange4)
\ {sort_money, book_money}

The parallel composition There are four varieties of parallel compositions:
synchronous parallel, alphabetized parallel, interleaving, and generalized parallel.
We will give a brief description of each and how they relate to each other.

CHAPTER 2. BACKGROUND 12

The synchronous parallel operator Using the synchronous parallel operator
leads to a full synchronisation of all participating processes. This means that all
participants must agree on all occurring events. It is represented by the symbol

I

Example 5 If we want to model the interaction between the cash change
machine and the customer we must also model the user. The customer is repre-
sented by:

Customl = take_cash — (deliver_change_one — Customl
O deliver_change_two — Custom]l)

This is mainly the same process as CashChange2, because, as stated above,
processes combined with the synchronous parallel operator have to agree on every
event. The combined process is:

Combined = Custom] || CashChange2

If Customl or CashChange2 would contain an event that is not in the alphabet
of its peer process then this event could never be activated.

The alphabetized parallel The latter constructor of parallel composition is
very restrictive. Therefore, we have the alphabetized parallel operator. Its rep-
resentation is P1 x|y P2. This means that process P1 can communicate all
events that are in set X and P2 can communicate all events in set Y. They
freely communicate all events except those that are in the intersection of these
sets. Once a process wants to engage in an event that lies within X and Y, both
participants, in our case P1 and P2, have to synchronise upon it.

If X and Y are equal, there is no difference between the alphabetized parallel
and the synchronized parallel. Conversely, where the intersection of the sets is
empty this operator behaves like the interleaving operator introduced below.

Example 6 In Example 5, our customer process had to offer the same events
as process CashChange2. This does not make sense, especially the take_cash
event. Therefore we change our customer process to become:

Custom?2 = donate_cash —
(deliver_change_one — take_change_one — Custom?2
O deliver_change_two — take_change_two — Customn?2)

The complete system would then be:

CHAPTER 2. BACKGROUND 13

Combined2 = Custom?2 x|y CashChange2
where X = {donate_cash, deliver_change_one, deliver_change_two,
take_change_one, take_change_two}
NY = {take_cash, deliver_change_one, deliver_change_two,
take_change_one, take_change_two, sort_money, book_money}

This gives the customer process the freedom to engage in the event donate_cash
without synchronising with CashChange2.

The interleaving operator We need the interleaving operator, represented
by |||, to model two processes that are connected but acting independently from
each other. Therefore, in the combination P1 ||| P2, all events in P1 and all
events in P2 can occur completely independently. If an event occurs that both
processes could have communicated, then the choice of which one executed it is
non-deterministic.

Example 7 Suppose we want to model a system that consists of two pro-
cesses that are not related at all. One example could be the ATM and the cash
changing machine at a bank. The resulting process would be:

BankSystem = AT M ||| CashChange?2

The generalized parallel operator All three of the above operators are com-

bined in one operator called, generalized parallel. The notation for this operator

is, ||. P1 and P2 have to agree on all events that are in set Y. Hence, we de-
Y

rive the interleaving operator from the generalized parallel operator by making YV
the empty set. The alphabetised parallel is modelled by satisfying the following
condition: Y is the intersection of the alphabet of processes P1 and P2.

The channel notation A channel is a compound object, where an infix dot
functions as a delimiter. For instance, a channel a with parameter over some type
T is written as a.7". This again is equal to {a.z|z € T’} of our alphabet (X). The
channel definition itself does not specify whether the values of type T are inputs
or outputs over a. The process itself has to define this by using the symbols !
and ? for output and input respectively (e.g. a?z : T — P'(z)). A channel can
combine as many objects as required.

Example 8 If we want a model of the money slots of the cash changing
machine as well, we can make use of channels.

Slot = donate_cash?x : Money — take_cashlx — Slot

CHAPTER 2. BACKGROUND 14

This process works as an interface between our C'ashC'hange processes and the
customer process. It takes a value of type Money on channel donate_cash and
binds it to variable x. It then submits the value stored in variable x on channel
take_cash to the C'ashChange process.

The renaming operator Sometimes it is required to map certain events or
channels to other events or channels. This can be achieved by the renaming
operator: the process P[la \ b||] behaves exactly as P except that the event or
channel b is replaced by a.

Example 9 Assume we have the similar situation as in example 7, the only
difference, that now we combine two cash changing machines. Therefore, we get:

BankSysteml = CashChange?2 ||| CashChange2

However this would lead to a serious problem: if we assume that each ma-
chine is used by one customer, we have no criteria to decide between the
deliver_change_one and deliver_change_two events of these machines. To dis-
tinguish between these two machines we use the renaming operator, which leads
to the following system:

BankSystem2 = CashChange? |||
(CashChange2 [|take_cash2deliver_change2_one, deliver_change2_two
\ take_cash, deliver_change_one, deliver_change_twol|)

Using the resulting process BankSystem2, we can now distinguish between the
two machines.

Modelling timed behaviour The standard CSP models only consider the
order of events without the notion of time. There are two approaches how one can
model time in CSP: Timed CSP [Sch00a, Ros98b| and un-timed CSP [Ros98b].
Timed CSP can be divided further into continous and discrete timed CSP [Sch00a,
Oua01]. The first of these introduces time by pairing every event in a trace with a
corresponding timestamp: a trace looks like ((timestamp, event))” t rather than
(event) " t. It uses a dense or continuous model of time. The timestamp is a
non-negative real number that will be increased until the event happens; thus, it
has an infinite state space. This prevents one from using tools like FDR. [Ros98b]
mentions that the only way this infinity can be counterbalanced is by ’imposing
severe restrictions and using clever equivalences’. The discrete approach remedies
this drawback. The time is projected onto an infinite number of discrete instances.
These instances are represented by the special event tock. This event can stand for
any amount of time passed. [Oua0Ol] discusses the relationship between discrete
and continous timed concurrent systems. An approach similar to the discrete

CHAPTER 2. BACKGROUND 15

timed CSP, is discussed in [Ros98b]. It uses an event called tock to represent the
passage of time. However, this approach facilitates only untimed CSP operators
and the event tock is not treated differently from any other event. Every process
in the modelled system has to synchronise with the other participants on tock.
Otherwise, we would not be able to relate the time passed in the overall system
to the time passed within each process.

Another way to simulate timing behaviour (timeout) is to use the sliding
choice (also called the timeout operator). It is originally derived from (a — P
Ob— @) \ b, which is equivalent to (P M STOP) O (). However, the resulting
traces are far from obvious — especially in complex models. In chapter 5 we will
present two approaches to model the timeout behaviour of the TCP/IP stack.
The first design does not use time, instead it uses the sliding choice operator to
achieve the same behaviour as an IPv4 timeout mechanism. The second model
uses a tock based timeout.

2.1.2 Semantic models

The traces model A trace of a process is a sequence of visible events that
the process can perform. The traces of a certain process is a set that contains
all finite traces that this process can generate. The traces model describes the
processes in terms of possible traces that a process can perform. As described
in [Ros98b] the function traces() delivers for each process the set of all its finite
traces. For example, once we apply the function traces() to the process P, where
P is defined as P = e — P, we get {(e)" | n € N}. Since we are using the traces
for proofs in the later chapters it is worth looking at some properties of this set
as well as how the CSP operators are behaving in this model. The following two
properties are always true if we apply traces onto P, whereby P stands for any
process:

1. traces(P) has at least one element; it always contains the empty trace.

2. traces(P) is prefix closed: whenever s™ 't is an element of traces(P) then
s is also.

It is possible to use a few rules to calculate this set by hand. In our case this
is not important since we use a model checker called FDR to do this task for
us. However, as mentioned before, to prove that our abstractions, that we will
establish during our examination are sound we will require the following rules:

1. The resulting set of traces(a?s : A — P) contains the empty trace the
initial event a.y, where the y is an element of the set A, followed by a trace
of process P. This results in {()} U {(a.y) " sly € AAs € traces(Ply/z])}.
The notation Ply/x] expresses that all free occurrences of the variable z
have the value y.

CHAPTER 2. BACKGROUND 16

2. The resulting set of traces(P O Q) equals traces(P) U traces(Q), since
this process can behave like P or like (), depending on the decision of the
environment.

3. traces(P M Q) provides us with the same result as 0. Hence, in the traces
model we can not distinguish between internal and external choice.

4. For traces(if bool then P else (Q) we obtain, if the expression bool holds, the
result traces(P) otherwise we get traces(Q)). Overall we obtain traces(P) A

traces(Q).

5. traces(P || Q) as mentioned earlier P and @) have to agree on all events
they engage in therefore we get traces(P) N traces(Q)

6. traces(Px||y@), since process P and @ have to agree on communicating
events in the intersection of X and Y, this equals {s € (X UY)*|s [X €
traces(P) ANs ['Y € traces(Q)}

7. traces(P ||| Q) equals [J{s @t|s € traces(P) "t € traces(Q)} where the
operator @) is defined as follows:

() Qs =(s)

s Q) = (s)

(@) s @(b)" "t ={(a)" ulu € s@(b)" "t}
U{(b) " uu € (a) s @t}

8. traces(P \ X) = {s \ X|s € traces(P)}.

Refinement With the refinement operator we can express a superiority or in-
feriority relation between two processes. The refinement follows one simple equa-
tion,

RCP=R=RTn0TZP

which means that P refines R; or we can say, P is more deterministic then R.
In terms of CSP we then say that the process P is better then R. Since the set
of traces of P is a subset of the set of traces of R, therefore whenever R satisfies
a given specification then P does also. This relation can be expressed by the
symbol C. Using the traces model we get:

R Cyp P & traces(R) O traces(P)
Refinement has a few interesting properties, such as transitivity.
PCr QANQEr R=PLCy R

This means that, whenever process P is refined by process), and @) is refined
by R then P is refined by R. As we will require later, all CSP operators are

CHAPTER 2. BACKGROUND 17

monotonic with respect to refinement. If we use the process context F'[-| to alter
a process called System and the result refines a certain specification called Spec.
We can split the proof that,

Spec Ty F[System)]

into two parts, by using an intermediate process called P. If following statement
holds,

Spec Cr F[P] N P Cp System
then by monotonicity:
F[P] Ty F[System]

Finally we have to use the transitivity of the refinement operator to establish our
initial statement:

Spec Ty F[P] N F[P] Cp F[System]
= Spec Ty F[System]

The stable failures model The traces model describes processes in terms
of their possible behaviour. However, this is sometimes not enough, because
it can only capture safety properties. Additional information about what the
process, after performing a certain trace tr, refuses to do would be desirable.
As an example the operators M and O are indistinguishable by just inspecting
the traces. The stable failures model extends this model to capture liveness
properties.

A failure of a process P is a pair (tr, X), representing that the process can
perform trace tr to reach a stable state, where no event of the set X can be
performed. A stable state is a state where no internal activity is possible. We
only consider stable states, since by definition of a failure the refusal set of a
certain state should be refused regardless of how long its events are offered. A
process) failure refines another process P, written P Cp @ iff:

traces(P) D traces(Q) N failures(P) 2 failures(Q).

The failures/divergences model The stable failures model can not handle
divergence. A diverging process such as P = a — P \ a is not performing
usefully nor refusing anything. The failures/divergences model relieves us from
such shortcomings. Because we cannot trust process P, once it has reached a
state where it can diverge, to do anything, we can conclude that two processes
that can diverge immediately are not only equivalent but also completely useless.
Once a state is reached where the process can diverge we assume that it can

CHAPTER 2. BACKGROUND 18

engage in any action, thus creating any trace, refuse ¥, and diverge in any later
stage. Thus, divergences(P) provides us with all traces P can diverge from and
their possible extensions. This changes the sets traces and failures. The, now
called, strict sets deliver the following elements:

traces | (P) = traces(P) U divergences(P)
failures, (P) = failures(P) U {(s,X)|s € divergences(P)}

A process P in this model is represented by:
(failures, (P),divergences(P))
The refinement relationship P Cpp () holds iff

failures (P) 2 failures, (Q) A divergences(P) 2 divergences(Q)

Failures/divergences refinement In the early days CSP was just applicable
to simplistic models because the analysis had to be done by hand. However,
today there are various tools that support this technique. One possible tool is
Failures/Divergences Refinement (FDR). FDR is fed by a slightly modified no-
tation of CSP called CSP), (machine readable CSP). This tool parses the CSP,
code and creates a state transition graph to check whether there is a possible
trace leading to a deprecated state. FDR is maintained by Formal Systems (Eu-
rope) Ltd.. We will use FDR for verification of models presented in this thesis
[Ros98b, GGH*00].

2.1.3 Data-independence

Usually, the behaviour of CSP processes is dependent upon various parameters.
These parameters are used to enable different instantiations for the processes.
The problem, in combination with FDR, FDR explores only one instance at a
time and its search is exhaustive. Hence, the parameter range can only be small.
The underlying problem is called the Parameterized Verification Problem (PVP).
It tries to address whether the specification holds for all instances [Ros98b, RB99,
Laz97].

Data independence is a tool that can be used to address this problem.
The goal of this approach is to come up with a bound N such that if a re-
finement holds whenever a type parameter is instantiated with a type of size NV,
then the refinement also holds for all larger types. The core of this is summarized
by following statement.

A process P is said to be data-independent with respect to a type T'
if the only operations it performs on values of 7" are to input them,
store them, and output them, but never perform any ’interesting’
computations on them that constrain what 7" might be[Ros98b].

CHAPTER 2. BACKGROUND 19

A type T is data-independent with respect to a programme P precisely when
P satisfies all the following conditions:

1. Values of 1" do not appear in the source code of P.

2. The only operations that are allowed in context of T are that passing of
elements of 7" around without looking inside them.

3. No predicates should use elements of T'. The exceptions are equality test-
ings, implicit (e.g., synchronization on a value of T) or explicit (e.g., If
Then Else).

4. Operations that extract information about data type 7" may not appear.

5. The programme should not contain any replicated constructs that are in-
dexed by T', except the nondeterministic choice.

As stated in the introduction of this section, data-independence is about cal-
culating a certain threshold! N, where N < M and M represents the num-
ber of elements of type T', both N and M are natural numbers. Therefore, if
Spec(T) Ty P(T) and T is restricted to N values holds then the refinement
holds for the full range of I". The remaining problem is the calculation of the
threshold.

For this we have to introduce two conditions: No Equality Testing (NoEqT)
and Norm.

The No Equality Testing condition (NoEqT) This condition holds for P
when it does not contain explicit or implicit equality testing regarding elements
of T'. By explicit, we mean ¢f — then — else statements and by implicit, synchro-
nizations between processes, on elements of 7.

Theorem 1 If NoEqT and data-independence holds for both the specification and
the implementation, and the Specification does not restrict the Implementation
regarding T, the threshold is one [Ros980b].

The remaining part is to define when Spec meets the Norm condition. This
condition is met if we abide by the following rules:

1. it does not contain the hiding nor the renaming operator;

2. it does not contain parallel operators, except the alphabetized parallel and
its replicated version;

!The state that is reached by using the threshold as data size for the data type is often
called data saturation [Ip96, GJ88, ID93]. This expression originates from the fact, that even
if we increase the size of T, the system’s offered behaviour essentially remains the same.

CHAPTER 2. BACKGROUND 20

3. no replicated nondeterministic choice operator is allowed that’s index is
built upon T

4. in order to know which side of the choice was taken, all internal and external
choice operators and the time-out operator must have the set of initial
events of each argument disjoint from each other;

. the sequential composition and interrupt operator should be used in such a
way that the former point is not violated implicitly; for the exact technical
conditions, see [Laz97].

Hence a process satisfies Norm if, essentially, it contains no nondeterminism the
effects of which are not immediately apparent (see [Laz97, Ros98b] for a formal
definition).

As we will see, in one of the presented cases the specification restricts the
implementation after a given trace, in communicating certain elements of T
Therefore we have to use another of Lazic’s theorems. The following theorem is
taken from [Laz97, Ros98b].

Theorem 2 Suppose Spec and I'mpl are data-independent processes, both satis-
fying NoEqT and Spec satisfying Norm. Let T be any of {Cr,Cp,Crp}.

1. If Spec(2) T Impl(2) holds (i.e. for T of size 2) then Spec(m) T Impl(m)
holds for all finite and infinite m > 2.

2. If the refinement Spec(2) T Impl(2) fails then Spec(m) T Impl(m) fails
for all finite and infinite m > 2.

This theorem will be used in Chapter 4 to restrict the unbounded supply of
different network messages. The data-independence framework offers many more
theorems, the interested reader is referred to [RB99, Laz97, Ros98b]. Since we
mainly focus on data independence we will only give a brief outline of another
promising abstraction technique.

Predicate abstraction is another abstraction technique that is mainly used
in the realm of software verification [BaRa, GS97]. Predicate abstraction first
appeared in [GS97|, since then it has been the focus of various other research
projects [FQ02, Rob].

In predicate-based abstraction methods, the data in the real world system is
abstracted by only keeping track of certain predicates that are based on the data.
Every predicate is represented by Boolean variables in the abstract program,
while the original data variables are pruned away. Early applications of this
method (for example [GS97])were dependent on the user identifying the set of
predicates that influence the control flow. However more recent research projects

CHAPTER 2. BACKGROUND 21

describe algorithms that compute relevant predicates and an abstract program
based purely on a syntax-directed analysis of the corresponding program text.

Data independence on the other hand focuses on the abstraction of data types
of variables that do not influence (or only in a very restricted way) the program
control flow. Thus, we could never use data independence to abstract systems
where elements of the data type in question are used for complex arithmetic op-
erations and the results are used to decide the succeeding behaviour; however
we could use predicate abstraction. In contrast to this, a system that uses vari-
ables of a data type with infinitely many elements and all these variables are not
bound to decisions and evaluations within the system, could not be abstracted by
predicate abstraction — but by data independence. We will not further pursue
predicate abstraction the interested reader is referred to [GS97].

The overview of CSP is far from complete however the material that will be
used to reach our goals was covered. The next area we have to introduce before
starting our analysis concerns intrusion detection within computer networks.

CHAPTER 2. BACKGROUND 22

2.2 Intrusion detection systems

An Intrusion Detection System (IDS) is a system that detects abuses, misuses,
and unauthorised uses in a network. The great advantage of an IDS is that
it can spot security breaches from insiders as well as outsiders. These systems
identify intrusions by spotting known patterns or by revealing anomalous be-
haviour of protected resources (for example, network traffic or main memory
usage) [HSTLI0, I1g93, Lun93|.

This line of research was started of by Anderson [And80] in 1980. Since then
it has been an active field of research. In the beginning the progress and the
awareness for the need of such systems was low. However, in 1987 Denning’s
proposal [Den87] of a framework for intrusion detection systems initiated a rally
in this field, even now many commercial products use her framework.

The following section contains all relevant information about IDSs to under-
stand this thesis. We give a small description of the different classes of IDS that
are currently available in industry and academia. We will also discuss the com-
mon advantages as well as the drawbacks that the systems of a particular class
have.

Classification Criteria We distinguish IDSs by their detection principles and
by their different kinds of raw event sources. At this point we will omit a classi-
fication according to the system structure. However, we will mention this point
in the conclusion. Further information on classifying IDSs is given in [Axe00].

2.2.1 Detection principles

Detection principles signify the method of detecting whether or not an attack
is in progress. This can be regarded as a specific instance of the more general
signal-noise detection problem [Ega75], whereby the manifestations of attacks
represent the signals and the background noise is represented by all operations
that do not violate the security policy. The general difficulty is to establish a
correlation between an observed operation and the signal or noise distribution.

Physics solves this problem with the knowledge of both distributions. How-
ever, current IDSs only use one distribution to fulfill this assignment. They
use either the signal distribution, in IDS terms represented by signature-based
detection mechanisms, or the noise distribution, the anomaly-based detection
approach.

We can split these two classes of IDSs into classical signature detection, nega-
tive signature detection on one side and into policy based detection and anomaly
detection on the other. The last detection principle, called hybrid detection,
independently uses a signature and an anomaly based detection engine.

CHAPTER 2. BACKGROUND 23

Misuse detection Misuse detection based systems look for known signatures
of attacks. They are also called signature detection based systems. A signature
is the pattern that is used by the IDS to spot attacks [Ken0l, Sun96]. It is a
specific manifestation of a certain attack. But not only systems that use pattern
matching to examine a specific data source fall into this category. [Kum95], for
instance, uses state machine descriptions to spot attacks. [I1g93] uses a state
transition analysis technique to reproduce the state of an observed object. The
signatures that are necessary for these systems are mostly developed by hand.
The IDS usually obtains the required information from a network adaptor,
which feeds it with raw data packets, or from the log-files of the hosting operating
system. In industry the most used systems are network signature based I1DSs
[MBO01, Nor99], because of their low total cost of ownership. More examples and
a detailed description of these systems can be found in [Axe00, Pax99, Sec, SNOJ.

Advantages The system knows exactly how a certain attack manifests itself.
This leads to a low false-positive ratio. The detection algorithm is based on
pattern matching, for which efficient solutions exist.

Disadvantages Defining the manifestations of certain attacks is a time con-
suming and difficult task. Due to the working principle of these systems, it is
nearly impossible for them to detect novel attacks. Moreover, subtle variations
in the attack can mislead them.

Negative Signature Detection Negative Signature Detection was originally
introduced to overcome the sinister side of signature detection. It should, there-
fore, be able to detect novel attacks. To address this task a negative data set
must be employed. In other words, the system administrator defines signatures
/ datasets of normal operations. If the monitored event deviates from the data
set, an alarm will be raised. This kind of IDS exists only in academia. It is only
practical if we have a very restricted set of legal operations otherwise this would
result in a high false-positive ratio. Therefore, we will not describe it in detail.

Specification-based detection [KFL94, Ko96] and [SBS99] were some of the
first papers that recommended this approach. They distinguished between normal
and intrusive behaviour by monitoring the traces of system calls of the target
processes. A specification that models the desired behaviour of a process tells
the IDS whether the actual observed trace is part of an attack or not. With this
approach, the attempt was to combine the advantages of misuse and anomaly
detection. It should reach the accuracy of a misuse detection system and have
the ability to deal with future attacks of anomaly detection. These systems
manage the detection by inspecting log files. This differs from [SU], where a run

CHAPTER 2. BACKGROUND 24

time engine was developed to detect violations in real time. This approach is also
capable of intercepting intrusions.

Advantages The advantages of these systems are fundamentally similar to
those of the misuse detection systems. However these systems manage to detect
some types/classes of novel attacks. Finally, they are more resistant against
subtle changes of attacks.

Disadvantages Usually for every program that is monitored, a specification
has to be designed. Furthermore, the modelling process can be regarded as more
difficult than the design of patterns for misuse detection systems. Additionally
some classes of attacks are not detectable at all.

Anomaly detection Such systems distinguish between normal and anomalous
behaviour of guarded resources ([SRI02, SRI01]). Examples of monitored resource
characteristics include CPU utilisation, system call traces, and network links.
The decision regarding which behaviour class currently relates to certain events
is made by means of a set of profiles. The profiles of normal behaviour for a
resource are maintained by a self-learning algorithm. The characterisation of the
normal behaviour is nontrivial. [Lun90] uses a statistical approach to model the
system’s behaviour, whereas [HSTL90] uses predictive pattern generation. More
recent inventions are using neural networks [Lun93] or try to use the immune
system as a role model for the perfect IDS [HF00, KBO1].

Advantages 'The cost of maintaining the system is usually low, because the
profiles are updated by the self-learning algorithm. Additionally, it can detect
novel attacks as well as variations of already known ones.

Disadvantages The self-maintaining algorithm is usually computationally ex-
pensive. Sometimes unusual behaviour is not a precise indicator of an ongoing in-
trusion. [Bel93| discusses the fact that ’[...]it is very usual to see unusual TCP/IP
traffic[...]’. The result is a high false-positive ratio [JM00]. Finally, these systems
can learn to classify intrusive event traces that are performed slowly as normal
behaviour, which renders them useless.

Hybrid Detection Hybrid Detection systems combine the two approaches of
signature and anomaly detection [LA00]. Academics and commercial vendors are
trying to overcome the drawbacks of signature based systems — their reduced
scope and inability to detect new attacks. They are also trying to overcome the
problems of anomaly based systems — their large false positive rate — by com-
bining them with signature detection. If we look at currently deployed systems,
we notice that 80 to 90 percent are signature based while only 10 to 20 percent

CHAPTER 2. BACKGROUND 25

of the detection capability is anomaly based. However, this latter proportion is
likely to increase since several promising research projects into anomaly based
IDS have been launched.

2.2.2 Different kinds of raw event sources

Another possibility for classifying IDSs is by means of the place and methods by
which they collect the information. Three different types can be distinguished —
a Network based IDS (NIDS), a Host based IDS (HIDS) and a Stack based IDS
(SIDS).

Network Intrusion Detection Systems (NIDSs) An NIDS gets its infor-
mation from a network adapter operating in promiscuous mode. It examines
the traffic for an attack symptomatic signature [SNO, Sec, ISS05, Cis04]. Al-
though anomaly detection has been implemented for these systems [SNO, Cis04],
the main detection principle remains the misuse detection. A NIDS can provide
surveillance for a whole network, because it is working with the raw network
packets. In our further examination we model an NIDS, because it is the most
used system type [MBO1].

Advantages Due to the fact that a single NIDS can monitor a whole network
its implementation and maintenance costs are low. Additionally, since they work
at the packet level, these systems have all the information to sift out the difference
between hostile intentions and friendly intentions. After a successful break in,
the attacker usually wants to erase his footprints, thus deleting the audit logs of
the host and its Host Intrusion Detection System (HIDS). In the case of using an
NIDS, all activity is logged by a different system; this makes it difficult to delete
them. The speed of these systems is another advantage - it detects attacks as
they occur in the network. This gives it the opportunity to react before serious
damage is caused.

Disadvantages These systems are largely unable to read the traffic of en-
crypted connections. The only exception would be to include them into the
security association [HK98, BW97]; however this can be regarded as compu-
tationally too expensive. Nevertheless, users have increasingly encrypted their
communication, rendering the system obsolete. Additionally, more and more
networks are switched rather then broadcasted. Due to the Ethernet working
principle [Bla98], the NIDS is only able to collect packets that travel through its
collision domain. In a switched environment, there is no real collision domain;
hence the NIDS is not able to retrieve vital information [Sys99]. One possibility
is to use the mirror ports (SPAN) on the switch to collect all packets. However,
such a SPAN port can easily run out of capacity [Sys99].

CHAPTER 2. BACKGROUND 26

Host Intrusion Detection Systems (HIDSs) The HIDS runs on a specific
host and watches its logging activity [Sys00, Nor99, Tan01]. Therefore, these sys-
tems are operating system dependent and every protected host needs a separate
IDS [Sys98]. They can keep track of all actions that are made by the users of
that host which include browsing for files with the wrong read/write permissions,
the adding and deleting of accounts, and the opening and closing of specific files.

This gives them a great aptitude for surveillance of security policy violations.
Further examples can be found in [AXE98a, AXE98b, Ein01, Els00, Inn01].

Advantages The system knows whether or not an attack is successful. It usu-
ally produces a reduced number of false-alarms caused by unsuccessful attacks;
for example, a HIDS protecting a Linux host would not raise an alarm if an at-
tacker sends a Microsoft IIS Buffer Overflow Attack against this host [CER02].
HIDSs have more monitoring variables than NIDSs. Because HIDSs reside on the
target host, these systems are able to keep track of encrypted end-to-end con-
nections. Some of them even watch the packets as they traverse up the TCP/IP
stack, allowing them to drop a packet that would lead to a security policy vio-
lation [LAOO]. Another advantage of this structure is that HIDS do not require
additional hardware.

Disadvantages For every monitored node a HIDS is required. This makes
them very expensive in maintenance. HIDS are operating system dependent,
therefore different implementations for different operating systems are required
which makes them expensive in development. They also reduce the operational
capacity of a network node, because they run their analysing processes in parallel
with the business applications. Additionally, once an attack succeeds one has to
trust information collected from a corrupted host. Ranaum agues that: It s
inherently flawed to trust data of a corrupted host [Ran01]. Finally they have
serious problems to detect more elaborate attacks; involving more network notes
(i.e. distributed host scans).

Future directions in intrusion detection To discuss the future development
of IDSs we have to distinguish between the progress made in industry and that
achieved in academia. Since the corporate networks are getting more sophisti-
cated, in particular, larger, more distributed and with more entry points to other,
potentially hostile, environments, industry focuses on data collection, correlation
and presentation [CER03, JHO3]. Internet Security Systems, for instance, uses
micro agents, slim and efficient data collection engines, that are deployable on
every host [SysO0b, BR]. This clearly leads to an information flow problem. If
the data is subsequently evaluated, one has to answer the question of how and
where the data will be processed and stored. The data can be processed and
stored completely on site. It can be processed partially by the agent; in this case,

CHAPTER 2. BACKGROUND 27

however, the data is stored at a central point that executes advanced correlation
techniques. The third option would be that every agent’s purpose is pure data
extraction and the evaluation is completely undertaken by a central management
station [AXE98a]. Clearly an evaluation on site represents the most efficient way
in respect of network utilisation. However, for complicated analysis, this may re-
duce the operational capacity of the host. Additionally, it prevents the IDS from
detecting elaborate attacks such as distributed attacks [Nor99]. The approach
where the central management station is performing all the attack detection, re-
sults in a heavy utilisation of the network capacity. Furthermore the node that
works as a central management station can easily run out of resources. Hence
elaborate load balancing techniques have to be applied, which clearly complicate
the whole system [Sys99]. The remaining approach where some processing is
done on site and the evaluation of distributed attacks performed by the central
detection engine seems to be the favoured approach.

Since 'data is not information, information is not knowledge and knowledge
is not wisdom’ industry tries to address data presentation and correlation as
well. [CERO03, JHO3] present two approaches to provide the administrator with
comfortable GUIs. For data correlation, industry pursues various approaches.
Most of them are based on pattern-matching or similar techniques that show an
advantageous run-time complexity. However, the most stimulating work in this
area is done in academia.

Clearly all the issues addressed above are important for academia as well. For
instance [LS98, LNYT00] are dealing with data correlation. [LS98] uses data-
mining algorithms to generate profiles for anomaly IDSs. More precisely, they
use the association rules algorithm and the frequent episodes algorithm to learn
the intra- and inter-audit record patterns to embody the behaviour of certain
processes. [LNYT00] adds another dimension to this approach. They use the
Common Intrusion Detection Framework (CIDF) [CIDF] to develop a prototype
of a distributed IDS that consists of multiple agents that can independently detect
hostile patterns. These agents continuously update their data-mining resources.
After applying the mining algorithms, this allows them to learn representations
of novel attacks. These newly learnt patterns can then be communicated to
other agents. This research project covers not only correlation and topological
issues, but also the interoperability between other IDSs — which will become
increasingly important. In a similar vein, [MRSO01] uses clustering to associate
legitimate users with certain profiles. They then simplify the collected data by
applying a genetic algorithm. The process finishes with the refinement of the
associations between users and profiles by using a neural network.

Another field within the intrusion detection area is represented by the un-
derlying attack classification and representation theory [How97, Kum95, Krs98|.
For example [How97] developed a taxonomy for describing and classifying at-
tacks. He founds his broad categorisation mainly on the dimensions attackers,
tools, results and objectives. [Kum95], on the other hand, uses pattern specifi-

CHAPTER 2. BACKGROUND 28

cations and refinement, based on representability, to create a hierarchy between
different categories of intrusions.

2.3 Summary

In this chapter, we introduced the necessary background information for the
remainder of this thesis.

We gave an overview of Communicating Sequential Processes in some detail.
We elaborated on the syntax and semantic models that can be used to reason
about various attributes of processes. The focus of our introduction was on the
CSP operators and the traces model. Additionally we gave a brief introduction
of the stable failures and the failures / divergences model. The CSP overview
concluded with an introduction of the data-independence technique. This tech-
nique enables the reduction of certain infinite state systems to finite state systems
without loosing relevant detail.

In the second part of the introduction, we established a simple taxonomy to
distinguish between different types of intrusion detection systems. This taxon-
omy uses the attributes data source and detection method to elaborate on the
differences between anomaly, misuse and specification based detection on one side
and NIDSs and HIDSs on the other side. We discussed their advantages as well
as their disadvantages. The intrusion detection part finishes with a outline of
future research in that area.

Chapter 3

Intrusion detection systems CSP
models

In order to show that CSP is suitable to verify IDS we first try to find efficient
ways to reveal already known attacks. Once we are able to do so, we look to find
whether it is possible to use our technique in new areas of intrusion detection.
The remainder of this chapter is organised as follows:

To understand our models it is necessary to have basic knowledge of IPv4.
Therefore, in section 3.1, we will provide the relevant background information.

Section 3.2 is setting up the stage by discussing the abstractions and assump-
tions that are required to keep the state space low.

In section 3.3 we investigate whether the Internet Protocol version 4 (IPv4)
[dR81] gives us the opportunity to encode a well known attack against a monitored
target in such a way that our IDS can not spot the threat. The model is based
on a very simple packet structure, only consisting of the data and the Time-to-
live field and should show how FDR is used to detect flaws in that model. This
section finishes by discussing a suggested work-around.

Section 3.4 describes an enhanced CSP model, whereas its simulated packet
structure will cover more fields. The packet consists of all relevant information
to allow a proper packet reassembly. The reassembly algorithm itself is purely
based on RFC 791 [dR81]. Finally prevention techniques are suggested.

In section 3.5 we build a new model upon the knowledge gathered from our
first two models. We will construct a non-deterministic process based on RFC
815. The non-determinism covers all reasonable choices a programmer had to
make if he wants to implement a RFC 815 compliant reassembly algorithm. The
choices purely reflect the leeways given by the ambiguous specification [Cla82].
The modelled network consists of nodes that use different reassembly algorithms.
The IDS for instance uses RFC 815 as guideline and the target reassembles accord-
ing to RFC 791; considering the heterogeneous environment in today’s networks
this is a usual setting.

29

CHAPTER 3. INTRUSION DETECTION SYSTEMS CSP MODELS 30

Version (4) | Header Length (4)
I

Type of Service (8)

Total Length (16)

Identifier (16)

Flags(3) 1 Fragment Offset (13)
|

Time To Live (8)

Protocol (8)

Header Checksum (16)

Source Address (32)

Destination Address (32)

Options and Padding (Variable)

Data (Variable)

(n) = Number of Bits in Field

Figure 3.1: IPv4 header

3.1 Internet protocol version 4

As mentioned above, this analysis not only focuses on modelling IDS with CSP,
but also on modelling the environment of an IDS. The first crucial component to
understand is the Internet Protocol version 4 or IPv4. This section introduces
this protocol. However, we will only discuss the fields and functions that are
relevant for our first security inspection. (For further information see [dR81].)

Figure 3.1 presents the structure of an IPv4 header based on RFC 791. The
followings a short description of each field.

The Version field is 4 bits long and identifies the version of the IP packet.
Currently this value is always four. However, the IPv6 protocol has already been
released [HD98b] and will be introduced in the near future.

The Identifier field becomes important if the datagram is fragmented. In this
case the receiving host has to distinguish between fragments that may belong to
different packets. A host uniquely identifies what fragment belongs to a certain
packet by evaluating this field and the address fields.

The Flags field consists of three bits that are required for the fragmentation
algorithm:

1. Bit 0 is reserved and is therefore not in use.

CHAPTER 3. INTRUSION DETECTION SYSTEMS CSP MODELS 31

2. Bit 1: a one assigned to this position indicates that the IP packet has to stay
un-fragmented, whereas a zero indicates that fragmentation is permitted.

3. Bit 2: a one in this position indicates that more fragments are to follow,
whereas a zero indicates that this is the concluding fragment.

The Fragment Offset value describes where this fragment belongs within the
original IP packet.

The Time to Live field maintains the distance a packet can travel: every
router decreases its value by one; once zero is reached the packet is discarded.

The Source Address indicates where the packet originated from.
The Destination Address identifies the target of the packet.

The Data field accommodates the user data.

3.2 Modelling assumptions

The CSP models are built under certain assumptions. One general assumption is
that the IDS is an NIDS based on signature detection. We believe that this is the
most relevant IDS because of their widespread use. The IDS itself is considered to
be perfect, in the sense that it knows all vulnerabilities that could be used to cause
a security breach. We now consider only one-way and in-order communication.
Further, we assume that a channel or device cannot corrupt a packet, nor can
it refuse to forward a packet when it ought to do so (the only exception is the
timeout model).

We now consider the network topology. We model a network with just one
sender and one receiver node. We use a DeMilitarised Zone (DMZ) configuration,
which is commonly used in industry [CZCO00]. It consists of an exterior filtering
router and an internal filtering router (see Figure 3.2 below); the exterior one
is responsible for protecting the network from most attacks; the interior one is
the most restrictive, as it only allows traffic that is permitted for the internal
network. The DMZ resides between these two routers; this is the place where
companies maintain their public servers, such as the web server. This is also the
preferred place for the IDS; due to the limitations of a network IDS, this is the
only place where the IDS receives all the traffic that comes from outside. (An
alternative place would be in front of the external router; however this IDS would
then detect more alerts than are actually relevant: it would include all attacks
that are confounded by the exterior router.) In section 4.3 we will discuss why
this topological restriction is reasonable.

CHAPTER 3. INTRUSION DETECTION SYSTEMS CSP MODELS 32

If we find an attack under these restricted conditions, we will know that there
is an attack in the real-world.

a b c d
Attacker — Routerl —— IDS [—1 Router2 [— Target

Figure 3.2: The network topology

3.3 Time-to-live model

In this section we present our first model. We consider whether the Internet
Protocol version 4 (IPv4) [dR81] gives an attacker the opportunity to launch an
undetected attack against the target. We first discuss how we can represent the
protocol.

1. We need the data field, otherwise we could not communicate with the nodes
in our simulated network.

2. Additionally, we include the Time-To-Live (TTL) field.

As shown in [PN98], the TTL offers an interesting evasion possibility.

3.3.1 CSP model

Each datagram consists of a T'TL value and some data. Hence the channels have
the following structure: TTL.DATA. In order to reduce the state space of our
model we ought to introduce further restrictions.

e The TTL value will only range from 4 to 0. We believe that the range of
the TTL value is enough, because the diameter! of the resulting network
will be smaller then 4.

e The Data field will communicate the bit patterns A, B and C. A represents
the bit patterns that, once received, force the target to move into a pre-
crashed state or the IDS into a pre-alerted state. The pre-crashed or pre-
alerted state indicates that the system will fail or alert on receiving a B,
bit pattern (which stands for the attack suffix). If the system is not in a
pre-crashed or pre-alerted state and receives a B it stays in its initial state.
In the real world, A followed by B represent all possible real-world attacks
that forces a target or IDS to fail or alert. A common example for an (A, B)

!The diameter of a network, in this context, is the maximum number of time-to-live de-
creasing hops between the target and the attacker.

CHAPTER 3. INTRUSION DETECTION SYSTEMS CSP MODELS 33

sequence would be the transmission of a buffer overflow sequence, via two
packets, to a vulnerable service within the network.

The final class of bit patterns, C', represents all strings that are not part of
class A or B, i.e. the set of innocent patterns that are not part of an attack
in any way. We believe, that for our purpose three packets are enough
to simulate every relevant pattern matching scheme. In section 4 we will
show how one can formally justify that actually only 2 different patterns are
required. However for this we will slightly change the focus of our model.

For simulating an appropriate network we require two routers, an attacker, one
target and one IDS, as shown in Figure 3.2; we describe each of these below.

The routers The routers are used for navigating packets from source to des-
tination. Since we have not modelled the source and destination address we
can ignore the whole routing functionality; our routers, therefore, act like relay-
stations. Taking this simplification into account, we achieve a very simple router
that decreases the T'TL field by one and checks the result. In the case where the
value is zero, the packet will be dropped. Otherwise the packet will be forwarded
with the new T'TL value. From this, we get the following CSP description:

Router(in, out) =
mlaly —
if y > 1 then out.z.(y—1) — Router(in, out) else Router(in, out).

where x contains the data and y the TTL value. The parameters in and out are
channel names that represent the input and output ports of the router.

The attacker The attacker process should be able to execute the same actions
as an attacker in the real-world. We model the attacker nondeterministically, so
as to impose no limitation on the sequence of packets it sends. Consequently,
FDR has to explore every possible input stream that the attacker process may
create. The process is modelled by the following CSP description.

Attacker(out) = out.x.y — Attacker(out).

The target The target process receives fragments and then reassembles them.
Once the packet is reassembled, if an attack signature is found, the target should
fail. The following CSP process models this component.

Target(sigs, vulnerabilities) =
clxly —
let vulnerabilities’ = {s | (x) s € sigs U vulnerabilities}
withinif (x) € vulnerabilities then fail — Target(sigs, vulnerabilities’)
else T'arget(sigs, vulnerabilities’).

CHAPTER 3. INTRUSION DETECTION SYSTEMS CSP MODELS 34

This process is initialised by the two variables, sigs and vulnerability. sigs is
a set of sequences, namely all complete attack signatures. vulnerability keeps
track of the progress of security breaches and indicates what the target has to
receive in order to fail. The list comprehension is used to update vulnerability.

One note about the fail event: this event does not mean that the computer
crashes literally; it only indicates that the security policy has been violated. This
can range from stealing or compromising data to root access and even to crashing.

The IDS The IDS protects the target. We assume here that the IDS is a
perfect signature based IDS and therefore knows all vulnerabilities that cause
the target to fail. In practice this is impossible because many vulnerabilities
are not revealed yet. We have to make this assumption to generalise all current
existing IDSs. The following CSP description of the IDS differs from the above
target component only in the following two ways: firstly, it forwards all received
packets after inspecting them; secondly, it engages in an alert event rather than
in a fail event once it has received an attack pattern.

IDS(sigs, alerts) =
b?aly —
let alerts’ = {s|(x)""s € sigs U alerts}
withinif (x) € alerts then alert — clxly — IDS(sigs, alerts’)
else clzly — IDS(sigs, alerts').

The complete model We use parallel composition to synchronise the different
processes according to the given network structure (Figure 3.2). We hide all
internal events, leaving just the alert and faul events visible.

The Specification The specification expresses that there always has to be an
alert before a fail event. In other words, the IDS should have a log-entry once
a successful attack was performed. We can model this with the following simple
recursive CSP process:

Spec = alert — fail — Spec.

We use FDR to check whether Spec CTr Modell holds, that is, whether the
traces of Modell are a subset of the traces of Spec. The process Spec allows
precisely the valid traces, so if the refinement holds then the traces of Modell are
just valid ones, where the IDS detects all attacks; if not, then we have discovered
an attack not detected by the IDS.

3.3.2 Results

FDR reveals that the refinement check above fails and provides us with the fol-
lowing trace:

CHAPTER 3. INTRUSION DETECTION SYSTEMS CSP MODELS 35

< a.A.4, b.A.3, c.A.3, a.C.2
c.C.1, B.4, b.B.3, ¢.B.3,

This trace is displayed in the following sequence diagram presented in Figure
3.3. This is similar to the observation of Ptacek in [PN98|. The attacker sends

Attacker | | Router 1 IDS Router 2 Target
A4
A3 | A3 _
A2
c2
c1 Cl
B4
B3 B3
B2

Figure 3.3: TTL Attack

three packets with data A, C' and B respectively, where the packet with data C
has a TTL value that is lower than its distance to the target. Therefore, this
fragment will be discarded from the last router. The IDS, however, takes it into
account, so the reassembled packet deviates from the packet that is processed by
the target. Hence the target fails, but the IDS does not raise an alert.

Attacks like these, where the states of the IDS and target become de-
synchronised, are called de-synchronisation attacks.

3.3.3 Discussion

The attack presented above relies on the fact that the IDS has not enough in-
formation about the topology of the network. We can solve this problem in two
ways.

1. We could redesign the IDS so that it takes the different distances into
account. The drawback of this solution is that the count has to be updated
if changes in the network topology occur.

We designed a CSP model corresponding to this proposed solution; the
analysis found no attacks.

2. The second possibility is harder to implement; we could implement a re-
assembly algorithm that raises an alert if the T'TL value of one fragment in
the stream is different from the others, and this TTL value is lower than the

CHAPTER 3. INTRUSION DETECTION SYSTEMS CSP MODELS 36

diameter of the network. On the other hand, this would cause a potential
for false-positives. Let us assume the network consists of more broadcast
domains (i.e. employs more routers), which means that we would have tar-
gets with different distances to the IDS. Hence it may very well be that the
fragment with the low TTL value would reach the destination. To solve
this, we have to link a distance to every broadcast domain. This is similar
to the first solution.

Finally, we have to point out that these days it is unusual for packets to get
overly fragmented; therefore an IDS based on anomaly detection is well suited
for spotting an increased amount of fragments within a communication stream

[SNOJ.

CHAPTER 3. INTRUSION DETECTION SYSTEMS CSP MODELS 37

3.4 Fragment-overlapping model

In this section, we examine the behaviour of a network that includes data packets
that are fragmented and reassembled according to RFC 791 [dR81].

Sometimes an IP packet has to be routed through different networks. Not all
networks have the same properties. Therefore, a packet might have to be split up
into fragments tagged with their position in the original packet (fragment offset);
this process is termed fragmentation. The target receives an increased supply of
smaller fragments instead of one IP packet and therefore has to reconstruct the
initial packet; this process is called reassembly. The algorithm in [dR81] collects
the fragments and puts them into the right place of the reserved buffer.

Sometimes data is received at the same fragment offset as a previously received
fragment. In such a case, a decision has to be made whether to favour old or
new data. RFC 791 [dR81]| leaves it unspecified which should be preferred, but
the recommendation is to prefer new data, so that if the algorithm receives data
from the same position twice, the new data will overwrite the old.

However, not all implementations follow this suggestion: favouring new data
introduces great danger, as stated in [RZT95], making it possible to circumvent
filtering devices; for this reason some operating systems favour old data. Com-
bining operating systems that favour new data (e.g. 4.4 BSD and Linux) with
those that favour old data (e.g. Windows NT 4.0 and Solaris 2.6) introduces an
evasion possibility if the IDS does not know what type of operating system the
target is running. This was first discovered by Ptacek and Newsham [PN9S].

3.4.1 CSP model

To analyse the interactions between the various types of operating systems and
IDSs, we have designed the following CSP model. The network topology is similar
to that in Figure 3.2, although, for simplicity, we omit the routers.

Channels The channels of this model have to be extended. We require all
fields that are necessary to re-assemble the fragment stream, namely the more
fragments (MF) bit, which indicates whether this is the final fragment in the
packet, and the fragment offset (FO) bit, which indicates the offset of this frag-
ment within the packet.

We use the following channel description:

more_fragment_bit. fragment_of fsetI'l' L.data

Therefore, event a.1.0.1.A represents a packet that travels along channel a with
its more fragment bit set to one, a fragment offset of zero, a T'TL value of one,
and a data field containing a bit sequence A.

Attacker The attacker process basically remains unchanged.

CHAPTER 3. INTRUSION DETECTION SYSTEMS CSP MODELS 38

Target The target should satisfy the same properties as the target process of
the TTL model. Additionally, it should be able to deal with fragments and out-
of-order traffic. Thus, it should be able to re-assemble an out-of-order fragment
stream, as it is described in RFC791.

In order to consider the behaviour of the different types of operating systems—
favouring old or new data—we arrange for the target process to choose an
operating system initially. The reassembly buffer is initialised to be empty
((N,N,N,N,N)).

Target(sigs) = os_target?os — Target'(os, (N, N, N, N, N}, sigs,0).

The process Target(OS, buff, sigs, max) requires the following parameters: OS
states whether the IDS is preferring old or new data; buff represents the allocated
resources that are required for reassembling a packet; sigs carries the set of attack
signatures; and max keeps track of the maximum size of the original packet. The
target first receives a datagram and calculates the new buffer b1 with the function
overwrite.

It is important that our target process decides initially whether it is within
the class of operating systems that favours old or new data, indicated by the
events os_target.0 and os_target.1. After making that decision it is forced to
stay in this class.

Target'(OS, buff, sigs, max) =
mn?mf7fo2?ttl?data —
let b1 = overwrite(buff, fo2, data)
within Target” (OS, buff, sigs, max, mf, fo2, data, bl).

The following process models the case where the more fragments flag is equal
to zero, indicating that this will be the last fragment. First the process checks
whether a fragment with this offset has already been received and if so, acts ac-
cording to its update policy (favouring old or new data). It then checks whether
or not the packet is complete. If the packet is not complete it stores the max-
imum size of the packet, otherwise it verifies whether it has received an attack
or not. The function nth(a,b) returns the value stored in position b of buffer a.
allFilled(a,b) checks whether all data in the buffer a up to position b have been
received. check(a, b, c) compares the buffer a with the set b to depth ¢ to validate
the existence of any attack patterns in the buffer. After the reconstruction of
a packet the buffer is initialised with (N, N, N, N, N), which indicates a clear
buffer.

CHAPTER 3. INTRUSION DETECTION SYSTEMS CSP MODELS 39

Target"(OS, buff, sigs, maz, 0, fo2, data, bl) =
if nth(buff, fo2) # N NOS ==
then Target’ (OS, buff, sigs, max)
else if all Filled(bl, fo2)
then if check(bl, sigs, fo2)
then fail - STOP
else Target'(OS, (N, N, N, N, N), sigs,0)
else Target’ (OS, bl, sigs, fo2).

The following process models the case where a fragment with more fragments bit
set to one arrives, indicating that more fragments are following. The structure is
nearly the same, except that we do not set any maximum.

Target"(OS, buff, sigs, maz, 1, fo2, data, bl) =
if nth(buff, fo2) # N
then if OS =0
then T'arget’ (OS, buff, sigs, max)
else Target’(OS, b1, sigs, max)
else if all Filled(bl, max) A max # 0
then if check(bl, sigs, max)
then fail - STOP
else Target’ (OS, (N, N, N,N, N), sigs,0)
else Target’(OS, b1, sigs, max).

The IDS The IDS process structure is similar to the IDS model in the improved
TTL version in that it considers the distance to the target. It is also capable of re-
assembling fragments arriving out-of-order, as the target process presented above.
We will not give a full account here because of the similarities to the target. The
IDS raises an alert instead of a fail event and indicates its operating system
with os_ids instead of os_target.

The complete model The complete model is composed of an attacker, a tar-
get, and an IDS. The specification and refinement assertion remain the same as
in the TTL example.

3.4.2 Results
FDR provided us with two distinct attacks that could both elude the IDS.

Attack 1 The IDS chooses to use an operating system that favours new data
(indicated by the event os_ids.1), whereas the target chooses to favour old data

CHAPTER 3. INTRUSION DETECTION SYSTEMS CSP MODELS 40

Attacker IDS Target
1.0.1.A %051
0s_target.0
1.0.1A
1.02C
1.02C
013B
013B

Figure 3.4: Attack 1

(os_target). The attacker sends two fragments with fragment offset zero, the
first containing a bit sequence A (1.0.1.A4), the second containing an innocent
bit sequence C' (1.0.2.C'). The result is that the IDS receives the A fragment
and then overwrites it with C'. However, the target receives the A fragment and
refuses to store the C' fragment, because it favours old data. Therefore we have
the situation where in the reassembly buffer of the IDS, a C' bit sequence is stored
and in the buffer of the target process an A bit sequence is stored. Finally the
attacker creates the last packet (0.1.3.B), with a fragment offset of one and the
more fragment bit set to zero. Hence on receiving this fragment, both the target
and the IDS re-assemble their packets. The IDS re-assembles (C, B) and the
target re-assembles (A, B), which causes a fail event without an alert.

Attacker IDS Target
0s_|ids.0
0s_target.1

01.0C

01.0C
012B

012B
103A

1.03A

Figure 3.5: Attack 2

Attack 2 This attack is the reverse of the former. The IDS chooses to be based
on a type zero OS (favouring old data) and the target chooses to be based on a
type one OS (favouring new data). The attacker sends a fragment with fragment
offset one, more fragment bit set to zero and a C' bit sequence to the IDS (0.1.0.C").

CHAPTER 3. INTRUSION DETECTION SYSTEMS CSP MODELS 41

He then submits a fragment with the same fragment offset but with a different
bit sequence (0.1.2.B). This leads to a deviation of the IDS buffer from the target
buffer: the IDS has stored a C' in its second place, whereas the target overwrites
the C' with a B. The attacker then sends the final packet (1.0.3.4). The IDS
re-assembles (A, C'), which is innocent, and the target re-assembles (A, B), which
leads to the fail event without an alert.

3.4.3 Discussion

To prevent these attacks, the IDS has to take into account both possibilities for
the target, i.e. favouring old or new data. We have changed the IDS accord-
ingly. We used two parallel IDSs, one favouring old and the other favouring
new data. With these changes, FDR was not able to spot any attacks. How-
ever, this solution does not appear to scale well. There are many differences
in the way implementations treat the TCP/IP stacks and it would appear that
the IDS needs to consider all such possibilities. Even if we only consider the
drop points — operations where the packet is completely rejected — described in
[PN98, Pax99], there are a vast number of de-synchronisation possibilities. The
consequent state-space explosion in the IDS would appear unmanageable.

Another subtle point in our reassembly model was missing, namely time: both
the IDS and target will timeout if a packet is not completely received within a
certain time. The use of timeouts allows a different de-synchronisation attack.
Consider the case were the timeout value of the IDS is smaller than the value
for the target: the attacker then can send its first fragment and wait until the
IDS times-out before sending the remaining fragments, causing the agents to
become de-synchronised (this will be discussed in more detail in Chapter 5.1).
This attack reveals an interesting point: we can never be certain whether our
abstractions have removed details that allow attacks. Because of this we need a
proper formalism to formally prove that our abstractions have not lost too much
detail (see chapter 4).

CHAPTER 3. INTRUSION DETECTION SYSTEMS CSP MODELS 42

3.5 Using CSP to test specifications

The models we have seen thus far reveal already known attacks [PN98]. Only
some of the prevention techniques that were discussed in the previous model are
new. Now we shall try to apply our knowledge in an effort to discover new ways
to elude an IDS. However, we remain in the fragmentation area.

In 1982, Clark suggested, in RFC 815, a better re-assembly algorithm. This
algorithm was commemorated as an improved version of the standard algorithm
given in RFC 791.

We will use Clark’s terminology [Cla82]. A hole is a missing bit sequence in the
half-reassembled datagram. Every hole is specified by two numbers. hole.first
implies the starting position of the hole in the buffer. hole.last describes the
upper boundary of the hole. The pair of hole.first and corresponding hole.last
is called a hole descriptor. All pairs referring to a hole are collected in the hole
descriptor list. The term, fragment.first, is a synonym for the fragment offset.
fragment.last is specified by the fragment offset plus the total length minus the
header length. The algorithm keeps track of its collected data with a vector of
bits, called a hole descriptor table. (For further information see [Cla82].)

3.5.1 The re-assembly algorithm based on RFC 815

Every packet that arrives will be checked to see whether the arrived data affects
one or more holes. Therefore, every hole in the hole descriptor list is examined.
In the case that one hole is completely overlapped by the data, the corresponding
descriptor will be deleted. In cases where all descriptors are deleted, the packet
is re-assembled and can be processed further.

The algorithm is initiated by the arrival of the first fragment. At this point
an empty buffer is allocated. The buffer should preferably be 64KB. The hole
descriptor list is initialized by one descriptor going from position zero to say
64KB. The following steps are then required to insert a packet into the right
position and to manage the hole descriptor list.

In the first step we choose the next hole in the descriptor list (1). In the
event that there are no more entries, we proceed with step eight. Once we have
a hole, we check whether fragment.first is greater than hole.last (2) or whether
fragment.last is less than hole.first (3). If one of these conditions is true, we
jump back to the first step in order to choose the next hole. In the case that
neither of the conditions is true, we know that the hole is affected by the arrived
fragment. We therefore delete it from the hole descriptor list (4). At this point we
must determine whether or not the hole is completely overlapped by the fragment.
That is, we verify whether or not fragment.first is greater than hole. first. If
greater, it is deduced that we have to create a new hole starting from hole. first
and ending at fragment.first (hole.first refers to the deleted hole) (5). In step
six we check whether the hole.last is greater than fragments.last. In the case

CHAPTER 3. INTRUSION DETECTION SYSTEMS CSP MODELS 43

where this is true, we create a new hole from fragment.last to hole.last (6).
Moreover, we consider the MF bit in the arrived fragment. From a zero we can
infer that this is the last packet. We can, therefore, discard all hole descriptors
that are pointing to successive holes. The exact quote of the RFC implies that the
hole from fragment.of fset plus the value fragment.last to the upper-bound of
the buffer will be discarded. After all the calculations and updating of the hole
descriptor list have been completed, we return to step one (7). The last step is
reached when the algorithm times out or in step if no further holes are available.
The fragment is re-assembled and can be forwarded for further processing (8).
(For further information see [Cla82].)

3.5.2 Description of the RFC 791 versus RFC 815 model

As stated in [GUOO], few operating system vendors have changed their algorithm.
Therefore, we will most likely encounter, in a heterogeneous network, the situation
where some nodes use the old method and some the new. This situation is
examined in the following subsection. We will only state the result of the first
CSP model of that series; the target uses the procedure according to [Cla82] and
the IDS uses the original re-assembly method. A brief description of the necessary
components follows.

The router has the same structure as in the former model.

The attacker has the same power as the attacker in the fragmentation over-
lapping mode, and therefore, is modelled in the same way.

The target uses various functions to model the re-assembly algorithm. We
will describe each function in turn.

Nexthole() corresponds to the first three steps of the algorithm description. It
loops through the hole descriptor list and selects the next available appropriate
hole. By appropriate we mean that the checks in steps two and three are negative,
which means that the hole is affected by the incoming fragment. For the special
case where the list is empty, it returns the pair (-1,-1) to indicate that no hole
was found. However, as we will see later, this is never the case. The resulting
CSP process is:

CHAPTER 3. INTRUSION DETECTION SYSTEMS CSP MODELS 44

nexthole(holedescriptorlist, fragment first, fragmentlast) =
if length(holedescriptorlist) =0
then (—1,—1)
else if fragmentfirst > snd(head(holedescriptorlist))V
fragmentlast < fst(head(holedescriptorlist))
then nexthole(tail(holedescriptorlist), fragment first, fragmentlast)
else head(holedescriptorlist).

Delhole() is called when a fragment arrives that has the MF bit set to false.
Thus, it deletes all holes that start behind the value fragment offset plus the
length of that fragment. This is not stated particularly well in the RFC. It only
states that we have to delete the last hole, which extends from the end of the
received fragment (calculated as FO plus the length of the fragment) to the buffer
boundary. However, if we implement this literally we get an altogether different
vulnerability. Let us consider the following case:

Attacker IDS Target

113B o 1138
003A ol go3p .

023C » g23cC

Figure 3.6: RFC 815 Example Attack

The attacker sends in Message 1 a fragment that is stored on the second
place of the re-assembly buffers of the target and the IDS. Its more fragment bit
is set to one, indicating that more fragments are following. Therefore the hole
descriptor list of the target process contains two holes, one reaching from zero
to one (hole (0,1)), and the other from 2 to 4 ((hole (2,4)), or as stated in the
original description, to infinity). Message 3 then forces the IDS to re-assemble,
because it has a fragment offset of zero and its more fragment bit is set to false.
Furthermore, the maximum of the original IP packet is set to zero, hence the
IDS only considers the first place of its buffer and only obtains A. The target
receives the same packet and calls the function Delhole(). Delhole() then tries to
erase the last hole that reaches from the end of the received fragment, 1, to 4 (or
infinity). However this hole does not exist. Therefore only the hole (0,1) will be
deleted. At this point, the hole descriptor list contains the hole (2,3), hence the
target is not able to re-assemble. Only Message 5 deletes the last hole; however,

CHAPTER 3. INTRUSION DETECTION SYSTEMS CSP MODELS 45

the maximum will be changed to two, which means that the target re-assembles
the bit sequence (A, B, C) and engages in a fail event.

However, for tracking down this subtle flaw we have to introduce the length.
Thus far we have assumed that all bit sequences have the same length. Therefore
we are unable to find attacks based on length. (This will be discussed further in
the conclusion.) The CSP process for this function is defined as follows:

delhole(holedescriptorlist, hole,n) =
itn=20
then ()
else if ((snd(hole)) < (fst(head(holedescriptorlist))))
then delhole(tail(holedescriptorlist), hole,n — 1)
else (head(holedescriptorlist))
““delhole(tail(holedescriptorlist), hole,n — 1).

The functions, createnewhole fst() and createnewholelast() model steps five and
six of the algorithm.

The main function that models the algorithm is called REC815(): It uses the
functions nexthole(), createnewholefst(), and createnewholelast() to delete all
holes that are affected and to create the new ones in the cases where a fragment
only partially overlaps a hole.

rfe815(holedes, fragment,n) =
let hole = nexthole(holedes, fst(fragment), snd(fragment))
withinif n = 0 then ()
else if head(holedes) = hole
then createnewholef st(hole, fragment)
““createnewholelast(hole, fragment)
“r fe815(tail(holedes), fragment,n — 1)
else (head(holedes)) " r fe815(tail(holedes), fragment,n — 1)).

The last bit of CSP we must discuss is the part where we introduced the ambi-
guity. The RFC does not deal with the case where two fragments with the MF
bit set to false appear. Therefore, the implementer has the following choices:

1. He ignores the fragment.
2. He accepts it and calculates a new packet length (new maximum).
3. He accepts it, however the length stays unchanged.

4. Because this is obviously a malformed fragment stream, he flushes the whole
reassembly resources that are associated with that stream.

CHAPTER 3. INTRUSION DETECTION SYSTEMS CSP MODELS 46

Therefore, at the beginning, our model chooses what it intends to do, and it
behaves like this for one protocol run. The IDS still uses the RFC 791 re-assembly
algorithm and thus is like option two of the target, accepting the second delimiter
fragment and changing the maximum. Hence, if the target decides to choose
option two, then it will behave exactly like the IDS. An attack is, therefore,
impossible.

The rest of the model is straightforward and will not be explained further.

The IDS remains unchanged and, like the former model, it consists of two
parallel IDSs. However, as mentioned before, the appendix also addresses the
systems where the IDS operates on the new algorithm.

The channel description remains unchanged as well:

more_fragment_bit. fragment_of fsetI'l' L.data

3.5.3 Results

FDR provided us with more than one hundred possible attacks; we picked the
most promising ones.

Attack No. 1

< os_target.0, exception.0, a.0.1.3.B, b.0.1.3.B,
a.0.0.3.B, b.0.0.3.B, a.1.0.3.A, b.1.0.3.A, fail >

Converting this into our message notation, we obtain the following:

Attacker IDS Target

0.13B .

0.13B .
Q03B » (03B

LO3A o 103A

Figure 3.7: RFC 815 Attack 1

In Event 1, the target chooses to favour old data. However, as we will see this
does not matter and in the subsequent Event 2 it chooses to follow the exception
handling strategy zero. This is, as stated above, where the algorithm ignores the
second fragment with the more fragments bit set to zero. Therefore the target

CHAPTER 3. INTRUSION DETECTION SYSTEMS CSP MODELS 47

only processes Messages 3 and 7 and drops Message 5. The IDS, however, takes
all three fragments into account. It receives Messages 3 and 5; at this point
both IDSs are ready to re-assemble, because they receive a fragment with more
fragments bit set to zero and fragment offset zero for the first time. Hence, both
IDSs maintain clear buffers after processing Message 5. The target however has
to wait until a fragment with fragment offset zero and more fragment bit set to
one comes along. Message 7 satisfies these properties and is therefore accepted.
Finally, the target re-assembles (A, B) and the IDS are maintaining a bit sequence
belonging to set A in the first position of their buffers.

Attack No. 2

< os_target.0, exception.1l, a.0.1.3.A, b.0.1.3.A, a.0.1.3.C,
b.0.1.3.C, a.1.0.3.A, b.1.0.3.A, a.0.1.3.B, b.0.1.3.B, fail >

More readable in message notation: With the Event 2, exception.l, the target

Attacker IDS Target

013A

013A
013C .

0.1.3.C
1.03A

1.0.3.A
013B

013B .

Figure 3.8: RFC 815 Attack 2

process indicates that it will — in cases where the second fragment has its more
fragments bit set to zero — flush the whole buffer. The attacker uses this be-
haviour to elude the IDS in the following way: the attacker sends two fragments
(Message 3 and 5) that cause the target to flush the re-assembly buffer. The IDS,
favouring old data, stores an A on the second position of its buffer while the other
IDS stores a C' on the same position. Message 7 causes the IDS to re-assemble,
therefore one IDS obtains (A, A) and the other obtains (A, C). The buffer of the
target maintains an A on its first position, and on receiving Message 9, the target
re-assembles the bit sequence (A, B).

Attack No. 3

< os_target.0, exception.3, a.0.1.3.B, b.0.1.3.B, a.0.0.3.A,
b.0.0.3.A, fail >

CHAPTER 3. INTRUSION DETECTION SYSTEMS CSP MODELS 48

Attacker IDS Target
013B
013B
0.03A
0.03A

Figure 3.9: RFC 815 Attack 3

We convert this trace again into the corresponding easy-to-read message notation,
presented in Figure 3.9.

At this point the target decides to accept a second fragment with its more
fragment bit set to zero. However, the amount of data (the maximum) that needs
to be received stays unchanged. In Message 3 the attacker designs a fragment
that indicates that the overall packet was of size two with the more fragments bit
set to zero and its fragment offset set to one. Hence, the maximum of the IDS
and the target is one. This means that they have to receive only one more packet
with fragment offset zero. On receiving Message 5 however, the IDS changes
its maximum to zero, whereas the maximum of the target remains unchanged.
Hence, the IDS only considers the first position of their buffer and re-assembles
the sequence A. The target still has a maximum of one and therefore takes

positions one and two of its buffer into account — it re-assembles the sequence
(A, B).

3.5.4 Discussion

Inaccurately written RFCs can be interpreted in different ways and the resulting
ambiguities can have serious effects upon the security of a system. The best
method to define such routines is, as done in RFC 791, to enforce an example
implementation. Even in this very strict RFC, the only choice a programmer
had, choosing whether his implementation would favour old or new data, caused
a vulnerability. As we have shown, this small interpretation gap was sufficient
to introduce a security hole. Furthermore, we have seen the impact that the
addition of one field (in this particular case the length) of the IP header can
introduce further possibilities to de-synchronize the IDS. However, a model that
simulates the length of fragments is not provided.

CHAPTER 3. INTRUSION DETECTION SYSTEMS CSP MODELS 49

3.6 Conclusion

We have seen how small deviations in implementations can have a considerable
impact on the security of a system. Even when the individual subcomponents
of a system are secure, the overall system may be still not free from flaws. Such
emergent faults can be spotted easily by testing the system as a whole against a
specification.

Sections 3.3 — 3.5 established that CSP is suitable to verify IDSs. We consid-
ered the reproduction of known attacks and then applied our knowledge to other
scenarios within the intrusion detection area.

In section 3.3, we produced a CSP model that showed how FDR can be used
to detect emergent faults. The core of the model represented a simplified version
of IPv4, only consisting of a payload and a time-to-live field. We showed that
this simple protocol model hides known attacks. We concluded this section by
discussing various solutions.

In section 3.4 the TTL model was enhanced to cover the reassembly func-
tionality of IPv4. Reassembly is required whenever a packet, larger then the
maximum transfer unit? of the destination network, travels from one network
into another. Hence the protocol consists of offset, time-to-live, payload and the
more-fragment-bit field. The reassembly procedure is based on RFC 791. Finally
we addressed the solvability of the detected problems and suggested improve-
ments.

In section 3.5 we extended this protocol structure by adding another reassem-
bly technique to our network. The system comprised hosts that supported re-
assembly algorithms according to RFC 791 as well as RFC 815. Since RFC
815 does not provide an example implementation, we generated a process that
included all reasonably possible interpretations of the RFC.

Generalising the retrieved results Whenever it is possible to create a dif-
ference between the input stream of the IDS and the protected system we can
successfully hide an attack. More generally, both the protected system and the
IDS have state transition graphs; if we create a situation where these systems
change into different states, they require different stimuli to reach the deprecated
state where the target fails and the IDS raises the alert. We can distinguish
between three de-synchronising possibilities:

1. De-synchronisation due to the systems behaving exactly the same, but the
input streams being different; this is the method that appears in our first
model.

2. De-synchronisation as a result of the input streams being the same, while

?The maximum transfer unit equals the maximum length of a packet that is allowed to travel
through the network without being fragmented.

CHAPTER 3. INTRUSION DETECTION SYSTEMS CSP MODELS 50

the systems behave differently under certain conditions; this is the type of
flaw exploited in our second and third model.

3. De-synchronisation because both the input streams and the behaviour of
the systems are different.

Chapter 4

Towards a more complete
analysis

The disadvantage of using tools like FDR is that they search every state of the
process and hence the state graph of the process under investigation has to not
only be finite but also reasonably small. In order to keep our model below a
certain complexity we have to abstract away details. We did so by applying
abstractions on the general composition of the model, for example modelling
fewer fields of IPv4, and by limiting the scope of the data types involved. However
by doing so, it remains uncertain whether these restrictions abstract away other
specification violations. Hence, the investigation in Chapter 3 is not finished.
We do not know whether the inability to spot attacks in the improved models
stems from over-abstraction or because there really is no attack.

In this Chapter we generalise our results so that we are able to verify the model
for all values of the type of network packets and the set of attack signatures. We
change the focus of the time-to-live model from section 3.3, to obtain a more
complete analysis, independent of the set sigs of attack signatures. Finally, we
generalise the parameters of the system further. We show that the range {1..3}
for the TTL field is sufficient to capture all essentially-distinct behaviours of the
system for arbitrary TTL values. Additionally we prove that a buffer size of
five (in the buffer-reassembly model) is sufficient and that the network topology,
which at first sight seems very restricted is sufficiently general.

Finally we will describe an algorithm that automatically shows whether the
generated counterexample also exists in the real world system.

4.1 Generalising the types of packets and signa-
tures

We now change the focus of the time-to-live model from Section 3.3, in order
to move towards a more complete analysis, independent of the set sigs of at-

ol

CHAPTER 4. TOWARDS A MORE COMPLETE ANALYSIS 52

tack signatures. We observe that the IDS is really doing two things: filtering
out packets that will not reach the target and performing pattern matching on
the remaining packets. It is therefore possible to split the IDS into two different
processes corresponding to these functions. In related models, such as the packet
reassembly model in Section 3.4, the target process similarly performs a combi-
nation of filtering and pattern matching, and so it is possible to split the target
into two processes. This gives the topology presented in Figure 4.1.

IDS pattern
matcher
f seelDS
IDS filter =
2
A s
a bl S | %_|Target pattern

Attacker | Router 1 Router 2 —Target filter

matcher

Figure 4.1: Network topology for the revised time-to-live model

We can then make the following observation:

Observation 1 If the stream of packets passed to the pattern matching compo-
nent of the 1DS is the same as the stream of packets passed to the pattern matching
component of the target, then the 1DS will detect all attacks.

The hypothesis of Observation 1—that the two components see the same stream
of packets—is an easy property to test. In fact it does not even require us to
model the two pattern matching components; simply the messages passed to them
on the channels seeI DS and seeTarget suffice. The advantage of this change of
focus is that is allows us to remove the parameter sigs from the model, thus
leading towards a more general verification.

The two filtering processes (where the IDS takes the distance to the target
into account) can be modelled by:

IDS = 0?27y — if dist <y then seelDS.w — IDS else IDS,
Target = c?x?y — seeTarget.x — Target.

where dist is the distance from the IDS to the target. The rest of the network is
unchanged.

It is easy to capture the hypothesis of Observation 1 as a refinement assertion;
there is a certain amount of buffering in the system, and the specification has to
take this into account:

Spec = [1(seeIDS.x — Spec (z) M seeTarget.x — seelDS.x — Spec)
z:T
a
STOP,

CHAPTER 4. TOWARDS A MORE COMPLETE ANALYSIS 53

Spec (x) = seeTarget.x — Spec
M

[1seeIDS.y — seeTarget.c — Spec (y).
y: T

The specification captures the property that the IDS and target see the same
stream of packets, except that the IDS might at any point have seen up to two
more packets than the target, or the target might have seen one more packet that
the IDS.

We can then use FDR to check that the system failures-refines Spec. The
refinement holds, and we can then use Observation 1 to deduce that the IDS
detects all attacks for all possible sets of attack signatures.

However, this appears to leave us only slightly better off than before: we can
verify the system for a fixed type DATA; but does this tell us anything about
systems with different values for DATA? It turns out that we can use Theorem 1
to show that this is indeed the case. The system and specification processes are
both data independent with respect to the type DATA (when the pattern match-
ing against attack signatures was included, the IDS and target were not data
independent); both satisfy NoEq,, ,;4; and the specification satisfies Normpaz .
The Theorem therefore tells us that we only have to check the refinement for
a type DATA of size 2, say DATA = {A, B}, to have verified it for all values
of DATA.

4.2 The packet reassembly model

The same technique can be used for our second example, presented in Section 3.4.
We can model the reassembly algorithms, at both the target and IDS, as separate
processes. We can then ask whether the stream of packets passed to the pattern-
matching components are the same, using essentially the same specification as for
the time-to-live model. This generalises our analysis to all possible sets of attack
signatures. We can then use Theorem 1 to show that we need only perform this
analysis for a type DATA of size 2 to deduce that the same result holds for all
larger types.

4.3 Remaining points

In this section we generalise the parameters of the system further. We show that
the range {1..3} for the TTL field is sufficient to capture all essentially-distinct
behaviours of the system for arbitrary T'TL values. We further show that a buffer
size of five (in the buffer-reassembly model) is sufficient. We also discuss why the
network topology is not as restricted as it appears to be.

CHAPTER 4. TOWARDS A MORE COMPLETE ANALYSIS 54

4.3.1 The TTL-value range

Consider the network in Figure 3.2. It is obvious that the diameter of the network,
counted in TTL-decreasing hops, is two. Hence there appears to be no need to
consider TTL values greater than three. We formalise this argument in this
section.

Let System(N) be the CSP process representing a system using TTL values
{1..N}, and let Systemy(IV) be the corresponding process before internal events
are hidden, i.e. such that all channels are visible.

The technique we use is to define a collapsing function ¢ over events, that
maps behaviour of a system using arbitrary-sized TTL values to corresponding
behaviours of the small system!:

Vir :3*; X : PX e (tr, 071 (X)) € failures(Systemy(N)) =

(p(tr), X) € failures(Systemy(3)). (4.1)

We define ¢ over events, to replace TTL values greater than 3 on the channel a
by the value 3, and similarly for other channels:

d(a.x.y) = if y < 3 then a.x.y else a.x.3,
¢(b.xy) = if y <2 then b.x.y else b.x.2,
¢(c.xy) = if y < 1then c.x.y else c.a.1,

and ¢ is the identity function over all other events. We lift ¢ to traces, point-wise.

It is then straightforward to see that each component of the system respects ¢
— i.e. such that, analogously to equation (4.1), if (tr, =1 (X)) is a behaviour of the
component with N TTL values, then (¢(¢r), X) is a behaviour of the component
with 3 TTL values. Hence equation (4.1) itself is satisfied. However, within
System, the channels a, b and ¢ are hidden, so ¢ is the identity function over the
visible events, and we deduce

failures(System(N)) = failures(System(3)).

But we already know that Spec Tp System(3); hence we can deduce that
Spec Cp System(N), for all N.

4.3.2 Buffer size

We now argue that in the reassembly model it is sufficient to consider a buffer
size of five, in the sense that if there is an attack upon a system that uses a larger
buffer, then there is also an attack upon a system that uses a buffer of size five.

Suppose there is an attack trace ¢r in the general case. We map this onto an
attack trace tr' in the restricted case of buffer size five; we do this by uniformly

1Y represents the set of all events; ¢(tr) represents ¢ applied point-wise to trace tr; ¢=(X)
represents the inverse image of X under ¢.

CHAPTER 4. TOWARDS A MORE COMPLETE ANALYSIS 55

remapping fragment offsets onto the set {0 ..4}. The construction is slightly
complicated by the fact that we need to ensure that the target and IDS reassemble
packets at the same points in ¢’ as they did in ¢r.

Suppose, firstly, that the attack trace tr is such that the IDS and target
reassemble the initial packet differently. We arrange that in ¢r' they again re-
assemble the initial packet differently. We perform a case analysis.

Case 1 The IDS and target reassemble packets of different sizes, m and n re-
spectively. Without loss of generality suppose m < n. Suppose the last fragments
of those packets to be received by the IDS and target (i.e., last according to the
order of the trace, as opposed to necessarily the fragments with the greatest
offsets) are at offsets x and y respectively. We perform a further case analysis:

e Case x, y, m, n all distinct, with z,y < m < n. We define the remapping
function ¢ over fragment offsets as follows:

¢(i) = if i = x then 1 else if ¢ = y then 2
else if i = m then 3 else if 7 = n then 4 else 0.

We then lift ¢ to events by, for example

d(a.mf .fo.ttl.data) = a.mf.¢(fo).ttl.data.

Consider the effect of applying ¢ point-wise to all communications on chan-
nels other than seeIDS and seeT arget. 1t is then easy to see that the routers
and the attacker respect ¢. It is also easy to see that the IDS and target
reassemble different packets: the IDS reassembles a packet of size 4 when
it receives the fragment with offset 1; and the target reassembles a packet
of size 5 when it receives the fragment with offset 2.

e Case otherwise. One can construct a similar remapping function in each
case, mapping onto a proper subset of {0..4} if some of z, y, m, n coincide.

Case 2 The IDS and target reassemble packets of the same size, n say, but that
differ at some point, say at offset z. Again suppose the last fragments of those
packets to be received by the IDS and target are at offsets © and y respectively.

e Case z, y, z, n all distinct. We define the remapping function ¢ over
fragment offsets as follows:

¢(i) = if i = x then 1 else if ¢ = y then 2
else if 7 = 2z then 3 else if ¢ = n then 4 else 0.

We lift ¢ to events as above. Then it is easy to see that the IDS and
target both reassemble packets of size 4, after receiving the fragments with

CHAPTER 4. TOWARDS A MORE COMPLETE ANALYSIS 56

offsets 1 and 2 respectively. However, these packets differ at offset 3: the
two components receive the same sequence of data packets at this offset
as they received at offset z in the general case, and so they will, as in the
general case, reassemble packets that differ at this offset.

e Case otherwise. All other cases are similar.

Suppose now that the IDS and target reassemble a packet other than the first
differently, say the nth packet. Then the above construction will either cause the
IDS and target to reassemble a packet earlier than the nth differently (introducing
a new undetected attack); or the construction will leave the first n — 1 packets
matching, but again cause them to construct different nth packets.

Finally the case where one agent reassembles a packet and the other does not
can be treated in a similar manner.

4.3.3 Network topology

We have considered only a single, fixed, network topology. This turns out to be
an important consideration. If there are two or more routes between the IDS
and the target, then it is possible for the IDS and target to see fragments in
a different order, which opens up the possibility of another desynchronisation
attack. However, most local networks have only a single route from the gateway
to each host, which prevents such attacks. Basically every corporate network that
has more routers, which would allow multiple routes, is protected by a Firewall
that enforces packets to be transmitted only in one certain way (i.e. the strict IP
source routing option is prohibited). Under this condition, we believe that our
abstraction has not lost any attacks:

e [t is safe to abstract away from the parts of the network before the IDS,
because the attacker can effectively choose what fragments are sent past
the IDS (channel b in the earlier models).

e [t is also safe to abstract away those parts of the local network not on the
direct route from the IDS to the target, because they do not affect what
the target sees.

e The remaining issue is the number of routers between the IDS and the
target; there does not seem to be any intrinsic difference between one router
reducing the TTL field by one, and N routers reducing the TTL by N,
because the attacker is able to choose the TTL appropriately; however, the
number of routers does affect the buffering of the system and hence the
appropriate specification process.

CHAPTER 4. TOWARDS A MORE COMPLETE ANALYSIS 57

4.3.4 Protocol abstractions

Finally, we have, of course, abstracted away from many of the details of the
underlying network protocol. Our long-term aim is to remove these abstractions,
so as to model the whole of the Internet Protocol version 4 (6).

4.3.5 Verification of abstract counterexamples

Usually it is trivial to see whether a discovered attack is a remnant of our ab-
straction (a false -positive) or a true attack — that also exists in the real world.
However, considering that FDR can reveal 100 counter example at once it would
be preferable to have a formalism that distinguishes between true and false at-
tacks.

Let us assume that M is an (infinite-state) description of our system, and A
is the result of our abstraction (finite-state). Further let’s name the function that
maps behaviours of M to those of A ¢.

This mapping function has to satisfy following properties:

e for every behaviour ¢r of M, ¢(tr) is a behaviour of system A
e if tr is an attack in M, then ¢(¢r) is an attack in A.

However, for our purpose we have to facilitate ¢ the other way around. Given
an attack ¢/ on A, we have to determine whether there is a behaviour ¢r of M,
such that ¢(tr) = tr’, and such that ¢r is an attack. For this, we only need to
consider sufficient behaviours tr such that ¢(¢r) equals ¢’ and test whether they
are indeed attacks on M. This task could be achieved by employing a simulator
for M.

This solution is only possible if we can find a finite set of traces that are indeed
sufficient to come to a conclusion. Given that following assumptions about our,
on data independence based, abstraction hold — a finite set of traces is enough:

Let’s first consider the common case where ¢ is defined to collapse some data
independent type T'. i.e., we

e start off with a function ¢, : 1" — 17
e lift ¢y to a function ¢y, : X — X by ¢x(c.x) = c.¢p(x) (for x of type T');
e lift ¢y pointwise to traces, i.e. ¢((ay,...,a,)) = (ds(ar),...0x(a,)).

If the system is data independent with respect to some type T, then it should
satisfy the following property:

If M accepts the event c.xz, where z is of type T', and z is fresh (i.e.
hasn’t appeared earlier in the trace, and is distinct from all constants
in the initial system and specification), and the behaviour after this

CHAPTER 4. TOWARDS A MORE COMPLETE ANALYSIS 58

event is described by the process P, then M should also accept c.y,
for all fresh y of type T, and the subsequent behaviour is described

by Ply/xz].

In other words M treats all fresh values of type T' equivalently. Thus we can try
to find tr as follows.

Suppose we've already found some trace try of M that corresponds to some
prefix try of tr' (i.e. ¢(try) = try), and let’s suppose the next event of tr' is c.z.
Now we need to consider events c.z of M such that ¢r(xz) = z. The previously
stated quote shows that M acts in the same way after all such c.x for fresh values
x; hence we only need to consider one value. However, we also need to consider
all non-fresh values w such that ¢, (w) = z (i.e. all w that have either already
occurred, or that were constants in the original system or specification).

This leads to the following algorithm:

Given a state M' of M, and a suffiz (c.z)""tr" of tr',
find a trace of M' corresponding to (c.z) "tr" as follows :

FOR every non — fresh w such that ¢p(w) = z,
and for a single fresh x such that ¢r(x) = z
DO
IF M' can communicate that value on ¢ then
let M" be the subsequent state of M’
recursively try to find a trace of M" corresponding to tr'

END.

This algorithm is finitely branching, and the trace is finite, so we have to
consider finitely many traces of M. In fact, if the number of values of type T’
in tr' is n, and the number of constants is ¢, then we have to consider at most
(n+¢)!/c! traces of M.

4.4 Summary

We showed techniques that could close the gap between our abstracted model and
the real world. The necessity to reduce the complexity of the real world lies in
the working principle of FDR; it verifies every possible state to the process. The
abstractions themselves were conducted on the general structure of the model,
by using a specific network topology, and by restricting the scope of the modelled
fields of the IPv4. These techniques prevented us from drawing conclusions about
whether the real world scenario behaves the same; thus it remained uncertain
whether our inability to find more attacks was a result of our simplifications or
whether there were indeed not more vulnerabilities.

CHAPTER 4. TOWARDS A MORE COMPLETE ANALYSIS 59

We changed the focus of the time-to-live model, to accomplish a more com-
plete analysis. We showed that it is enough for the data type of the payload to
be a set containing only two distinct members.

Additionally we showed that the diameter of the network as the range for
the TTL data type is suitable to draw conclusions upon the completeness of the
FDR analysis. Furthermore we showed that it is valid to restrict the reassembly
buffer size to five. The Chapter was concluded by a discussion about the network
topology and other protocol abstractions.

We are aware that between our initial models and the models we used to
show the absence of vulnerabilities exists a little gap. Since the proofs provided
work only on the modified models we can not be certain whether the abstractions
applied to our initial models did not cover attacks. However, looking at the two
types of models the gap seems to be sufficiently small to be neglected. The
first type of models (section 3.3, 3.4 and 3.5) is intended to find attacks and to
provide easy-to-reuse counterexamples. The second type of models, provided in
this chapter, is intended to show that our work-arounds are sound and that there
are indeed no attack possibilities left.

Finally, we discussed an algorithm that automatically determined whether a
discovered attack was a false positive or a true attack.

Chapter 5

Unexpected timing issues

Today’s IDS testing is performed by a trial-and-error approach. This approach
lacks proper coverage of timing issues. However on further inspection of the
protocols that are used in today’s networks, we find timeout methods everywhere.
Not taking time into account has proven to be a serious mistake.

We will use two approaches for representing time: first we will design an easy-
to-build CSP model using the sliding choice operator; and second we describe a
discrete time CSP model by using the event tock to represent the passage of
a certain amount of time. The models are based on the fragment-overlapping
model and are kept as simple as possible.

We conclude with a discussion about the relationship between the discrete
untimed and the untimed model. We will show that whenever the easy-to-use
untimed model contains no vulnerabilities then the more complicated discrete
model does not either. From this specific result a more general way of reasoning
about the relationship between discrete and untimed timeout models is derived.
This chapter also contains the formal foundation that shows that whenever the
untimed model refines the specification then the tocks-based discrete time model
does also. Thus giving us the opportunity to verify the process using only the
simpler version of timeouts without fearing missing a specification violation in
the more complex discrete time model. This holds for all untimed safety specifi-
cations.

5.1 Using the interrupt operator for simulating
timing issues

The interrupt operator or the sliding choice is the easiest way to model the passage

of time in order to spot vulnerabilities based on timing issues. In this section, we

describe the components and the results we obtained from that model. We also
discuss the impact of these results on the security of an IDS infrastructure.

60

CHAPTER 5. UNEXPECTED TIMING ISSUES 61

5.1.1 Components

This model is based upon the fragment overlapping model. The router process
remains unchanged. The possibility that the router can explicitly delay packets
is not included. However, we will see that this is not required.

IDS and target are using the sliding choice operator. The sliding choice op-
erator offers the choice between, either accepting a new input after receiving a
datagram or flushing the already stored information.

Target(OS, bufbuff, sigs, max) =
(in?mf?fo27ttl?data —
let b1 = overwrite(buff, fo2, data)
within T'arget’ (OS, buff, sigs, max, mf, fo2, data, bl)).

The first part of the target process (Target) remains unchanged, since we do
not allow the reassembly mechanism to timeout before or while processing a
datagram. The real difference to our previous models becomes apparent in the
processes Target’. After processing the current datagram, instead of evoking the
process T'arget to accept another input, we call the process ResetT arget.

Target' (OS, buff, sigs, maz, 0, fo2, data, bl) =
if nth(buff, fo2)l = NANOS =0
then (ResetTarget(OS, buff, sigs, max)
else if allFilled(b1, fo2)
then if check(bl, sigs, fo2)
then fail - STOP
else Target(OS,(N,N,N, N, N), sigs,0)
else ResetTarget(OS,bl, sigs, fo2).

Target'(OS, buff, sigs, maz, 1, fo2, data, bl) =
if nth(buff, fo2) # N
then if OS =0
then ResetTarget(OS, buff, sigs, max)
else ResetTarget(OS, bl, sigs, max)
else if allFilled(bl, max) A max # 0
then if check(bl, sigs, max)
then fail - STOP
else Target(OS,(N,N,N, N, N), sigs,0)
else ResetTarget(OS,bl, sigs, max).

For a more detailed description of this processes see Section 3.4. There is no need
to elaborate on the CSP code of the IDS process. The structure is absolutely
identical, apart from different names for the processes. The ResetT'arget process
uses the sliding choice operator to decide whether or not the next packet arrives

CHAPTER 5. UNEXPECTED TIMING ISSUES 62

before the timeout triggers. It re-initialises the reassembly processes with their
starting values or it accepts a new packet.

ResetTarget(OS, buff, sigs, maz) =
Target(OS, buff, sigs, max)
> flushTarget — Target(OS, (N, N, N, N, N), sigs,0).

The sliding choice operator (P > Q) itself is semantically equivalent to (P I
STOP) O @Q: it gives the environment a choice if the environment is quick
enough to choose it. The Specification remains unchanged since we are hiding
the events flushIDS and flushT arget.

Spec = alert — fail — Spec

The overall system differs from the original TTL model only in the additional
events that have to be hidden, such as flushiDS and flushTarget.

5.1.2 Result
After applying FDR to evaluate the refinement we obtain the following trace.

< os_ids.1, a.1.0.1.A, b.1.0.1.A, os_target.1l, c.1.0.1.4,
_tau, d.1.0.1.A, _tau, a.0.1.1.B, flushIDS, b.0.1.1.B,
c.0.1.1.B, 4.0.1.1.B, fail >

Attacker | | Router 1 IDS Router 2 Target

101A .

101A

101A

101A

011B ,

flushIDS
011B ,

0.11B .

011B ,

Figure 5.1: Discrete-Time Attack 1

The attacker sends the first part of his attack (bit sequence A). The datagram
travels through the DMZ, finally reaching the internal router (indicated by event
c.A). As soon as the IDS has processed the attack prefix, it moves into the
pre-alerted state. It then waits for another input. However, the attacker delays
the next input and waits until the IDS times-out, thus flushing its buffer. The

CHAPTER 5. UNEXPECTED TIMING ISSUES 63

attacker then proceeds with sending. The remainder of his attack (the sequence
B). Meanwhile, the internal router forwards the attack prefix to the target. The
target moves into a pre-crashed state. Since the IDS has lost its information about
receiving an A, it will interpret the fragment B as innocent and will therefore
stay in its initial state. The target, however, eventually fails. Clearly, there is
also the counterpart of this attack, where the target times out and the IDS does
not. After a timeout, the IDS needs a different input to raise an alarm, followed
by the target failing, since the IDS starts in a different state than the target.

5.1.3 Discussion

The spotted attack can be interpreted in two ways. The most obvious one is that
the timeout values of the IP reassembly algorithms are equal, and the internal
router delays the forwarding process of the first packet until the IDS times-out.
The other way of interpreting this trace can be that the timeout value of the
IDS is too short to receive both fragments. This demonstrates one danger of this
model. The same trace can have multiple reasons, thus it can easily be that we
miss a security hole. On the other hand this type of model is easy to create — the
only problem that we are faced with is where to put the sliding choice operator.
However, in our case, the RFC 791 leaves no room for interpretation. It has to
appear after receiving and processing a datagram. To overcome the ambiguity of
the retrieved traces, we use the discrete-time CSP model.

5.2 Discrete-time model

This model uses the event tock to symbolise the passage of time. After engaging
in a non-tock event, the process offers the tock event and the next non-tock event.
Thus it gives the system the option to let time pass between its activities. The
resulting descriptions of the CSP processes are slightly more complicated then in
the previous model.

5.2.1 Components

The attacker process can either send a packet or can allow time to pass. In this
model it may be the case that an attacker could execute infinitely many actions
without time passing. However, since we do not specify how long a tock is, this
seems acceptable.

Attacker(out) =
out.w.x.y.z — Attacker(out)
O tock — Attacker(out).

CHAPTER 5. UNEXPECTED TIMING ISSUES 64

We have decided to model two different kinds of routers, one with and the other
without delay. The router without delay, process Router, is similar to the at-
tacker: it has the choice to forward a packet or to engage in a tock event.

Router(in, out) =
in?w?x?y?z — outlwlzlylz — Router(in, out)
O tock — Router(in, out).

The router with delay, process Router2, can act similarly; with the exception
that once it receives a datagram, it can forward instantaneously or can delay it
to allow time to pass.

Router2(in, out) =
in?x — Router2'(z,in, out)
O tock — Router2(in, out)

Router2'(z,in, out) =
out!r — Router2(in, out)
O tock — Router2'(x,in, out).

The IDS and target processes are built upon the same structure as the original
fragment overlapping model; hence we will only describe the extension that im-
plements the time-out. Note, if we consider no parallel packet processing, there
is, according to RFC 791, no reset during the processing of a fragment. Thus,
we have omitted a tock event while the reassembly buffer is updated. The target
is initialised by the variable timeout, which indicates the number of tocks that
have to pass until the process flushes the reassembly buffer.

Target'(OS, buff, sigs, mazx, 0, fo2, data, bl, timeout) =
if nth(buff, fo2) # N NOS =0
then ResetTarget(OS, buff, sigs, max, timeout, timeout)
else if allFilled(b1, fo2)
then if check(bl, sigs, fo2)
then fail - STOP
else Target(OS, (N, N, N, N, N), sigs, 0, timeout)
else ResetTarget(OS, bl, sigs, fo2, timeout, timeout).

CHAPTER 5. UNEXPECTED TIMING ISSUES 65

Target'(OS, buff, sigs, max, 1, fo2, data, bl, timeout) =
if nth(buff, fo2) # N
then if OS5 =0
then ResetTarget(OS, buff, sigs, max, timeout, timeout))
else ResetTarget(OS, bl, sigs, max, timeout, timeout)
else if all Filled(b1, max) A max # 0
then if check(bl, sigs, max)
then fail - STOP
else Target(OS, (N, N, N, N, N), sigs, 0, timeout)
else ResetTarget(OS, bl, sigs, max, timeout, timeout).

The process ResetTarget implements the timeout module. The variable tocks
holds the number of tocks that are left until the target returns into its initial
state and timeout harbors the initial timeout value. ResetT'arget can engage in
tock events and eventually flush the buffer of the target, or it can receive new
packets without timing out. In the latter case, it resets the variable tocks, since
a new timeout period has to start after processing the received datagram.

ResetTarget(OS, buff, sigs, max, timeout, tocks) =
tock — if tocks =1
then flushTarget — Target(OS, (N, N,N,N, N), sigs, 0, timeout)
else ResetTarget(OS, buff, sigs, max, timeout, tocks — 1)
O Target(OS, buff, sigs, max, timeout).

Since the target process and the IDS are nearly the same, there is no need to
elaborate on the CSP code of the IDS. The IDS works with the same time-out
mechanism. The specification as well as the overall system remain unchanged.

5.2.2 Results

We initialised the IDS and the target with timeout values of 1 and respectively
2. Further, we used the router without the delay functionality. FDR provided us
with following counter example:

< os_ids.1, a.1.0.1.A, b.1.0.1.A, ¢c.1.0.1.A, os_target.1,
d.1.0.1.A, tock, a.0.1.1.B, flushIDS, b.0.1.1.B, ¢c.0.1.1.B,
d.0.1.1.B, fail >

This reassembles the second interpretation of the attack found in the previous
model. The IDS processes the attack prefix and flushes the buffer afterwards,
whereas the target does not flush its buffer. This allows the target to receive and
process the complete attack sequence (A, B).

The other way of interpreting the trace of our last model was to assume that
both timeout values are equal, but the components between the target and the
IDS were delaying some fragments. To determine whether this line of reasoning

CHAPTER 5. UNEXPECTED TIMING ISSUES 66

Attacker | | Router 1 IDS Router 2 Target

101A

101A

101A

101A

tock
01.1B

tock | tock | tock

Yy

flush1DS
011B o

0.11B .

0.11B .

Figure 5.2: Discrete-Time Attack 1

holds, we initialise the timeout variables of both, the IDS and the target with
the same value and use the router with the delay functionality. The refinement
fails and FDR finds the following counterexample.

< os_ids.1l, os_target.1l, a.1.0.1.A, b.1.0.1.A, ¢c.1.0.1.4,
tock, d.1.0.1.A, tock, flushIDS, a.1.1.1.B, b.1.1.1.B,
c.1.1.1.B, d.1.1.1.B, fail >

Attacker | | Router 1 IDS Router 2 Target

101A o

101A

1.01A o
tock | tock I tock | tock
1.0.1.A
tock | tock I tock | tock
flushIDS

0.11B .

Yvy

011B .

011B .

011B ,

Figure 5.3: Discrete-Time Attack 2

The attacker starts by sending the first half of his attack. The fragment (A)
travels through the network until it reaches the internal router. The router delays
the fragment until the IDS flushes its buffer. Thus, the IDS looses its information
about already received fragments. Meanwhile, the attacker sends the remainder
of the attack. The internal router forwards the attack prefix and the target moves
into a pre-failed state.

CHAPTER 5. UNEXPECTED TIMING ISSUES 67

5.2.3 Discussion

With this process structure, we are able to identify more accurately the reasons for
the specification violation. Firstly the timeout values are not equal and secondly
the router delays a packet. However, there exist various general problems with
these sorts of models:

1. We have many ways to place tocks and it may very well be that a particular
placement covers timing based security gaps.

2. The synchronisation, especially in difficult systems, on the tock event be-
tween the different processes can cause deadlock. This particular problem
is called time stop?.

3. The other drawback about synchronising on tock is that it may force dif-
ferent timeout mechanisms to timeout at the same time. This would lead
to an unintended timeout-synchronisation.

The recommended way of testing timing issues would then be first to use the
sliding choice operator, and if this test fails one should use the discrete time
model to obtain more expressive traces. However, using this approach, we have
to be certain that whenever the first model does not find an attack then the
second does not also. In the next section, we show that whenever the first model
refines the specification then the second does also, and we will discuss a function
that relives us from placing the tock events manually.

5.3 Towards a more complete analysis

In this Section, we prove that whenever there is a flaw in our discrete timeout
model then this flaw also exists in the sliding choice model. Thus, we use the
sliding choice timeout model in order to determine whether the discrete model
harbors specification violations.

In the following proof, we use the prefixes 1" and U to distinguish between
processes in the tock and the sliding choice based model.

In order to show that this holds, we will show the following: if there is an
attack in ¢r on the discrete-time model, then tr\{tock} is an attack on the sliding
choice model (>>). Hence we have to show that:

TimedModel\{tock} Jr UntimedM odel.

LA time stop takes place whenever: two processes are synchronised on a data channel and on
the tock event, the receiver process can not engage in a tock event without receiving a certain
value from the data channel, the value is provided by the sender process and the sending process
however has to engage first in a tock event before he can transmit the value.

CHAPTER 5. UNEXPECTED TIMING ISSUES 68

Where TimedModel is using the tock event to measure the passage of time (as
described in section 5.1) and UntimedModel uses the sliding choice operator (as
described in 5.2). We use the following law to isolate the problem:

(P @)\ {A} 2o (PN A} [(Q \ {A}).

This justifies the following refinement:

(TAttacker(a) || TRouter(a,b) || TIDS(OS, buff, sigs, max, dist) (5.1)
| TRouter(a,b) || TTarget(OS, buff, sigs, mazx)) \ {tock}

Jr
((TAttacker(a) \ {tock}) || (TRouter(a,b) \ {tock})

| (TIDS(OS, buff, sigs, max, dist) \ {tock}) || (TRouter(a,b) \ {tock})
| (TTarget(OS, buff, sigs, max) \ {tock})).

If (P Q) and (P || @) and (P Cp P') and (Q Cr Q') hold then (P |
Q) Cr (P'|| @) (by monotonicity). Therefore, we only have to show that every
component in the tock model refines its counterpart in the sliding choice model.

TIDS(OS, buff, sigs, max, dist, timeout) \ {tock}
Jp UIDS(OS, buff, sigs, max, dist)

N

TTarget(OS, buff, sigs, maz, dist, timeout) \ {tock}
Jr UTarget(OS, buff, sigs, max, dist)

N

TRouter(in, out) \ {tock}

Jyp URouter(in, out)

N

TAttacker \ {tock}

Jp UAttacker.

It is easy to see that this holds for the attacker and the router process. Therefore,
the remainder of our problem is to show that:

TIDS(OS, buff, sigs, max, dist, timeout) \ {tock}
Jp UIDS(OS, buff, sigs, max, dist)

N

TTarget(OS, buff, sigs, max, dist, timeout) \ {tock}
Jr UTarget(OS, buff, sigs, mazx, dist).

Since the structure of the target and the IDS process is very similar we will only
elaborate on the target process. Let us focus on T'ResetTarget \ {tock}. Firstly

CHAPTER 5. UNEXPECTED TIMING ISSUES 69

we push the hiding through:

T ResetTarget(OS, buff, sigs, max, timeout, tocks) \ {tock} =
TTarget(OS, buff, sigs, maz, timeout) \ {tock}
>
if tocks =1
then flushTarget —
TTarget(OS,(N,N,N, N, N), sigs,0, timeout) \ {tock}
else T ResetTarget(OS, buff, sigs, maz, timeout, tocks — 1) \ {tock}.

For distinguishability let us add an H, to represent hide, at the end of the process
descriptor. Therefore we get T'ResetTargetH. We can use the UFP rule for
showing that:

TTargetH(OS, buff, sigs, maz) = UTarget(OS, buff, sigs, max)
N
TTarget2H (OS, buff, sigs, maz, mf, fo2, data, buff2, timeout)

=r
UTarget2(0OS, buff, sigs, max, mf, fo2, data, buff2, timeout)
VAN

T ResetTargetH (OS, buff, sigs, max, timeout, tocks)

=7

UResetTarget(OS, buff, sigs, max, timeout, tocks).

To do so we define a vector X. Each element of X is additionally param-
eterised by whether it is in state 1, 2 or 3. To define the fixed point map-
ping corresponding to this recursion, given X, we write X (1,08, buff, sigs,-
max, dist), X(2,0S8,buff, sigs, max, mf, fragmentof fset, data, buff2, timeout)
and X (3,08, buff, sigs, max, timeout, tocks) for TTargetH, TTarget2H and
T ResetTargetH respectively. The following fixed point mapping defines
TTargetH:

F(X)(1,08, buff, sigs, max, timeout) =
m?mf7fo2?ttl?data —
let b1 = overwrite(buff, fo2, data)

within X (2, OS, buff, sigs, max, mf, fo2, data, b1, timeout).

CHAPTER 5. UNEXPECTED TIMING ISSUES 70

The following fixed point mapping defines TTarget2H:

F(X)(2,08, buff, sigs, max, 0, fo2, data, b1, timeout) =
if nth(buff, fo2)! = NANOS =0
then X (3, OS, buff, sigs, max, timeout, timeout)
else if all Filled(bl, fo2)
then if check(bl, sigs, fo2)
then fail — STOP
else X(1,08,(N,N,N, N, N), sigs, 0, timeout)
else X (3,08, b1, sigs, fo2, timeout, timeout).

F(X)(2,08, buff, sigs, max, 1, fo2, data, b1, timeout) =
if nth(buff, fo2) # N
then if OS =0
then X (3,08, buff, sigs, maz, timeout, timeout))
else X (3,08, b1, sigs, max, timeout, timeout)
else if allFilled(bl, max) A max # 0
then if check(bl, sigs, max)
then fail — STOP
else X(1,08,(N,N,N, N, N), sigs, 0, timeout)
else X (3,08, b1, sigs, max, timeout, timeout).

The following fixed point mapping defines T'ResetTargetH:

F(X)(3,08, buff, sigs, max, timeout, tocks) =
X (1,08, buff, sigs, max, timeout)
>
if tocks =1
then flushTarget — X (1,08, (N, N,N, N, N), sigs, 0, timeout)
else X (3,08, buff, sigs, maz, timeout, tocks — 1).

We also have to define a vector Y that represents the un-timed processes. There-
fore we get the following allocation.

Y (1,08, buff, sigs, max) = UTarget(OS, buff, sigs, max)
Y (2,08, buff, sigs, maz, mf, fo2, data, buff2) =
UTarget2(OS, buff, sigs, maz, mf, fo2, data, buff2)
Y (3,08, buff, sigs, max) = UResetTarget(OS, buff, sigs, max).

Now we have to show that F(Y) =Y.

CHAPTER 5. UNEXPECTED TIMING ISSUES 71

State 1
F(Y)(1,08, buff, sigs, max)

= (by definition of F)

m?mflfo27ttl?data —

let b1 = overwrite(buff, fo2, data)

within Y (2, OS, buff, sigs, maz, mf, fo2, data, bl)
= (by definion of Y)

m?mflfo27ttl?data —

let b1 = overwrite(buff, fo2, data)

within UT arget2(OS, buff, sigs, max, mf, fo2, data, buff2)
= (by definion of UTarget)

UTarget(OS, buff, sigs, mazx)

= (by definion of Y)
Y (1,08, buff, sigs, mazx)
State 2

EF(Y)(2,08, buff, sigs, max, mf, fo2, data, buff2)
= (by definition of F)

= (by definion of Y)
= (by definion of UTarget2)
= (by de finion of Y)

Y (2,08, buff, sigs, mazx, mf, fo2, data, buff2)

Since the succession of transformations is equal to Stage 1 we will not elaborate
on them. It is straightforward to see that this holds as well.

State 3
F(Y) (3,08, buff, sigs, max)

= (by definition of F)
Y (1,08, buff, sigs, max)
>
if tocks =1
then flushTarget — Y (1,08, (N, N,N, N, N), sigs,0)
else Y'(3, 08, buff, sigs, max)

= (by definion of Y)

CHAPTER 5. UNEXPECTED TIMING ISSUES 72

UTarget(OS, buff, sigs, mazx)

>

if tocks =1
then flushTarget — UTarget(OS, (N, N,N,N,N), sigs,0)
else UResetTarget(OS, buff, sigs, max)

= (using the distribution law)
if tocks =1
then UTarget(OS, buff, sigs, mazx)
> flushTarget — UTarget(OS, (N, N,N, N, N), sigs,0)
else UTarget(OS, buff, sigs, max)
>U ResetTarget(OS, buff, sigs, max)

= (by unwinding U ResetT arget)
if tocks =1
then UTarget(OS, buff, sigs, max)
> flushTarget — UTarget(OS, (N, N, N,N, N), sigs,0)
else UTarget(OS, buff, sigs, maz)r>
(UTarget(OS, buff, sigs, max)
> flushTarget — UTarget(OS, (N, N, N, N, N), sigs,0))

= (by using following steps
P>Q
=r (PN1STOP)OQ
— POQ
we get)
if tocks =1
then UTarget(OS, buff, sigs, max)
O flushTarget — UTarget(OS,(N,N,N, N, N), sigs,0)
else UTarget(OS, buff, sigs, max) O
(UTarget(OS, buff, sigs, max)
O flushTarget — UTarget(OS, (N, N, N, N, N), sigs,0))

= (distribution law)
if tocks =1
then UTarget(OS, buff, sigs, mazx)
O flushTarget — UTarget(OS,(N,N, N, N, N), sigs,0)
else UTarget(OS, buff, sigs, max)
O flushTarget — UTarget(OS,(N,N,N, N, N), sigs,0)

CHAPTER 5. UNEXPECTED TIMING ISSUES 73

= (since (if b then P else Q) Jr P O Q we get)
(UTarget(OS, buff, sigs, max)
O flushTarget — UTarget(OS,(N,N, N, N, N), sigs,0))
O (UTarget(OS, buff, sigs, max)
O flushTarget — UTarget(OS, (N, N, N, N, N), sigs,0))

= (distribution law)
(UTarget(OS, buff, sigs, max)
O flushTarget — UTarget(OS, (N, N, N, N, N), sigs,0))

= (by definion of UResetTarget)
UResetTarget(OS, buff, sigs, max)

= (by definion of Y)
Y (3,08, buff, sigs, mazx).

Finally, we can conclude that TTarget refines UTarget. Hence, condition (5.1)
holds, showing that our conjecture, that whenever a specification violating trace
tr exists in our timed model, then ¢r \ {tock} exists in the untimed, holds true.
To exercise this kind of proof for every timeout model seems to be impractical.
We have to find a way to establish this relationship between the untimed and
timed timeout processes more easily. One way to do so is by generalising our
result. Ideally, this should also relieve us from the tedious process of placing the
tock events on the right places.

Chapter 6

(Generalisation

From this very specific result, we can extrapolate further — to a general case.
Assuming f is a function that converts a tock—free (untimed) process into a timed—
deadlock—free process, by adding a tock—loop to every stable state, inserting the
tock event into its synchronisation sets and by replacing every TimeoutUT (P, Q)
by TimeoutT (P,Q,T) for some T"— then

P Cyp f(P)\ {tock} or
P Cr Primeq \ {tock}.

holds for all tock—free processes P. Thus, in the traces model and using untimed
safety specifications, it is enough to verify the process with the simpler timeout
version.

First we have to define a relabelling function g, that allows us to define a
proper tock based timeout. Note this function and the general structure of our
timeout process is similar to the one given in [Oua01, Sch00a].

Let ¥p = {P.x|z € ¥} and ¥ = {Q.z|z € ¥}. The functions gp and g¢ are
of type Lo UXp UXg — Yiper U Xp U X and are defined as:

g:(y) = if y € ¥ then x.y else y.
The function TimeoutUT (P, Q) and TimeoutT (P,Q,T) are defined as follows:
TimeoutUT (P,Q) = P > Q.

and
TimeoutT (P, Q,T) =

gp' (95" ((gp(P) . ||k} 9Q(R(Q,T)))

| (Rung, O Runy,))) \ {timeout}.
EPUEQ

74

CHAPTER 6. GENERALISATION 75

where:
Runy =
z: X = Runy

R(Q,T) =
Wait(T) ; timeout — Q
Wait(t) =
ift=20
then SKIP

else tock — Wait(t — 1).

The event timeout is used as a guard and must never appear in the regular
alphabet of the involved processes. The function that converts the sliding choice
timeout model into a tock based timeout model is called f and is defined as:

f(TimeoutUT(P,Q)) = TimeoutT (f(P), f(Q),T) for some T
f(STOP) = pz.tock — z

fla— P)=pza— f(P)Otock — z

f(POQ) =

957 5 g5y (f (P))) {w||ck}9f(cz>(f (@)

I (Runy) O Runy, ,)))
ErpVEf@)

fPneQ)=f(P)nfQ)
f(PﬂQ) =[P I Q).

YU{tock}

All the conversions seem to be intuitive except the conversion of the external
choice operator. If we would simply add a tock loop to the external choice, as
in the other cases, the choice would become non-deterministic. Since f(P) and
f(Q) can engage in tock events, we would have the choice between three tock
events. Only one of them representing the intended tock event that would return
to the initial state. Hence, we have to make certain that both f(P) and f(Q) are
able to engage in tocks and that the external choice remains unresolved [Oua01].

Now we have to show that our conjecture (f(P) \ {tock} Jr P) holds for all
P. We do so by showing that our claim holds for every necessary CSP operator,

CHAPTER 6. GENERALISATION 76

starting with the conversion of >:

f(P>Q)\ {tock}
= (by definition of TimeoutUT)
f(TimeoutUT (P, Q)) \ {tock}
= (by definition of f())
TimeoutT (f(P), f(Q),T)
= (by definition of TimeoutT)
S5 5 931 FPD) 1| a1 (RU(@),T)

I (Runy,,, O Runy,))) \ {timeout} \ {tock}
LSRR (C)
and R(f(Q),T) = Wait(T) ; timeout = f(Q)

= (partially resolving \ {tock})

500 95y (oo (TP \Ltock])) | (9500 (U@ T\ {tock)

I (Runy, p, O Runy,,))) \ {timeout}
R N()

= (resolving g(q)(R(f(Q),T)) \ {tock})
9@ (Wait(T) ; timeout — f(Q)) \ {tock}

= (using Wait(t) \ {tock} =p SKIP and SKIP ;timeout — f(Q) =7 timeout — f(Q))

97y gy (950 (f (P) \ {tock}))) {t(;'(';k} (97(@) (timeout — (f(Q) \ {tock})))

I (Runy, p, O Runy,,))) \ {timeout}
RN

= (using P\ {tock}{ I }Q \ {tock} Jr P ||| Q)
tock

= (using Z = (P [[|Q) | (Runs, O Runs,))
EPUEQ

= (using Z = ((PEH Runy,) O (Q Z|| RungQ)) =r POQ)

Q
970y Gr) (g5p) (F(P) \ {tock})) B (g5(q) (timeout — (f(Q) \ {tock}))))) \ {timeout}
= (apply g5 (9x(X)) = X and g' (gv (V) = gy (V)
(f(P) \ {tock}) O (f(Q) \ {tock})
= (using PO Q =p (PN STOP)OQ =7 P> Q)
(f(P) \ {tock}) > (f(Q) \ {tock})

Jd7 (by structural inductive hypothesis)
PrQ.

The remaining part of the proof verifies whether the same holds for the other

necessary CSP operators.
Case f(STOP):

f(STOP) \ {tock} =
(uz.tock — z) \ {tock}
~ (422)
div
J7 (in the traces model this is equivalent to)
STOP.

CHAPTER 6. GENERALISATION 77

Case f(a — P):

fla — P)\ {tock} =
(pz.a — f(P)Otock — z) \ {tock}

= (resolving the hide operator)
pz.a— (f(P)\ {tock}) > =z

= (in the traces model this is equivalent to)
o= (F(P) \ {tock})

Jy (by structural inductive hypothesis)
a— P.

Case f(P OQ):

F(PBQ)\ {tock} =
= (by definition of f())
07 7y (G TP 1| 950 (F(Q)

tock}
| (Buns,y, O Runs,) \ {tock)
2iP)\YIE(@)
= (partially resolving \ {tock})
97 57 (70 (PP {tck})) 1| (9510)(F (@) \ {tock})

{tock}

H (RunEf(P) = Ruan(Q))))
XV f@)

= (using P\ {tock}{ | }Q \ {tock} Jr P ||| Q)
tock

= (using Z=(P||Q) || (Runy, O Runy,))
EPUEQ

= (using Z =p ((P E|| Runy;,) O (QEH Runy,)) =r P O Q)
P Q

57 (07 (050 (1P \ {206k1) O (9500 (F(Q) \ {tock}))))
= (apply g% (9x (X)) = X and g3 (g (Y)) = gy (Y))
(f(P) \ {tock}) O (f(Q) \ {tock})

Jy (by structural inductive hypothesis)
POQ.

Case f(PMQ):
F(P Q) {tock} =
(F(P) 1 £(@)\ {tock}
= (by resolving the hide operator)
(f(P) \ {tock}) N (f(Q) \ {tock})
Jdy (by structural inductive hypothesis)
PNQ.

CHAPTER 6. GENERALISATION 78

Case f(P || Q):

Y

f(PﬂQ) \ {tock} =
(fP) I f(Q))\ {tock}
YU{tock}
= (applying f())
(f(P) I f(Q))\ {tock}

Y U{tock}
Jd7 (by structural inductive hypothesis)

Pl Q.
Y

After establishing that this is true for every used operator, we can conclude that
our conjecture P Ty Prineq \ {tock} holds for every process that uses our type
of timeout and the operators we tested.

6.1 Conclusion

In this Chapter we presented different ways to enhance our models to cover time
and derived a method to reason about a more general case.

Firstly, we used the sliding choice operator to determine whether or not an
attack exists. The problem with the resulting trace was its ambiguity: one could
not be certain were the vulnerability originated from. It could have been an
internal router that delayed the packet forwarding or different timeout values used
by the target and IDS. To obtain more precise counter-examples, we introduced
the event tock that symbolises the passage of time. Whilst the resulting discrete
timeout model was more complicated, the traces generated by FDR were easy to
interpret.

We did not suggest an improved version for these models, since the datagram
always reaches the IDS or the target first. So even if the timeout values are
equal, the attacker still has the possibility to succeed. However, this kind of
attack is unlikely in the real world, since the attacker has to predict the exact
timing behaviour of all components that lie between the IDS and the target.

This examination finished with a discussion about the relation that exists
between a tock and sliding choice based model. We showed that whenever the
untimed model does not find an attack the discrete-time model is equally free from
flaws. However, this specific result is unsatisfactory, since for every change, in the
structure of the participating processes, we have to show that this relationship
holds again.

Hence, we generalised our models to find a more abstract way to establish this
relationship. For that a function was derived that converts every untimed process
using a sliding choice operator into a process that uses discrete time. This was
followed by a proof that sets our claim on formal grounds. The result of our proof
was that, for untimed safety specs, we only have to verify the untimed processes

CHAPTER 6. GENERALISATION 79

without fearing to miss a specification violation in the discrete timeout model.

This differs from [Oua01] since he mainly investigates the relationship between
discrete and continuous TCSP'. In contrast to [Oua01], [Sch97] is concerned with
the mapping of untimed onto continuous timed processes. We on the other hand,
present a way how one can lift a untimed CSP model to a discrete-timed CSP
model. Additionally, we only investigated the basic operators of CSP.

Returning to the practical consequences, we have shown that by omitting
timing issues a blinding possibility in the T'TL model remains undiscovered. This
leads us to the general problem, which we have mentioned before, that we can
never be certain whether our simplification of real world features within a model
introduces a false sense of security. This could be an avenue for future work
(more on that topic in chapter 12.3).

'In order to use FDR he also describes a function that projects TCSP onto a tock based
untimed CSP model.

Chapter 7

Trusted Computing
Architectures

This chapter introduces the abstract concept of trusted computing. It will briefly
discuss the current approaches that are suggested by Microsoft, TCG and Intel.
The focus of the introduction will be on the TCPA solution. It will describe
scope, design features and the various definitions of trust that are related to
this architecture. This is followed by a more detailed overview of the different
subsections of the TCPA model. In particular the internal trust relationships that
are required for proper operation, integrity verification and reporting, creation of
trusted identities and the protected storage. Since the architecture uses various
protocols that have to be verified, we will also introduce Casper as a protocol
verification tool that uses an easy to read and write message description language
and converts it into a CSP,, script. This chapter concludes with a summary and
a brief discussion of the relationships between the various trusted computing
concepts that were introduced earlier.

7.1 The directive of TCPA

In times of e-commerce and upcoming e-governance it is essential that partici-
pants can rely on their platforms and on the computing devices with which they
are communicating. This trust includes the secure communication, storage and
use of sensitive data. Several surveys have shown that lack of trust is the main
issue for the limited participation in e-commerce [ATT99, Che99].

In January 1999, Compaq, HP, IBM, Intel and Microsoft founded an organ-
isation called Trusted Computing Platform Alliance (TCPA). The main inten-
tion was to stimulate participation and discussion about a hardware-software
approach to make today’s computers more secure [TCPA02, TCPA03d, TCGO5|.
This approach transfers functionality that is essential for the security of the over-
all system into hardware components. In April 2003 the steering committee which

80

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 81

is comprised of the founders of TCPA decided to define a new group called the
Trusted Computing Group (TCG)[Hei03, Pri03], due to problems of finding a
consensus between all members in the TCPA. In the following pages we will use
the label TCPA, since the press and the specifications refer to the mechanisms
described below as TCPA mechanisms.

Software-only solutions are weak because they depend on the correct instal-
lation of their trusted components and software. Additionally, the execution of
applications can freely interfere with other software processes. All these facts
lead back to the base problem that software can not vouch for its own integrity
[LABW92].

TCPA aims to build and standardise a solid foundation to overcome this
problem by including hardware in their approach. The TCPA itself describes its
objective as:

through the collaboration of platform, software, and technology ven-
dors, [to] develop a specification that delivers an enhanced HW- OS-
based trusted computing platform that enhances customers’ trusted
domains [TCPA0O, Pea02].

The Alliance’s approach is twofold. First, they specify hardware, operating
systems and additional software so that the required hardware can be produced
for the mainstream market. To succeed on the mainstream market the product
has to be of little cost. As we will see later on, this paradigm determines many
features of the TCPA core, called the Trusted Platform Module (TPM). Second,
they animate vendors to support the features of the new hardware.

7.1.1 Scope

Figure 7.1 depicts the scope of the TCPA specification. The specification itself
deals with the hardware, OS, and BIOS level. Moreover, it uses complemen-
tary technologies such as Transport Layer Security (TLS), S-MIME, smart cards,
X.509, IPSEC, VPN, PKI and IKE.

7.1.2 Design features

The Alliance defines a certain set of capabilities that should provide the user with
trust.

1. The TCPA hardware must support cryptographic primitives such as RSA.
Bulk or symmetric encryption is not included. It would be too expensive
to provide a mechanism that would not lead into a bottleneck for the whole
system?!; For such heavily taxing operations the CPU is used.

LAt this point the TCPA specification versions 1.1b and 1.2 vary. 1.1b does not include
symmetric encryption whereas 1.2 supports Advanced Encryption Standard (AES) [NISTO01].

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 82

TCPA

Operating System

BIOS Level

Hardware

TCPA Specification Complements

Figure 7.1: Scope of the TCPA

2. It must include a mechanism that allows the user to protect his privacy.
There should be no global secret that would allow a successful penetrator
to get more knowledge than the information about the trusted platform he
has successfully hijacked.

3. It should provide a low cost protected environment.

4. It should provide ubiquitous security.

The last two principles are closely related. Both are concerned with the total-
cost-of-ownership of the chip. If the implementation would be expensive, then it
would be rather unlikely that it would become available on the mass market —
which renders this technology not ubiquitous.

7.1.3 Definition of trust

The exact definition of trust is difficult since trust has different properties and
meanings — depending on the context in which it is used. Trust is not always
transitive. If entity A trusts entity B and B in turn trusts C; then the fundamental
issue is whether A trusts C. Depending on the context, this answer can be yes or
10.

The trust relations that exist in a system may or may not be everlasting, since
we may trust an entity at one point and after a certain period of time this entity
may become un-reliable. We will elaborate on this point in our boot-sequence
investigation. The same holds for the degree of trust we offer another entity;
Summarising this, we can say:

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 83

Trust is a psychological state comprising the intention to accept vul-
nerability based upon positive expectations of the intentions or be-
haviour of another [RSBC09].

The trusted platform claims to achieve this trust by logging executed actions
and by supplying the user with evidence of these actions.

7.1.4 Usage Scenarios

The TCPA gives many examples of how one can use their technology to improve
daily life. In the following section we will describe several of these.

1. Tt is an inexpensive way of certifying that the platform is working as ex-
pected. The Alliance sets this in contrast to the secure platforms that are
very expensive to certify and maintain. The TCPA architecture offers a
mechanism for preserved information and platform integrity.

2. Remote users can obtain reliable information about the current state of the
platform. The user can only prevent outsiders from getting the state infor-
mation; however, if he chooses to inform them the information is reliable
and correct. Hence, business partners can see whether the platform they
are communicating with has been compromised.

3. This architecture allows the security community to implement more se-
curity features in general (e.g. protection against hostile main memory
monitoring).

For the common user this means that he has access to stronger authorisation and
authentication techniques. He can determine whether or not the platform is in a
desired state, or whether it behaves in a desired manner. It even offers a sealed
storage that allows the user to bind data not only to a specific software state
but also to a particular platform. The user can create different IDs for different
purposes, which allows him to have multiple non-related trust domains.

7.2 The trusted platform

Each trusted platform consists of a Trusted Platform System (TPS) and in figure
7.2 we see its architecture. Some readers may think of this as a Trusted Comput-
ing Block (TCB), since this definition has been around for some time now and is
well-known. However, there are differences between these two approaches. The
TCB includes all functions that are required to enforce the security policy of a
system; these functions are formally assessed once in their lifetime. By contrast,
the TPS does not offer functionality for bulk encryption or for maintaining access
policies, but it is assessed continuously.

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 84

Applications

TSS

CRTM TPM

Figure 7.2: The Architecture of a TPS

The TPS itself is comprised of a Trusted Platform Module (TPM), a Core
Root Trust Measurement (CRTM) and a Trusted Sub System (TSS). The TPM is
an additional computing engine that contains all non-compromisable operations.
The first piece of software that is executed to monitor and to self-validate the
trusted platform is stored in the CRTM. The TSS represents the interface to
software that is executed on the trusted platform or other external processes.
These external processes can be other TPMs or simply the rest of the TPS.

Since authentication, trust and privacy are the main concerns of this initiative,
it also includes a strong Certification Authority (CA) concept. These can be
either regular CAs or so called Privacy Certification Authorities (P-CA). All
CAs vouch for the genuineness of the trusted platform. The difference between
the common CA and the P-CA is that the latter can be used to create additional
Identities (ID). These IDs should make it practically impossible to link an ID’s
behavior to a specific person.

TCPA divides the logical structure of its architecture into three roots of trust:
the Root of Trust for Measurement (RTM), the Root of Trust for Reporting
(RTR) and the Root of Trust for Storing and reporting integrity metrics (RTS).
The RTS is responsible for storing the monitored results and for storing protected
data. It has to prevent modification and access of unauthorised users. The RTR
is responsible for the generation of a hash sum of all logging-events. Because, we
only consider the PC environment, we will not use this term further. The RTR
is implemented in the TPM [TCPA02, TCPA03d].

The RTM is a — ideally — uncompromisable process that measures particular
platform properties and stores the result in the measurement storage and a hash
sum of the result in the TPM.

The RTM has the following properties:

1. it executes only code that is approved by the entity that is vouching for the
RTM;

2. it conforms with the Protection Profile (PP) [TCPA03b];

3. it monitors the integrity metrics that keep track of the software environ-
ment;

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 85

4. it reports the results validly to the TPM;

5. it stores details of the monitoring process in a trusted platform measurement
store.

The RTM represents the platform itself within the PC environment. To be
protected against modifications and interference, the RT'M code must be executed
before anything else. The code must be trustworthy and be based on the KISS
(Keep It Small And Simple) paradigm. Only if the code is kept as simple as
possible can a proper evaluation guarantee faultlessness. This code is included in
the Bios Boot Block (BBB) or in the BIOS instructions — this part is also called
the CRTM (see above).

The other measurement agents are the OS loader and the OS itself. More
generally, measurement agents are like the RTM; yet, they are not counted as
a root of trust. Hence their integrity has to be measured before they can be
used. The operating system contains a measurement agent to detect executions
of processes that change the security related state of the platform. To prevent
the log from corruption, a summary is stored within the TPM. In order to be a
TCPA compliant OS it has to fulfil the following two points:

1. It must detect security related changes on the platform.

2. It must determine whether an event is worthy of logging or not. This
includes a facility to manage this decision process. However, it should not
be possible for a user to drop the logging activity below a certain amount,
since then, in case of an integrity challenge by another remote entity, it
would be impossible to determine whether or not the host is secure.

The TSS must be protected against software attacks. Thus it must be pro-
tected against local and remote interference. Even protection against hardware
corruption is most desirable. The specification [TCPA03b, TCPA02] states that
it is impossible to protect against a hardware-based attack that is initiated by an
entity with large resources. [AK96] has shown that this indeed is true. Therefore,
the Alliance confines itself to protecting against attacks that are practicable from
entities with limited resources such as common users. Another topic along the
lines of the latter is tamper-evidence [AK96]. We will discuss this in more depth
in Section (Discussion or Conclusion of raw TPM analysis).

7.2.1 Relations within the TCPA architecture (Root of
Trust)

As mentioned before, certain relations of trust are necessary to establish the
TCPA trust model. In the following paragraph we will introduce these relations
and their origins. After the TPM is generated, the Trusts Platform Module En-
tity (TPME) generates and signs the endorsement credential, which includes the

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 86

public key of the TPM endorsement key?. This certificate vouches for the unique-
ness and genuineness of the TPM. The TPME is in most cases the manufacturer.
At the next step a Validation Entity (VE) vouches for one or more parts linked
to the subsystem. This certificate includes the integrity measurements which at-
test that the platform is working as desired. This certificate is also called the
‘expected metrics’. The VE in most cases will be the manufacturer. The Con-
formance Entity (CE) generates the conformance credential which is required for
attesting that the used design is compliant with the TCPA specification; this will
be done by an independent evaluation centre. The Platform Entity (PE) signs
and creates the platform certificate, which attests that this particular platform
is using a valid TPM; and is therefore a genuine trusted platform. The last en-
tity that is missing is the Privacy Certification Authority (P-CA), which links
a genuine trusted platform to a certain ID. Only this P-CA has enough data to
correlate all information about the user. Figure 7.3 shows the elements of the
trusted platform and their corresponding certificates.

User
Software VE
Parts linked to the Subsystem (i.e. ROMs) VE
RTM TPM TPME
$ Trusted Entity P%E

CA and P-CA

Figure 7.3: The Trust Relationship within TCPA

7.2.2 Creating a trusted identity for common interaction
purposes

We distinguish between the following IDs: pseudonymous crypto-
graphic ID, a TPM ID and an attestation ID (commonly of the form
(Label, PublicKey) p_casignea). Let’s consider the case where the user has
purchased a platform. The TPME, VE and CE have all certified that this
platform can be trusted.

2The endorsement public key pair is generated once in the lifetime of a TPM (Specification
1.2 compliant devices have to include a mechanism to erase and re-create a new pair). This key
pair uniquely identifies a particular TPM. The private part of the key is never exported. Thus,
only the TPM itself can decrypt a message that was encrypted by the public endorsement key.

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 87

Participants of the ID generation protocol are the CA, the computer the user
is using and the user himself. The basic process starts with the user sending infor-
mation to the CA that vouches for being created on a genuine trusted platform.
The information includes a signed certificate of the platform’s manufacturer and
uses a secret installed in the platform to show that it is unique and that it is
indeed the platform for which the manufacturer is vouching. This secret is called
the public part of the endorsement key and it is never shared with other arbi-
trary third parties. Instead, if the need arises, there are particular cryptographic
attestation IDs that can be used.

Vendor User TPM Storage CA

requested certificates
request for creating an TP ID, all required certificates
certificate encrypted under public endorsement key
j decrypts
certificate
natification abput

successful 1D
creation

D key that was
¢reated by CA

Figure 7.4: The generic creation of a Trusted Identity

The vendor provides all certificates that are required to attest that the trusted
platform is genuine (see section 7.2.1). If the user decides to create another
attestation identity he sends a request to a public certification authority that
includes all required certificates. The CA generates an ID including a certificate.
This data is encrypted with the public endorsement key of the TPM. Hence only
the TPM can extract the data within the ID data. The TPM decrypts this
data, verifies whether the response is correct and sends a notification to the user,
which indicates that this particular identity is usable form now on. Finally, the
ID key with all its data is stored securely in the protected storage. Note that
this is only an abstract overview of the ID generation process. We deliberately
omitted the complete transactions performed by the TPM. Furthermore, there
are other ways to accomplish an ID generation; the interested reader is referred
to [Pea02, TCPA02, TCPA03d]

Once this ID is successfully established, the user can create another ID called
the pseudonymous cryptographic ID. The purpose of the latter is to have the
freedom that no one can deduce the user’s activities in the web. This PC-ID still

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 88

has the credibility of a trusted platform. However, it does not expose the public
endorsement key at each transaction.

7.2.3 Integrity Verification and Reporting

The integrity verification and reporting process ensures that the chain of trust is
established between the platform’s software states. Before a process is executed, a
measurement agent verifies whether the process will behave in the desired manner.

M-log | TPM || CTRM | Software | %t
Software
measures
stores result in PCR
logs result
exchange handle
measures

stores result in PCR
logs result

exXchange handle

Figure 7.5: A generic Integrity verification Process

In the picture (7.5) we see the generic integrity verification and reporting
process of a trusted platform. It starts with the execution of a bootstrapping
process that measures the next software that has to be executed. The results are
stored in the measurement log and the summary (the hash-sum) is used to update
the process control registers (PCRs) in the TPM. Afterwards the execution handle
is given to the evaluated code. This process does exactly the same, since it
verifies the next execution layer, updates the log and the TPM, and passes the
handle on to the verified software. Once the operating system is operational
and an application sends a request to execute one of the TPM’s commands, the
regular audit function takes over. This audit function is very simplistic. For
example, neither the parameters of executed commands nor the purpose of the
commands are logged. There also exists an option to store predicted values that
can force a trusted platform to stay always in a desired software state. Whenever
a signature of an application deviates from these reference values, the trusted
platform withdraws all the necessary resources (i.e. shuts the application). These
signatures are provided by the vendor of the software and serve as reference
material for a secure state. This data is not necessarily a digest: it can also

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 89

be a URL to the vendor’s web site®. The supplier of this data vouches for its
correctness by providing a certificate. They can be used in case of integrity
challenges by remote users or by the authenticated boot mechanism.

7.2.4 Protected Storage

The TCPA architecture offers a facility to store data securely — the protected
storage. This storage is theoretically infinitely extendable. It is not just able
to link the data to a certain secret but also to a certain user or a particular
application state on the trusted platform. The protected storage uses a tree
structure to maintain its keys and data. In figure 7.6 we see this tree structure
that starts with the Storage Root Key (SRK). This key is created once in the
lifetime of the TPM. Because of its importance, the key should never be revealed
to others. The SRK is used to encrypt its child blobs. It does not matter
whether these blobs store data or keys. Blobs in common terminology stand for
Binary Large Objects. In TCPA terms, blobs are binary large objects with a
certain structure. We can distinguish between key and data blobs. Every blob is
encrypted by a certain key. This key again is encrypted by its parent key.

SRK

TPM protected
ObjeCt

signature key data secret storage key Type

authorisation
secret

migration sec.
PCR values
other data

Figure 7.6: The Storage Hierarchy

The schema of an encryption is as follows: The user presents the authorisation
secret, for the key with which he wants to use to encrypt his data, the data and the
desired software state of the platform. The TPM verifies the given information,
encrypts the object with the requested key and places it as its child in the tree

3This contains a problem, as pointed out by Ross Anderson [And03], since this reference
signature can be changed without the admission and knowledge of the trusted platform’s owner.
Hence, if the vendor decides to proscribe a particular application, he can do so by simply
changing the reference values to a bogus value. These fake values, of course, will never be
calculated by the TPM.

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 90

structure. Bulk encryption is delegated to the CPU. The unwrapping is the exact
reverse process. After successful authentication for the used encryption key, the
TPM unwraps the secret, extracts the desired state of the platform, checks the
current state, and compares the two states. The overall key management is done
by an external process, since it is believed that this functionality must not be
trusted®. The tree itself has almost no restrictions except that signature keys and
arbitrary data are always leaves.

About keys

There are two different types of keys, non-migratable and migratable. The first
type can never be exported whereas the second type can be communicated to
applications or even other platforms. In this fashion the user can link certain
data to a particular host. The user has to encrypt his secret with a non-
migratable key. Therefore, only this specific TPM is able to encrypt it. The
Asymmetric — Authorisation — Change — Protocol (AACP) makes use of this
property. Signature keys are always non-migratable. Otherwise it would be pos-
sible to pretend that the origin of certain data elements is a genuine TPM when,
in fact, it is not. Another subtlety is that identity keys are only signing data that
originates from within the TPM.

7.2.5 The physical structure of the TPM

The TPM logically consists of protected capabilities and shielded locations. Pro-
tected capabilities are functions that must work in the desired way. Otherwise
it would be impossible to detect that the platform behaves in an unexpected
hostile manner. The shielded locations can store certain types of data. They
should resist against modification and should prevent possible extraction of the
data that is stored within the shielded locations. These locations are non-volatile
and store only a few secrets, such as the endorsement and the storage root key.
In contrast to the TPM, a cryptographic co-processor offers no functionality for
integrity checks, for both data and processes, and offers no protected storage.
The following parts are necessary to build a TPM:

The key generation component can generate RSA key pairs and symmetric
keys of various lengths. It is essential that every TPM can generate its own keys,
to make certain that no eavesdropping or extraction of keys is possible. This
component can be further divided into the RSA generation part and the Nonce
generation part. The nonce generator uses the TPM random number generator
(see below) to create suitable values.

“In section 9 we investigate whether this claim truly holds.

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 91

The asymmetric encryption co-processor supports various calculations
that are necessary for the asymmetric encryption. Basically it consists of an
RSA engine, a Signature engine and a Symmetric encryption engine®. The RSA
engine encrypts and the Signature engine signs data or certain values.

The computing engine processes and executes the TPM commands. In par-
ticular it manages various protocols, such as the Object Specific-Authorisation

Protocol (OS-AP) and Object Independent-Authorisation Protocol (OI-AP)
which we will analyse in chapter 8.

The HMAC generation ensures that the TPM can rely on the integrity of
incoming and outgoing operands. The HMAC generation has to be according to
RFC 2104 [KCB97|. The general formula for the generation is as follows:

SHAl(Key & opad, SHAL(Key @ ipad, value)).

6 whereas opad and ipad are predefined values [KCBI7).

The random number generator uses a certain register in the TPM’s non-
volatile memory (RNG-state-register) to generate random numbers. Every oper-

ation that is performed by the TPM and requires random numbers receives them
from the TPM’s RNG.

The SHA-1 engine has to generate hash values. This algorithm has to be
conform with [NIST95].

The power detection component keeps track of changes in the power-states of
the overall system. This allows the TPM to restrict (or deny) certain commands
to (in) specific states where the TP is physically constrained (e.g. Power-save-
mode).

The non-volatile memory contains values that should be present within the
TPM at all times — even after a re-boot. Examples for such values are: the
storage root key (SRK), the private endorsement key and the TPME-identity
key.

The volatile memory has to provide space for two authorisation sessions, two
keys and various other values that are important for the current boot cycle.

5Considering a TPM that follows specification version 1.2.
6The symbol € equals an XOR, operation.

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 92

Program Control Register The Program Control Registers (PCR) are used
for storing integrity data about measurements. Since they are designed to store
SHA-1 hash sums, they are of length 160 bits. The current system’s state can be
described as:

PCRp1) = SHAL((PCR)" (SHAl(current Event))).

The new value (index n + 1) of the PCR number z is generated by the hash
sum of the concatenation of the SHA-1 hash sum of the event that was currently
appended to the log file and the old PCR value (index n).

This allows us to carry a history with each register value, thus being poten-
tially able to represent an unbounded number of log entries. At the beginning
all PCRs are set to an initial power-up value. TCPA specification 1.1 requires
16 different PRCs ([TCPA03d] requires 24), where the first eight are used for
base-functionality. We will discuss them more carefully later on.

Data Integrity Register The Data Integrity Register was within the non-
volatile memory (TCPA main specification 1.1). It harbors a hash sum of a
reference file. The reference values within this file can be used to enforce that
the system is in a desired software state after a boot. In section 10 we will elabo-
rate on the exact technique. In specification 1.2 the status of the old commands
that could access the DIR are declared deprecated. Various changes were per-
formed. Yet, a TPM that conforms to version 1.2 still has to support the old
DIR commands. We will not elaborate further on these changes [TCPA03d].

7.2.6 Palladium or NGSCB

Palladium (Pd) is a codename for a set of security related features in the Win-
dows environment. Recently it has been renamed to next-generation secure com-
puting base (NGSCB) [Lin04]. This (industry-wide) standard has similar goals
and approaches to the TCG. Thus, in the mass media these two approaches
are often confused and mixed together in an illegitimate fashion. In this sec-
tion we will describe architecture and features, and we will discuss the relation
between NGSCB [Mic05, Mic03, Mic03b, Mic03a] on the one hand and TCPA
version 1.1b [TCPA02, TCPAO03e, TCPAO03f, TCPA03b] and TCP version 1.2
[TCPA03d, TCPA03, TCPA03c, TCPA04, TCPAO4b] on the other. Another
name that occurs frequently when talking about trusted computing is Intel’s
LaGrande Technology™. During our examination of the hardware requirements
of the NGSCB we will explain how Intel's project relates to NGSCB. Note that
there is not yet a final draft of an NGSCB specification and that the material
changes rapidly. So, for instance, the overall description of the security model

TARM has a similar feature called TrustZone. Since Intel’s approach is more prominent we
will use their name to refer to the feature set they both represent [TZ04].

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 93

given in [Mic05, Mic03, Mic03b] seems to have changed according to [Bid04].
Since we were not able to obtain a proper technical description on the latest
changes we describe the original architecture, which was valid until June 2004.
However, the parts that may have changed will be highlighted.

The set of features mentioned earlier can be divided in four subcategories:
curtained memory, signing data or code, storing data securely on an application
level, and building a secure path from the I/O devices to NGSCB conforming
applications.

1. The curtained memory enables the NGSCB application to wall off and hide
data against other processes. Therefore, the processes can be certain that
their data is not modified nor monitored.

2. Signing of data or code ensures that applications can certify or attest that
they were created / produced in a trusted environment. By trusted envi-
ronment is meant a locked-down NGSCB environment.

3. Storing data securely on an application level allows applications to mandate
that its long-term stored data is only accessible by itself or by other trusted
processes.

4. The secure path from the NGSCB conforming processes to its [/O devices
should give the assurance that no other processes are modifying or over-
hearing the command stream.

These features should be used to provide the user with certain advantages. These
include giving individuals and groups of users greater data security, personal
privacy, system integrity, network security, and content protection (Digital Rights
Management or DRM). These can be summarised in the following super classes:

e greater system integrity;
e superior personal privacy;
e enhanced data security.

Summarising the goal or mission of the NGSCB initiative: to help protect
software against other software; that is, to provide a set of features and services
that a software application can use to defend against malicious software, such as
viruses or Trojan horses, running on the same machine. NGSCB does not aim to
protect against elaborate hardware-based attacks.

Architecture of NGSCB
The following picture is taken from [CJPL02] and displays the main-structure:

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 94

Standard—Mode (LHS) i Standard—Mode (RHS)

User Appl. 3 Trusted Agents User

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, b

Secure Input Secure Video S;C CPU Chipset Hardware

Figure 7.7: Architecture of the NGSCB

The Trusted platform according to Microsoft can be divided into two areas.
One domain harbors all un-trusted operations and services (called the Left-Hand-
Side or LHS in NGSCB terms) and the other includes the trusted processes
(Right-Hand-Side or RHS). As shown in figure 7.7, the existing applications are
running on the LHS and are not able to use the features of the security support
component (SSC). This partition allows the design to cover various problems.
One can always use non-trusted software in parallel to its trusted processes and
it is possible to keep the size of the hardened operating system kernel (Nexus) to
a minimum, since only very few operations that a normal operating system kernel
should do are included. If a trusted process or the NEXUS requires the function-
ality of drivers or other operating system processes (such as file management),
requests can be sent to the LHS.

The SSC represents the hardware component with the NGSCB interface that
provides tamper-resistent storage for the secret keys and attestation functions.
The minimum requirement that an SSC has to satisty to meet the NGSCB cri-
teria, include RSA public-key operations such as encryption, decryption, digital
signature generation and verification, AES encryption/ decryption and SHA-1
hash computation. Additionally it hosts one RSA private and one AES sym-
metric key that are kept secret under any circumstances. These keys are unique
and generated by the hardware-vendor. This hardware component is similar to
the TPM in the TCPA version 1.1b specification. However, the TPM v1.1b does
not include the required AES procedures. The TCG specification 1.2 remedies
this deficiency. We could also say that the SSC is a TCG version 1.2 compliant
device.

The Nexus or Trusted Operation Root (TOR) is the component that man-
ages all trust-based functionality for their agents. More precisely, it is the mini-
operating system kernel of the NGSCB isolated software stack. With the Nexus,

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 95

the NGSCB functionality is initialised during the booting process of the NGSCB
hardware. The API of the Nexus enables NGSCB processes to establish pro-
cess mechanisms for communicating with trusted agents and other applications,
special trust services such as attestations of requests or sealing and unsealing of
secrets. This module is verified before its start up. The precise procedure is sim-
ilar to the secure boot description in the TCPA environment [TCPA02, Pea02].
First, the Nexus executable is loaded into the dedicated memory area, then a
hash sum of the content of the memory block is generated. This hash is stored
in a shielded location within the SSC (in TCPA terms called PCR). Finally, the
execution handle is given to the Nexus.

The Trusted Agents (TA) can represent a program, a part of a program or
a service that runs in the protected operating environment. Sometimes these
processes are also called the Nexus Computing Agents (NCAs). These agents
are using the Nexus as an interface to invoke security-related functions. Each
TA is master of is own domain or sphere of trust. It is not required for them to
trust other TAs in the same user space®. The combination of Nexus and TA pro-
vides following features: trusted data store, encryption services for applications,
authenticated boot, facilities to enable hardware and software to authenticate
themselves. Every TA is launched and managed by the Nexus. Before the TA
can evolve into activity an integrity metric of its memory space is generated
and stored in a secure register in the SSC. This process is identical with the
verification procedure prior to executing the Nexus. This technique ensures the
chain-of-trust as the TCPA calls this procedure.

Additional hardware is required to complete the approach. The demanded
strong process isolation requires various changes to the standard Random Access
Memory (RAM) management. The standard model divides the RAM in two
areas: ome is reserved for high priority processes such as the operating system
(Ring-0) and the other can be utilized by user processes (Ring-3). It is normal
practice that a user process (Ring-3) can call upon functions that reside within
the Ring-0 memory space (setuid). Proper separation between these two memory
spaces was (or is) only virtually possible. This condition enables attackers to gain
full access over the complete platform. The NGSCB architecture circumvents
this weak spot by introducing an additional bit that allows the system to switch
between the trusted and un-trusted memory blocks. This leads to various changes
in the common Central Processing Unit (CPU)?.

8In [Bid04], the standard model seems to have changed slightly. Instead of one TA many TAs
can share a common user space. This technique is called compartmentalisation. Unfortunately,
at the time of writing no clear description of this revision was available.

9The following feature set is called, in Intel’s terminology, LaGrande Technology.

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 96

A mode flag has to be introduced to support the switch between the nexus
mode and the standard mode.

e The possibility to decide between trusted and non-trusted memory pages
has to be included. The trusted memory should only be addressable if the
CPU has set its Nexus mode flag.

e CPU context switches have to be changed so that they can deal with the
last two points.

e Various other smaller changes that are necessary to cope with the new
operation mode [Mic03a].

There are various other changes to standard components, such as a modified
Chipset and secure 1/O devices. AllT/O channels such as those from the keyboard
to the computer or from the graphic engine to the monitor have to be encrypted.
More specifically, all input devices are using TDES to ensure secrecy and each
input signal is hashed into a cipher block chaining (CBC) message authentication
code (MAC) which guaranties integrity [Mic03a].

At this point we will not elaborate further on the the NGSCB. The interested
reader is referred to [Mic05].

7.2.7 Conclusion

In this chapter we have introduced two industry standards that aim to improve
computer security on a large scale. The Trusted Computing Group (TCG) or
TCPA, as it was formerly named, specifies a hardware component called the
Trusted Platform Module (TPM) that should provide the rest of the platform
with a root of trust. The TPM uses another element called the Core Root of Trust
Measurement (CRTM) to ensure that not only the security relevant functions
are working properly but also that executed code is what it pretends to be. The
CRTM and its follower processes (called Measurement Agents) construct integrity
metrics over important executed processes. Therefore, it is possible to determine
the precise software state of the platform, and, furthermore, to communicate it
to other (remote) entities. This allows an extension of the chain-of-trust beyond
the boundaries of the local trusted platform.

The other approach, called next-generation secure computing base (NGSCB)
takes this even further. It builds upon the TPM verion 1.2 and additional hard-
ware to create a trusted environment. This trusted environment coexists with an
area that harbours un-trusted processes or processes that are difficult to verify.

We also discussed the relations between the TCG and NGSCB approach and
how Intel’s LaGrande is related to them. NGSCB can be regarded as an extension
of TCG’s approach. We will not further discuss NGSCB explicitly. Nevertheless,
by analysing the functionality of the TCPA’s TPM we implicitly examine parts of

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 97

NGSCB as well. Elaborating on LaGrande Technology (or TrustZone) is beyond
the scope of this thesis.

7.3 Introduction to Casper

As we have shown in the first half of this thesis, FDR proved to be very effective
in spotting weaknesses in IDSs. Another big area that uses the FDR functionality
is the verification of security protocols [LBHO1].

In this domain one of the major issues is the definition of an appropriate CSP
description of the protocol. The design process is time-consuming, requires pro-
found skill with CSP and it is far from trivial not to introduce additional errors.
Therefore, Lowe [LBHO1| developed a compiler for the analysis of security pro-
tocols named Casper. Casper uses an easy—to—understand protocol description
to generate a corresponding CSP model. The resulting CSP model can be used
as FDR input. The protocol description language, also called C'asper script, is
more intuitive, especially to the protocol verification community, because of the
similarities between the general description style used in the literature and the
Casper script style.

To introduce C'asper scripts, this subsection uses an example protocol taken
from the standard distribution of Casper [LBHO1]. First, we will explain the
protocol and the corresponding Casper script. Then we will show how one can
use FDR and Casper to obtain and interpret the results of the analysis.

The Yahalom protocol requires 5 transactions to establish a session key be-
tween two participants.

Message 1. Alice — Bob . Noncey

Message 2. Bob — Server : {Alice, Noncea, Nonceg} serverkey(B)
Message 3a. Server — Alice : Bob,{Keyap, Nonces, Noncep}serveriey(a)
Message 3b. Server — Bob . {Alice, Keyap}serverkey(n)

Message 4. Alice - Bob : {Noncep} ey,

In message 1 Alice sends Bob a nonce. In message 2 Bob transmits an en-
crypted message to the Server. This message contains the identity of the initiator
(Alice) and a nonce from each participant (Noncey and Noncep). Bob facilitates
the Server Key(B) to ensure that no eavesdropper can obtain the content of this
message. The Server generates a session key (Keyap) for Bob and Alice and
sends corresponding messages to Alice and Bob. Afterwards, Alice decrypts the
message, extracts Nonceg, encrypts Nonceg with the session key and sends this
message to Bob.

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 98

7.3.1 Casper protocol description language

The script can be divided into various parts, as many source code files. The
first part describes the protocol flow, the initial knowledge of the participants,
the parameters and types used in the protocol, and the requirements that the
protocol has to meet. The second part describes the system. It defines the
names of the agents, message elements used, keys and functions involved. This
definition will be used to generate the CSP model. This part also includes a
description of the role that each participant will assume during a protocol run.
Finally, it defines the initial knowledge and the abilities of the intruder.

Part one can be further divided into the section
e that declares the variables (called #Free Variables).

e that describes the agents, their initial knowledge and their input parameters
(called #Processes).

e where the message handling and the overall information flow of the protocol
is defined (called # Protocol description).

e that specifies the requirements (called #Specification).

We will briefly introduce them in order.

Free Variables The Free Variables section consists of the assignment of types
to all variables that are used as well as the type definitions of the required func-
tions. As we can see in our example, the variables a and b are of type Agent.
Later on a and b will contain the name of the entities that execute the protocol,
such as Alice or Bob. Other types are Nonce or SessionKey. It is important to
state at this point that there does not exist a predefined typeset. More compli-
cated type declarations are displayed in the last two lines. The type Server Key
is in fact the result of the function Server Keys. This function takes the name of
an agent and returns the key that is shared (as a secret) between the participating
server and the addressed agent.

#Free variables

a, b : Agent

s : Server

na, nb : Nonce

kab : SessionKey

ServerKey : Agent —-> ServerKeys

InverseKeys = (kab, kab), (ServerKey, ServerKey)

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 99

The last line defines the encryption and decryption relationship between keys.
For instance, in our example the key Server Key is inverse on itself; meaning one
can use the key for encrypting and decrypting the message. As we will see later
on, we have to design systems that use a public key infrastructure. Clearly the
inverse key of the key used for the encryption in a public key system differs from
the key that is used for decryption. First, we define the functions PublicKey,
to generate the public keys, and SecretKey, to generate the secret keys. These
functions receive the name of an agent and return the corresponding key. Finally,
we define the inverse relationship between the keys PK and SK. The Casper
declaration for this would be:

PK : Agent -> PublicKey \\
SK : Agent -> SecretKey \\
InverseKeys = (PK,SK)

Processes This part declares the roles of the participants, the knowledge that
they already posses and the parameters that are provided externally. If we use the
data-independence extension, this section defines the data that will be generated
during runtime as well. The knowledge that is required for each role can be
divided into the identification field, the variables that contain knowledge that is
newly generated for each protocol run and the variables that contain data that
remains unchanged. In our example we have the following:

#Processes

INITIATOR(a,na) knows ServerKey(a)
RESPONDER (b, s,nb) knows ServerKey(b)
SERVER (s,kab) knows ServerKey

The identifiers and values that are freshly generated in each protocol run are
within the parenthesis. More specifically, in the above example, a assumes the
role as the initiator of the protocol and uses the pre-generated nonce na in the
current protocol run. The word knows defines which knowledge of the initiator
remains unchanged between the protocol runs, which in our case is the shared
secret key between the trusted entity s and the initiator a.

Other roles can be the RESPONDER or SERV ER. More generally, the
template of these declarations can be described as follows:

Rolename(ID, fuvy, ..., fvg) knows nfuvy,....nfu,

Protocol description This section describes the activities of the participants.
It assumes the form of a message transmission and processing diagram. The
description is straightforward:

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 100

#Protocol description

->a:b
= b]
a —>b : na
b -> s : {a, na, nb}{ServerKey(b)}
s -> a : b,{ kab, na, nb}{ServerKey(a)}
s => b : {a, kab}{ServerKey(b)}
a -> b : {nb}{kab}

Message 2, for instance, means that participant b sent participant s a message.

This

message consists of three encrypted elements (divided by a comma), the

identity and two nonces (na and nb). This information block is encrypted by the
result of the function Server Key(b). More generally, the information inside the

first

curly brackets contains the encrypted data and the key in the second curly

brackets defines the encryption key. After this short example we give a small
summary of the message description syntax:

M, My : message M, follows message M; without being tied together.
Therefore, an intruder can split M; and M.

{M}{K} : message M is encrypted with key K

h(M) : message M is used as parameter to call function h. In many cases
the function h() will describe a hash function.

M;(+)M, : message M; is combined with message M, by using a bitwise
exclusive or operation. In other words, the (+) operator can be used to
model the Vernam encryption.

M%z : message M is transmitted to the receiver; yet, the receiver only
stores the message inside variable x without prior inspection of the content.
This is particularly useful whenever one agent functions as a relay for certain
message parts.

%M : message M is forwarded containing the value that has been assigned
to variable x.

There is one other element in our script ([a! = b]). The Boolean expression
inside the square brackets performs user defined verifications. In our case it
checks whether agent a and b are different persons. If the Boolean expression
returns false the protocol run will be suspended.

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 101

Specification The first part of the C'asper script concluded with the specifica-
tion of the security requirements that have to be met in order to be an error free
protocol. Every specification that is stated in this section is converted by Casper
into a corresponding CSP specification and related signalling events. There are
six different types of specifications: Secret, StrongSecret, WeakAgreement,
Aliveness, NonInjectiveAgreement and Agreement. Since we only need two,
we will omit the others. For more information, the interested reader is referred
to [LBHO1].

#Specification

Secret(a, kab, [b,s])
Secret (b, kab, [a,s])
Agreement (b, a, [na,nb])
Agreement(a, b, [kab])

e Secret(ID,x,[A;,, A.]) requires that, after each successful protocol run, the
agent I D validly assumes that no other agent except the ones contained in
the set that is defined by the square brackets knows the value within variable
x. The drawback of this specification lies in the requirement that I.D has
to finish the protocol run.

e Agreement(I1Dy, 1Dy, |21, ,x,]) indicates that, if agent Dy thinks that he
has finished a complete protocol run with agent /D, then agent I D, was
previously using this protocol to communicate with /D,. For the protocol
run certain conditions have to hold. The first condition requires that both
agents where aware of the role the counterpart assumed. The second re-
quires that both agents were agreeing on the values bound to the variables
21 to x;. The last condition demands both agents to refer to the same
protocol run.

The second part of the Casper script describes the actual system. It can be
divided into four subcategories. The section that defines

e the real names, types of the agents and tokens involved (called
Actual Variables).

e all required functions (called #Functions).
e the roles of the actual participants (called #System).

e the functionality and knowledge of the intruder (called #Intruder).

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 102

Actual Variables This section defines the variables and the corresponding
types that are used in the real system. The notation looks very similar to the
#Free Variables part, except that the type description of functions is not in-
cluded. In our example, for instance, we use the names Alice, Ivo and Bob as
agent identities and Na and Nb as nonce. A binding convention for naming val-
ues does not exist, however it is preferred to use capital letters at the beginning
to dinstinguish between abstract variables and real values.

#Actual variables

Alice, Bob, Ivo : Agent
Sam : Server

Kab : SessionKey

Na, Nb : Nonce
InverseKeys = (Kab, Kab)

Functions The function part specifies the types and functionality of functions.
There are two types of functions: explicitly defined and symbolic defined func-
tions. The explicit functions, as the name suggests, define every possible input
and its corresponding outputs explicitly. Consider the following example:

TrueAgent(Owner) = true
TrueAgent(TPM) = true
TrueAgent(—) = false

The function TrueAgent accepts an identifier of an agent and verifies whether or
not the name indeed belongs to a participating agent. The only two proper agent
identifiers that are allowed in this certain protocol run are Qwner and T PM.

#Functions
symbolic ServerKey

The other type of function is symbolic, meaning that C'asper generates the
output and assigns a symbol to every output. In our example script the result of
the function ServerKey is defined in such a way.

System This part defines the roles of the participants and their parameters.

#System
INITIATOR(Alice, Na)
RESPONDER (Bob, Sam, Nb)
SERVER (Sam, Kab)

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 103

Intruder This section assigns the name of the agent that impersonates the in-
truder. Furthermore, it defines the values that are already known to the intruder,
prior to the protocol run.

#Intruder Information
Intruder = Ivo
IntruderKnowledge = {Alice, Bob, Ivo, Sam, ServerKey(Ivo)}

7.3.2 Casper and FDR results

FDR uses the refinement checks that were generated by Casper to verify the
protocol. FDR discovered more errors in the protocol. However, we will only
describe one in detail. The following attack violated our first secrecy specification.

env.Alice. (Env0,Bob,<>)

send.Alice.Bob. (Msgl,Na,<>)

receive.Ivo.Sam. (Msg2,Encrypt. (ServerKey__.Ivo,<Alice,Na,Na>),<>)

send.Sam.Alice. (Msg3a,Sq.<Ivo,Encrypt. (ServerKey__.Alice,
<Kab,Na,Na>)>,<>)

receive.Sam.Alice. (Msg3a,Sq.<Bob,Encrypt. (ServerKey__.Alice,
<Kab,Na,Na>)>,<>)

send.Alice.Bob. (Msg4,Encrypt. (Kab,<Na>) ,<Na,Sam>)

send.Sam. Ivo. (Msg3b,Encrypt. (ServerKey__.Ivo,<Alice,Kab>),<>)

leak.Kab

Since FDR traces usually lack in readability, C'asper provides us with the
commands interpret and linterpret. The first command converts the FDR trace
in a plain text description of the attack and the second command converts it into
the message transmission style in Latex source (see figure 7.3.2).

Message 0. — Alice : Bob
Message 1. Alice — Igy, : Na
Message 2. Iwo — Sam = {Alice, Na, Na}server i ey(1vo)
Message 3a. Sam — Lce @ Tvo, {Kai, Na, Na}serverkey(atice)
Message 3a'. Igam — Alice : Bob, {Kai, Na, Na}serverkey(Atice)
Message 4. Alice — Igyp : {Na}kai
Message 3b. Sam — I, : {Alice, Kai}gerverkey(ivo)

The intruder knows Kab

Message 0 states that Alice and Bob want to run a session. In message 1
Alice sends the first nonce to Bob. However, the intruder intercepts this message
and uses the nonce to send a session key generation request to the server. The
session key generation request (message 2) consists of the identity of Alice and

CHAPTER 7. TRUSTED COMPUTING ARCHITECTURES 104

the intercepted nonce Na. This message is encrypted with the ServerKey(Ivo).
The server generates a session key (K ai) and sends notification messages to Alice
(message 3a) and to the intruder (message 3b). The message that is targeted at
Alice is intercepted by the intruder. In message 3a’ the intruder pretends to be
the server and relays a modified version of message 3a to Alice. The modification
ensures that Alice does not recognise that the key Ka: was generated to establish
a session between Alice and Ivo. Afterwards, Alice sends an acknowledgement
to Bob (message 4). This acknowledgement is intercepted by the intruder. In the
last message the server sends the intruder the identity of the protocol initiator
and a session key encrypted with Server Key(lvo).

Chapter 8

Authorisation protocols

The TCPA enforces various authorisation protocols that can be used to securely
create protected objects. Every protected object possesses an authorisation se-
cret. The five standard protocols that are required to fulfil the TCPA specification
not only deal with the creation of protected objects but also the establishment of
secure channels to the TPM. These channels can be used for transmitting a proof
of knowledge or to change authorisation data of an object in a secure manner.

The TCPA puts special attention on the modularisation of these protocols
as well as their re-usability; for instance the Object Independent Authorization
Protocol (OI-AP) and the Object Specific Authorization Protocol (OS-AP) work
as a first building block for more advanced protocols such as the Authorisation
Data Change Protocol (ADCP). [TCPA02] states that these building blocks can
be used to generate more elaborate protocols. In Chapter 11 we pick up this
claim and use them to generate a digital rights management protocol.

In this chapter we will describe the five basic authorisation protocols:

The Object Specific Authorization Protocol (OS-AP) uses one value of
authentication data (the so called secret) for many authentications on the
same target object without requiring a re-authentication.

The Object Independent Authorisation Protocol (OI-AP) uses mul-
tiple authorisation secrets to access many target objects in the same
session.

The Authorization Data Insertion Protocol (ADIP) binds new authori-
sation data during the creation of a particular object to this object; during
creation the user must show knowledge of the so called parent authorisation
secret, hence the user must establish an OS-AP session.

The Authorization Data Change Protocol (ADCP) is used to change the
secret that is used for authorisation to access a specific object; after applying
this command the object’s secret is changed, however the owner of the TPM
can still access this object.

105

CHAPTER 8. AUTHORISATION PROTOCOLS 106

The Asymmetric Authorization Change Protocol (AACP) is used to
prevent the owner of the TPM having access to the object; this is of sig-
nificance whenever we store data on a trusted platform and we don’t want
to reveal the content to the owner of the platform (e.g. Digital Rights
Management).

We will look from three different (levels) perspectives at these protocols: first,
the message passing level, second the operational level (the command level) and
finally the composability level that shows whether the various building blocks can
be combined without violating the security.

The message passing level will look at the protocols in the classical way. It
will verify whether the claims in the specification are justified.

The command level will not only investigate the succession of TPM operations
involved in triggering and processing the protocol messages, but also the part of
the TPM that are necessary for these commands (see section 9).

The last part of the investigation deals with the composability of the protocols.
More precisely we will justify whether it is safe to use OS-AP and OI-AP as
building blocks for ADCP. We hope to derive more general approaches form this
specific result.

Note in order to conduct a proper analysis (due to the state space problem)
of the protocols we prune away certain features. We then prove that these ab-
stractions did not interfere in a negative way with the evaluation of our protocol.
In this thesis we will not describe each proof for every protocol, otherwise we
would describe very similar proofs again and again. Instead we will describe all
necessary protocols as the TCPA defines them and choose one amongst them to
exercise a full analysis; our protocol of choice is the Object Specific Authorisation
Protocol (OS-AP).

The chapter will close with a discussion about potential protocols that can be
built upon these basic building blocks.

8.1 Object Specific Authorisation Protocol

The Object Specific Authorisation Protocol (OS-AP) establishes an authentica-
tion session for one protected object. It uses only one authorisation value for many
commands that operate on the same object without requiring a re-authentication.
It does so by establishing a session key or so called ephemeral secret. This proto-
col is efficient in environments where a stream of commands requires access to a
single protected object. Once the ephemeral secret is established all commands
use the ephermal secret instead of the real authentication value to gain access.
The protocol itself can be divided in three parts:

e the establishment and generation of the session key;

CHAPTER 8. AUTHORISATION PROTOCOLS 107

e the submission of the command and its feedback;

e the continuing handshake of command and return parameter submissions
— if the authenticated session should continue.

The last element bears the difficult part of the protocol verification. FDR has
to explore all states of a protocol that has (potentially) an infinite supply of
commands and different nonces. A supply of infinitely different nonces renders
the complete system into a process with infinitely different states.

8.1.1 Description

In this section we will describe the OS-AP protocol in its initial version, without
abstractions.

The first two messages are concerned with the establishment of the shared
secret. Messages 3 submits the command and message 4 closes this cycle by
transferring the response of the command back to the initiator. The last part,
messages 5 and 6, are only available if the continue AuthSession tags (in message
3 and 4) are set to true; indicating that there are more commands to process.

Message 1. Quwner — TPM : TPM_OSAP,prentHandle, nonceOddOS AP
Message 2. TPM — Owner : authHandle,authLastNonceEven
nonceEvenOS AP
Message 3. Quwner — TPM : tag,paramSize,ordinal,inArgOne,inArgTwo
authHandle, nonceOdd, continueAuthSession
HM AC (sharedSecret, D1) where
D, = (InArgHashOne, InArgHashTwo)
Message 4. TPM — QOwner : tag,paramdSize, returnCode, out ArgOne
nonceFven, continue AuthSession
HM AC (sharedSecret, Dy) where
Dy = (OutArgHashOne, OutArgH ashTwo)

Message one passes along the TPM_OSAP command with the parentHandle, that
identifies a encryption key and the nonce nonceOddOSAP. On reception of this
message the TPM creates and allocates the necessary resources for the expected
authentication session. It generates two nonces called AuthLastnonceEven and
nonce EvenOS AP, it links the session resources to authHandle and calculates
the session key by building an HMAC of the authorisation secret of the tar-
get object and the values nonceEvenOSAP and nonceOddOSAP. Then, in
message 2, the TPM returns the label of the session called authHandle with
the two newly generated nonces. Thereafter the initiator saves the received
information, calculates the session key, generates nonce nonceOdd and com-
putes the parameter inAuth by calculating a HMAC of the shared secret and

CHAPTER 8. AUTHORISATION PROTOCOLS 108

all input parameters (InArgHashOne) with the authorisation setup parameters
(InArgHashOneTwo). In message 3 the initiator submits the command and
various other required parameters. The TPM verifies the authorisation session
ID (authHandle) and recalculates the value of inAuth and compares it with the
recently received value. Finally the command is executed, the return code is
generated and the value resAuth is produced by the application of the HMAC
function onto the shared secret, the outgoing parameters (OutArgHashOne)
and the outgoing setup parameters (OutArgHashTwo). After receiving message
4 the initiator recalculates the value of resAuth and compares this value with the
recently received data, thus verifying the return code and the output parameters.
In message 3 the owner can decide whether he wants to execute another
command upon the same object. If he chooses so, the value continueAuthsession
has to be TRUE. In message 4 the TPM has the option to deny the request for
continuation. We will see such a rejection in the ADIP and in the ADCP. If the
TPM chooses to grant the request the following two messages will be submitted.

Message 5. Owner — TPM : tag,paramSize,ordinal,inArgOne
inArgTwo, nonceOdd, continue AuthSession
HMAC (sharedSecret, D3) where
D3 = (InArgHashOne, InArgHashTwo)
Message 6. TPM — Owner : tag,paramdSize,returnCode, out ArgOne
nonceEven, continue AuthSession
HMAC (sharedSecret, Dy) where
D, = (OutArgHashOne, Out ArgH ashTwo)

Where :
sharedsecret = HM AC(key.usage Auth, nonce EvenOS AP, nonceOddOS AP)
InArgHashOne = SH Al(ordinal,inArgOne, inArgTwo)
InArgHashTwo = authLastN once Even, nonceOdd, continue AuthSession
OutArgHashOne = SH Al(returnCode, ordinal, out ArgOne)
OutArgH ashTwo = nonce Even, nonceOdd, continue AuthSession.

The initiator generates a nonce (nonceOdd) and computes the HMAC of the
shared secret, the input parameters (InArgHashOne) and the authorisation
setup parameters (InArgHashTwo). In message 5 the initiator submits the
command and all relevant parameters to the TPM. The TPM performs the same
actions as after receiving message 3, except that it does not verify the authen-
tication handle. Finally the return code and additional parameters are returned
to the initiator (message 6). Ounly if both parties want to continue this session
the computation starts again with the calculations that are required to produce
message 5. This allows the TPM to stop the session even if the user wants to
continue. The nonce nonceEven remains in the system to link message 7 to
message 6.

CHAPTER 8. AUTHORISATION PROTOCOLS 109

8.1.2 Basic model

In this section we will describe the procedure to perform a complete analysis of
the OS-AP protocol. The analysis can be divided in four steps:

1. pruning away unnecessary data;
2. proving that these abstractions are sound;

3. building an infinite state model of the protocol;

W

. modifying the CSP model so that we can use FDR for the verification.

The reduced OS-AP In this section we described the version that is specified
by the TCPA. From this we will derive a reduced protocol that can be used for
our analysis. We will look at every message and explain why parts are redundant
and how one can prove that they are redundant for the security of the overall
protocol. All our abstractions will be fault-preserving. Note a fault-preserving
transformation does not prune away any weaknesses of the original protocol; thus
if the simplified protocol refines a particular security specification then the initial
version does also.

Message 1. Quwner — TPM : TPM_OSAP,parentHandle,nonceOddOS AP
Message 2. TPM — Owner : authHandle,authLastNonceEven
nonceEvenOS AP

In the first two messages we omitted the tag TPM_OSAP and the value
nonceEvenOSAP. The tag TPM_OSAP only indicates that the owner wants
to launch an OS-AP session. This may be important if we simulate more pro-
tocols in one model, however since this analysis only focuses on one protocol
the TPM does not require this signal value. Furthermore TPM_OSAP does
not occur on any other message and it does not influence the protocol flow in
any way. Additionally this field is of a distinctive type, hence can not be used
to fake the content of other data fields. The function that removes the value
TPM_OSAP from the protocol satisfies the 3 conditions that are required in
order to be a fault-preserving transformation. It is plain to see why conditions
3 and 2 are satisfied by a function that erases the fact TPM_OSAP from every
message. This value never occurs in /1K or I[IK’ as well as it is never an element
of the AgreementSet. Condition 1 is met since TPM_OSAP is not bound to
other protocol messages (no fact needs the value to draw conclusions upon other
necessary values).

The second abstraction is more vital since this nonce will be used to ensure
that the session secret cannot be replicated. We have to be certain that the fresh-
ness property is not violated by our abstraction. Looking at the third message
of the protocol we see four nonces. Two are included within the shared secret.

CHAPTER 8. AUTHORISATION PROTOCOLS 110

They link every chain of commands (the complete run from message 3 onwards)
to a single protocol run. The other two nonces are included in the SHA1 hash
sum. These two nonces ensure a proper succession of commands. Hence it is im-
possible to reply or swap a command within a single protocol run. The following
abstracted protocol description gives an overview of this scenario:

Message 1. A— B : Ny

Message 2. B — A : Na, Nj

Message 3. A — B : N4, SHAL(HM AC (sharedSec, D1), N3, Ny)
where Dy = (N1, Na)

Message 4. B — A : N5, SHAL(HM AC (sharedSec, D1), N5, Ny)
where Dy = (N1, Na)

We have to show that after our abstraction each message (from 3 onwards) is
still linked to a particular protocol run (to message 1 and 2) and that an intruder
can not alter the order of the commands. By eliminating the value Ny the link
between the messages that follow message 3 are not anymore directly linked to
message 2. However nonce N3 takes over that purpose. It links message three to
two. In message 4 N, links message 3 and 4 together. The responder exchanges
the N3 with a new value. Thereafter N5 ties message 4 to 5 and so on. The paper
[BL02| examines a similar situation.

Note nonces fulfil various other purposes therefore the statement given above
only represents an outline why it is sensible to abstract this field away and why
it is highly likely that it does not introduce new attacks. For a thorough analysis
our explanation is not sufficient. The only thing we really have to guarantee is
that this transformation does not lose attacks. Lowe and Hui already showed
that such an abstraction is fault-preserving since it abides by the three necessary
conditions.

Message 3. Quwner — TPM : tag,paramSize,ordinal,inArgOne,inArgTwo
authHandle, nonceOdd, continue AuthSession
HM AC (sharedSecret, D1) where
Dy = (InArgHashOne, InArgHashTwo)
Message 4. TPM — Qwner : tag,paramdSize, returnCode, out ArgOne
nonceEven, continue AuthSession
HM AC (sharedSecret, Dy) where
Dy = (OutArgHashOne, OutArgH ashTwo)

Message 3a, 3b and 3¢ communicate various fields that can be neglected or com-
bined; in particular the values ordinal, inArgOne and inArgTwo. At this point
of our analysis we do not consider internal transactions within the client or the
TPM. Therefore we do not specify which command the owner issues to access the
protected object. If we can show that the intruder is unable to intercept the mes-
sages 3a, 3b, 3¢ and to exchange the values (ordinal, inArgOne and inArgTwo)

CHAPTER 8. AUTHORISATION PROTOCOLS 111

with his own faked values, we may very well drop these fields. Assuming that
the attacker is successful with such an attack, he can, undetected by the TPM,
modify one of the important values. The TPM, before it executes the command,
verifies the input of message 3 by recalculating the transmitted HMAC (message
3c). The HMAC contains the sharedsecret, which is only known by the TPM
and the legitimate owner, and all input parameters except tag and paramSize. If
we assume that the hash is generated by a collision free function ([NIST95]) and
we know already that the key used for building the HMAC is only known by the
owner and the TPM, it is easy to see that the intruder can not recalculate the
hash so that it would fit the new message. Therefore under any circumstance the
HMAC will (nearly) never match to a modified message. The above mentioned
three conditions hold for this transformation (see TPM_OSAP example). The
formal proof can be found in [HLO1].

In order to provide a better foundation for later verifications we decided to
combine the fields ordinal, inArgOne and inArgTwo in message 3 to one value.
According to Lowe and Hui this is a fault-preserving transformation. We apply
the same coalescing action to returnCode, ordinal and outArgOne. Afterwards
we use another fault-preserving function that renames the result of the mergers
to clientinput (for ordinal, inArgOne and inArgTwo) and clientoutput (for
returnCode, ordinal and outArgOne).

The other parameters that can be neglected are the tag and the paramSize
field. The tag value because the owner and the TPM do not exchange valuable
information in this field (this may be different if we use another angle to look
at the protocol, see chapter 9). Additionally, both participants can distinguish
between the types of the data elements that were transmitted. Hence it is not
possible for the intruder to use a value, transmitted by the tag field, as a value
in another field. The same reasoning holds for the paramSize field. Again, if we
would look at the command level this parameter may very well not be negligible.
The formal justifications are similar to the one given in the TPM_OSAP case.
Note, to further reduce the state space, we also removed the internal hash of
sharedsecret. For a formal justification see [HLO1]. This leads to following CSP
definition.

The initiator The CSP description of the Qwner process consists of various
other sub-processes. We will describe them and a general template for the in-
finite series of processes that allow the system to handle a continuous stream
of commands. The basic Qwner process needs access to an infinite sequence of
nonces and commands. Instead of initialising the process with such sequences we
establish events that supply the processes with as many nonces and commands
as they require. This design eases the modifications that are necessary to reach
a model with a finite amount of states. The process that synchronises on the
event pick Nonce and keeps track of the nonces that were already in use is called

CHAPTER 8. AUTHORISATION PROTOCOLS 112

the NonceManager. The process commandInputManager has the same pur-
pose only that it manages the unbounded command line submission. We will
describe these processes later. The procedure of sending and receiving the first
four messages, on the initiator’s side, is performed by following process:

Ownery (0, T) =
pick Noncelna, —
send.T.O.(Msgy, (nay)) —
Ul authhandle : AuthorisationHandle, nb; : Nonce o
receive . O .1 . (Msga, (authhandle, nb;)) —
pick Nonce?nay — pickInput?clientdatainput; —
send.T.O . (Msgs,, (clientdatainput,,authhandle, nas)) —
send.T.O.(Msgs,, (SHAL(SK(O,T),nay, clientdatainput,,
nby, nas))) —
U clientdataoutput, : TOutput, nby : Nonce o
receive .. T . (Msgy,, (clientdataoutput,,nbs)) —
receive .O. 1. (Msgy, (SHAL(SK(O,T),nay,
clientdataoutputy, nby, nas)) —
forget.O .nay —
forgetInput. O . clientdatainput, —
Ownery (O, T, nay, nby).

We decided to put as many messages as possible in the initial owner sub-process
Ownery. This process is initialised by the its own and the TPMs identity. The
owner picks a nonce via pickNonce and uses that nonce to transmit the first
message. Afterwards the owner waits to receive the answer of the TPM. Once
the content of message 2 has been received Qwnery requests another nonce and its
first command (clientdatainputy). After sending and receiving the next messages
we raise the forget events. These events are used to notify the NonceManager,
the commandInput M anager and the commandOutput M anager that an element
of their domain has expired (e.g. nby for the NonceManager). We will describe
the exact mechanism later. Finally we parameterise Qwner; with the necessary
information to continue the protocol run.

CHAPTER 8. AUTHORISATION PROTOCOLS 113

Ownery (O, T, nay, nby) =

pick Nonce?naz — pickInput?clientdatainputy —

send.T.O . (Msgs,, (clientdatainputy, nas)) —

send.T .0 .(Msgs, (SHAL(SK(O,T),nay, clientdatainputs,
nby, nag))) —

U clientdataoutput, : TOutput, nbs : Noncee

receive . O .1 . (Msgsa, (clientdataoutputs, nbs)) —

receive .0 . T . (Msgep, (SHAL(SK(O,T),nay, clientdatainputs,
nbs, nasz))) —

forget.O .naz —

forgetInput. O . clientdatainput, —

Ownery (O, T, nay, nbs).

Owner; performs another handshake between the TPM and the Owner. The
process obtains the next nonce (naz) and the second command (clientdatainput,)
and sends the command request in message 5a and 5b. After receiving (message
6a and 6b) the feedback of the TPM, the initiator forgets the nonce nas and the
command clientdatainput,. Finally, it loops back to submit the next command.

The responder Since the process T'pmg is the precise counter process of
Ownery we will omit a description of the CSP code.

The nonce manager The process NonceManager is parameterised by an
infinitely long sequence of nonces. Whenever one of the processes chooses to
pick a nonce, the head of the sequence is communicated back to the caller. To
circumvent repetitions, the tail of the initial sequence is used to call the next
nonce manager.

NonceManager(xs) = pickNonce . head(xs) — Nonce Manager(tail(xs)).

The processes commandInput Manager and commandQutput M anager have the
same structure. Note, for our final model we have to modify the nonce manager
in such a way that only a limited amount of nonces is sufficient (nonce recycling).

The intruder The intruder utilises the Dolev-Yao [DY83] approach. The re-
sulting process is capable of monitoring all communicated OS-AP messages, drop-
ping messages during transit, pretending to be a certain participant in the net-
work and to inject self-forged messages at will. These messages however have
to be built upon prior knowledge. This knowledge can stem from collected mes-
sages or form deductions that were performed upon collected information. These
Deductions represent the core of the intruder. The set Deductions consists of

CHAPTER 8. AUTHORISATION PROTOCOLS 114

tuples e.g. (z,Y), whereas Y indicates the information that is necessary for the
intruder to retrieve information x. For instance if we consider the creation of a
hash sum the Y consist of the hash function and the value that has to be hashed.
Following this example, x, would then be the result of the result of the hash
calculation. The model of the intruder:

Intruder(IK) =
receive?O . T .x — Intruder(IK U {z})
-
[Nz :IK, O, T : Agent ® send.O.T .z — Intruder(1K)
.

[1(x,Y) : Deductions, Y C IK einfer.(x,Y) — Intruder(IK U{z}).

The Intruder process is initialised by the initial knowledge (/K). The set 1K
contains the identifier of the other participants (Owner and T PM), enough data
to launch an OS-AP session (e.g. nonce), the identifier of the protected object
that belongs to the intruder and its corresponding authorisation secret. The event
receive is used to monitor the conversations between the owner and the TPM.
After performing the receive operation the intruder adds the collected message
x to its knowledge. The process intruder can also send, via the send event,
every fact that is within its knowledge base. Finally, to gain new information,
the intruder can perform deductions upon its collected knowledge. This infer
operation is only available if the set Y is a subset or equal to its knowledge base.

Note that this design only shows the semantic model of the intruder. The
CSP implementation looks different. Roscoe and Goldsmith [RSG101] designed a
highly efficient version of the intruder. In their model every element that possibly
can be learned by the intruder is represented by its own two state process. One
state represents that the intruder does not know the fact; the other that he knows.
For further explanation of this model see [RSGT01].

The system The processes are connected with other relevant processes accord-
ing to Figure 8.1.

The Initiator and Responder sending to and receiving messages from the
Intruder. The NonceManager is connected via the pickNonce event to the
Owmner and the T'PM. Similarly commandInputManager and commanQutput-
Manager are connected via the events pickInput and pickOutput to their target
processes.

The specification The TCPA designed the protocol to achieve proper autho-
risation between the TPM and the client. This goal can be further divided:
first providing secrecy for the transmission of the authorisation secret and second
ensuring that both participants are properly authenticated to each other.

CHAPTER 8. AUTHORISATION PROTOCOLS 115

commandIinput commandOutput
Manager Manager
pickInput pickOutput
send receive
Initiator Intruder Responder
receive send
pickNonce. Initiator pickNonce.Responder
NonceManager

Figure 8.1: OS-AP communication flow

The first part considers whether the intruder can learn the authorisation secret
that the TPM and the client share. After we complete our system according to
our network layout (see figure 8.1) we hide every event except the leak event of
the intruder and a signal event that indicates what agents are performing the
protocol run (signal. Claim_Secret. Owner.sharedsecret. TPM). The intruder can
only engage in a leak event if the fact, he is about to reveal, is within a set called
ALL_SECRETS_DI. This set contains, after renaming, all elements that are
part of the secrecy specification. Thus the specification allows a leak event only if
the intruder participates actively in the protocol run, e.g. as a legitimate agent.
More formally we can say:

Vitr : Traces e signal.Claim_Secret.Owner.sharedsecret. T PM in tr
= tr | leak.sharedsecret = ()

If we can show that traces(Systemgeerer) T traces(Specificationseerer) we would
have proven that OS-AP holds its claim regarding secrecy.

The remaining specification considers whether the commands send to the
TPM are properly authorised. If we use the same approach as before we can use
following trace specification to enforce such a behavior:

Vitr: Traces ;nay,nas,nby : Nonces ; cdatain, : C'Input;
cdataout : TOutput ; SK(O,T) : SecretKeys;
O = OQwner ;T =TPM e
tr { receive.O.T.(SHAL(SK(O,T),nay, cdataouty, nby, nas)) <
tr { send.T.O.(SHAL(SK(O,T),nay, cdatain,, nby, nas))

This specification centers around message 3b and 4b in our OS-AP description.
It expresses that whenever the TPM returns the output of a valid command
execution (message 4b) then there was a valid request to execute such a command.
The CSP version of this specification consists only of a sequential process that

CHAPTER 8. AUTHORISATION PROTOCOLS 116

allows to send message 3b and only then permits to engage in the submission of
message 4b. As before all irrelevant behaviors are hidden during the refinement
check.

8.1.3 The final model

So far we have reduced the structure of the protocol by applying fault-preserving
transformations. This leaves us with one problem — the model still has an
unbounded state space. This problem can be divided in two subproblems: first
the nonces and second the commands. As mentioned in the IDS part of this thesis,
Roscoe and Lazic [Ros98| invented a method to reduce the scope of certain types
without losing relevant detail. We used this method to design a model that
has an infinite amount of new nonces, command inputs and outputs, whereas
the types themselves remain finite. To restrict the supply of commands we use
Theorem 2; thus two distinct commands are sufficient. The problem with the
supply of nonces is different, since the nonces have to be different. Therefore we
will use a technique presented in [Bro0O1], that allows us to establish a recycling
mechanism that re-uses nonces once they are no longer in use by the TPM and
by the owner. Clearly every nonce will still be in use by the intruder, since every
message is stored in the intruder’s knowledge base. In certain situations this
can cause serious problems. Hence, we establish a nonce manager process that is
capable of converting nonces within the intruder’s knowledge. Once a nonce is no
longer required the corresponding nonce in the intruder’s knowledge is projected
to a predefined value. The transformation process has to be performed for every
fact that contains that particular nonce. The modifications on our CSP model
were minor, since we had already included the forget and pickNonce events.
[RB99, Bro01] show that this technique is sound.

The last change that converts our initial description in a finite system is the
reduction from the infinite amount of sender and receiver processes. The structure
of messages 5 and 6 does not differ of the structure of messages 7 and 8 (and
so forth). Hence after reaching the final event of process Qwner; we can simply
loop back to itself. We only have to be careful about the remaining nonces. The
same applies to the T'"P M, process.

8.1.4 Results

After applying all abstractions we used FDR to verify whether the claims of the
TCPA where true. Our analysis revealed following problem:

CHAPTER 8. AUTHORISATION PROTOCOLS 117

Message «.0. — Alice : TPM

Message a.1. Alice = Ippy - Na2

Message (3.1. Igoy > TPM : Na2

Message 3.2. TPM — Ig,, : Authhandle, Nb

Message «.2. Ippy — Alice : Authhandle, Nb

Message «.3. Alice = Ippy . Clientdatainput, Authhandle, Na
Message «.3a. Alice — Irpy = f(Sk, Na2,Clientdatainput, Nb, Na)
Message (3.3. Iy — TPM : Clientdatainput, Authhandle, Na
Message 3.3a. Ipogp — TPM : f(Sk, Na2,Clientdatainput, Nb, Na)
Message 3.4. TPM — Ig, : Clientdataoutput, Nb3

Message 3.4a. TPM — Ipy : f(Sk, Na2,Clientdataoutput, Nb3, Na)
Message a.4. Ippy — Alice : Clientdataoutput, Nb3

Message a.da. Irppy — Alice : f(Sk, Na2,Clientdataoutput, Nb3, Na)

The attack can be divided in two protocol runs (« and 3). First Alice decides to
communicate with the 7"PM and sends the necessary nonce Na2. The intruder
impersonates the TP M and forwards (as Bob) the intercepted Na2 to the proper
TPM. The real T'PM responds appropriately in message 3.2. This information
is forwarded to Alice (message «.2) and she responds by sending the command
message («.3 and «.3a). This command request is used to launch the same com-
mand on the real TPM (message .3 and (3.3a). In the last stage of the protocol
the real TPM returns the output (message (.4 and (3.4a) of the command and
the intruder uses these messages to impersonate the 7'PM in the messages a.4
and a.4a. At this point the T'PM believes it was running the protocol with Bob,
whereas it took the role of the responder. On the other side, Alice believes she
has successfully submitted one command to the T'PM.

There are other attacks, they are all based on the same problem. The receiver
can not determine whether he was the designated target or not, nor is the sender
able to include information about the origin of the message. At this point we
omit the description of the reverse attack. To fix the protocol the identities
of both participants have to be included in message 3 and 4. To prevent the
intruder from changing the IDs, they should be included in the SH Al hash sum.
It is worth noting that we do not need to include the identities in subsequent
command submission.

8.1.5 Discussion

In this chapter we used a technique presented in [BLO02] to verify the OS-AP. First
we pruned away all irrelevant fields of the initial protocol. Second we showed why

CHAPTER 8. AUTHORISATION PROTOCOLS 118

these abstractions seem to be sensible and not introduce false positives. However
far more important for such an analysis was to show that our transformations were
fault-preserving. We used the theorems and pre-made proofs of Hui and Lowe
[HLO1] to show that our reduced protocol still contained all security violations.
Third we designed a Casper script according to our reduced OS-AP. Fourth we
modified the CSP model so that it was able to cover the continuous command
stream. Finally we showed how one can project a infinite state space model on
to a finite one.

Our analysis revealed various attacks, of which we picked one and discussed it
in detail. All attacks stemmed from the same problem. The messages that carry
the command call to the TPM (responder) do not indicate what the desired
destination is nor do they reveal who the sender is. This problem exists as
well with all messages that communicate the results of a successfully executed
command.

One may argue that this may be only a minor inconvenience, especially when
considering the basic authorisation protocols that are build upon OS-AP. The
attacker is not able to change the messages he can only re-direct them. So if the
high-level protocol that is using the fields clientdatainput and clientdataoutput
encrypts its sensitive content, no serious damage can occur. In the worst case the
initiator thinks that the command was not executed, whereas in fact the 1T'PM
successfully processed the request. This attack, in its ultimate result, would not
differ from the ubiquitous situation that the message that includes the response
of the TPM can be lost between the two participants.

A slightly different situation arises if we look at the command TPM_Unseal.
This command decrypts the object and transmits in plain text the content back to
the caller. The specification does not specify the context in which the operation
has to be executed (e.g. over encrypted connection or not). Hence there may be
implementations where this can cause problems.

We will see in the sections about the ADIP, ADCP and AACP that this is
exactly the case.

On the other side the TCPA main specification [TCPA02] explicitly states
that

The OS-AP allows establishment of an authentication session for a
single entity.

If protocol designers take this claim for granted it may very well be that they do
not include elements that, amongst other things, subsequently lift the resulting
protocol into the class of authentication protocols. We will further discuss the
seriousness of this attack in our DRM section. For the rest of the thesis we will
use the original OS-AP (without including identity tags) as the basis for our
investigations (e.g. see section 9).

CHAPTER 8. AUTHORISATION PROTOCOLS 119

8.2 Object Independent Authorisation Protocol

Contrary to the OS-AP, the Object Independent Authorisation Protocol (OI-AP)
uses multiple authorisation secrets in the same session to access many target
objects. The advantage of such a procedure is that it does not require to start
a new protocol run for every object that has to be accessed. This relieves the
trusted platform from generating and handling more simultaneous sessions. The
main specification requires the TPM only to harbour two simultaneous sessions.
Thus, if simultaneous access to more then two independent objects would be
required, the TPM would have to evoke the Session — caching functionality of
the TPM. This would tax the computational capacity for regular operations of
the TPM in an infeasible manner.
The protocol itself can be divided in three parts:

1. the start protocol command submission and its feedback

2. the submission of the first command, the generation of the object dependent
shared secret, the execution of the command and its feedback

3. the request to continue the session with a command that accesses a new
object, the commands execution and its feedback

8.2.1 Description
In this section we will elaborate on the TCPA definition of the OI-AP.

Message 1. Owner - TPM : TPM_OIAP
Message 2. TPM — Owner : authHandle, authlastNonceEven
Message 3. Quwner — TPM : tag,paramsSize,ordinal,inArgOne,inArgTwo
authHandle, nonceOdd, continueAuthSession
HM AC (key.usageAuth, Dy) where
D, = (InArgHashOne, InArgHashTwo)
Message 4. TPM — Qwner : tag,paramdSize, returnCode, out ArgOne
nonceFven, continue AuthSession
HM AC (key.usageAuth, Dy) where
Dy = (OutArgHashOne, OutArgH ashTwo)

In message 1 the TPM_OI AP command and its relevant parameters are submit-
ted. On this evocation the TPM generates the session by allocating the required
resources and generating an ID for these resources. Afterwards it generates the
nonce authLastNonceEven. In message 2 the TPM returns the ID for the session
(authHandle) and the newly generated nonce (authLastNonceEven). There-
upon, the initiator generates the nonce nonceOdd and computes inAuth by cal-
culating the HMAC of the authorisation secret of the object (key.usageAuth),

CHAPTER 8. AUTHORISATION PROTOCOLS 120

the hash sum of the input parameters (inParamDigest) and the SHA1 result of
the authentication setup parameters (inAuthSetupParams). The initiator in-
cludes that information in Message 3 to submit the command that accesses the
protected object. The TPM verifies the value of authHandle, recalculates the
HMAC in inAuth and compares it with the newly received value. Afterwards
it executes the command, generates the return code and a new nonce to replace
the value in authLastNonce Even. Further it calculates resAuth by building the
HMAC of the authorisation secret of the object, the hash sum of the outgoing
parameters (out ParamDigest) and out AuthSetupParams. In message 4 the ini-
tiator receives this information and verifies the integrity. It does so by producing
the equivalent of the newly received resAuth and compares this with the received
value.

The OI-AP uses the same mechanism for continuation of a session as the
former OS-AP. Message 3 and 4 carry the information whether or not the session
should be aborted after one run. If the value of continueAuthSession is set to
T RUFE in both messages, the session continues with a slight aberration to message
3 and 4. For the next messages we assume that the owner wants to address
another object, hence requires a new authorisation secret (newkey.usage Auth).

Message 5. Quwner — TPM : tag,paramSize,ordinal,inArgOne,inArgTwo
nonceOdd, continue AuthSession
HMAC (newkey.usage Auth, D3) where
D3 = (InArgHashOne, InArgHashTwo)
Message 6. TPM — Qwner : tag,paramdSize, returnCode, out ArgOne
nonceFEven, continue AuthSession
HMAC (newkey.usage Auth, Dy) where
Dy = (OutArgHashOne, OutArgH ashTwo)

W hereas :
InArgHashOne = SH Al(ordinal,inArgOne, inArgTwo)
InArgHashTwo = authHandle, authLastNonce Even,
nonceQdd, continueAuthSession
OutArgHashOne = SH Al(returnCode, ordinal, out ArgOne)
OutArgHashTwo = authH andle, nonce Even, nonceOdd,
continueAuthSession.

The initiator gernerates a new nonce (nonceOdd) to replace the old value and
generates inAuth by calculating the HMAC with the authorisation secret of the
new object and the other updated values. Message 5 is similar to message 3,
except it does not contain the value of authHandle and thus the TPM is not
verifying the session ID anymore. The rest of the process remains unchanged.

Since we have elaborated on the protocol analysis of streaming protocols in
section 8.1 we will omit a full description of the complete analysis.

CHAPTER 8. AUTHORISATION PROTOCOLS 121

8.2.2 Discussion

The FDR analysis of our protocol revealed a flaw similar to the one described
in our OS-AP analysis. The participants are not properly authenticated to each
other. Depending on the command and the scenario the protocol is used in this
can cause problems. At this point we will omit a description of an example attack
since the structure and solution to the attack is identical to our OS-AP attack.
The same holds for the discussion about the seriousness of the flaw.

8.3 Authorization Data Insertion Protocol

The Authorization Data Insertion Protocol (ADIP) binds authorisation data dur-
ing the creation of an object to the newly generated object.

On creation of a new object the creator has the choice whether or not he wants
to include an authorisation secret. The main specification recommends that this
option should always been taken, since the authorisation check implicitly verifies
the integrity of the I/O parameters. The requirements for a protocol that ensures
the proper insertion of an owner-generated secret into an object seem obvious.
The main issues are integrity and confidentiality. The integrity originates form
the facts that the creator has the choice to verify the authorisation data that has
been sent to the TPM and that only a specific TPM can decrypt the information.
The confidentiality of the authorisation data stems form a Vernam encryption of
the data with some temporarily established session key.

During creation the user must first prove knowledge of the parent authori-
sation secret. More precisely, the user must establish an OS-AP session for the
parent object in order to create an ephemeral secret. This secret is used to ensure
the confidentiality of the new authorisation secret.

The protocol can be divided in 4 stages.

1. user chooses a 20 byte authorisation code (for later purposes called Auth.C.)
for the object

2. user proves knowledge of the secret that is required to access the parent, by
using a previously established OS-AP session (creates the ephemeral secret)

3. user issues the following command:
T P Mecreationrequest(XOR(Auth.C., ephemeralsecret))

4. the TPM closes the OS-AP session

CHAPTER 8. AUTHORISATION PROTOCOLS 122

8.3.1 Description
The TCPA main specification [TCPA02] defines the ADIP as follows:

Message 1. Alice — Bob : TPM_OSAP, parentHandle, nonceOddOS AP
Message 2. Bob — Alice : authHandle, authLastNonceEven, nonce EvenOSAP
Message 3. Alice - Bob : tag,paramSize,ordinal,inArgOne, inArgTwo
entity AuthData®
SH Al(sharedsecret, authLastN once Even)
authHandle, nonceOdd, continueAuthSession
HMAC (sharedSecret, D1) where
D, = (InArgHashOne, InArgHashTwo)
Message 4. Bob — Alice : tag,paramSize,returnCode, out ArgOne
nonceFEven, continue AuthSession
HMAC (sharedsecret, Dy) where
D3 = (OutArgHashOne, Out ArgH ashTwo)

W hereas :
sharedsecret = HM AC (parent.usageAuth, nonce EvenOS AP
nonceOddOS AP)
InArgHashOne = SH Al(ordinal, parentHandle, in ArgTwo, new Auth)
InArgHashTwo = authLastNonceFEven, nonceOdd, continue AuthSession
OutArgHashOne = SH Al(returnCode, ordinal, out ArgOne)
OutArgHashOne = nonceEven, nonceOdd, continue AuthSession.

The first two messages represent the OS-AP session header to authorise the ac-
cess of the parent object. In message one the TPM_OSAP command is passed
along with all its input parameters, such as the identifier of the parent object and
a nonce (nonceOddOSAP). On reception of this message the TPM creates the
required data structure for the OS-AP session. The session identifier thereafter
is called the authHandle. It generates two nonces called authLastNonceEven
and authLast Nonce EvenOS AP and a session key (called sharedSecret). It does
so by building a single HMAC of the authentication secret of the parent object,
the nonceEvenOS AP and the nonceOddOSAP. In message two it transfers the
session identifier, the authLastNonceEven and nonceEvenOSAP back to the
initiator. The initiator reproduces the shared secret calculation and stores all
relevant data in its session space. So far everything is equal to the OS — AP
protocol. However at this point the ADIP specific part starts. The Initia-
tor generates the nonce that is required for the second handshake, selects the
authentication secret for the newly generated object and XORs (Vernam encryp-
tion) this value with the result of a hash calculation over the shared secret and
the authLastNonceEven. The result of this XOR operation is called newAuth.
Finally it generates inAuth by generating the HMAC of the session key, the input
parameters (inParamDigest) and parameters that were required to set up the

CHAPTER 8. AUTHORISATION PROTOCOLS 123

authentication (called the inAuthSetupParams). Afterwards the initiator wraps
up the information and sends it to the TPM (message 3). The TPM verifies the
value of authHandle, loads the authLast N once Even form its tamper-proof stor-
age and recalculates the value of the received inAuth and compares its result with
the received value. Afterwards it decrypts the new authorisation value by using
another Vernam encryption over newAuth. Finally it performs the command
that creates the new object, stores the value obtained by the Vernam decryp-
tion in the objects data structure and generates the acknowledgement of the
procedure. The integrity of the return parameters is guarantied by an HMAC.
This HMAC is generated by hashing the session secret, the return parameters
(outParamDigest) and out AuthSetupParams. On receiving message 4 the ini-
tiator verifies the received data by recalculating the HMAC consisting of the
session key, out ParamDigest, out AuthSetupParams and comparing the result
with resAuth.

The modifications that where necessary to accelerate our Casper / FDR in-
vestigation are similar to those described in chapter 8.1.

Our investigation spotted that the protocol contained specification violations.
Since the verification of this protocol only revealed vulnerabilities that stemmed
from the identity flaw in the underlying OS-AP we will not describe the attacks
at this point.

8.3.2 Discussion

As mentioned earlier this protocol (model) contains traces that violate our speci-
fication, however the basic functionality is still given. The worst that can happen
is that the attacker achieves the creation of an identical object that has the same
authorisation secret as the original. It seems that the inventors of the protocol
wanted to generate security by using as much security enhancing elements as pos-
sible. This in one respect may be good, since the weaknesses of the underlying
protocol is counterbalanced, however it complicates the protocol by rehashing the
same values again and again. At this point we will not elaborate on a suggestion
how to reduce the protocol to a minimalist version, that still grants all the ad-
vantages without taxing the TPM capacity as it does in the original. This may
be an avenue for future research.

8.4 Authorisation Change

During the lifetime of certain objects it may be useful to change the authorisation
secret. There are two ways to accomplish that goal: first the Authorization
Data Change Protocol (ADCP) and second the more elaborate Asynchronous
Authorization Change Protocol (AACP).

CHAPTER 8. AUTHORISATION PROTOCOLS 124

8.4.1 Authorization Data Change Protocol

The Authorization Data Change Protocol (ADCP) is used whenever the owner of
a protected object requests to change the authorisation secret. Prior to execution
of the actual authorisation secret modification two authorisation sessions are
required. The first session must be of type OS-AP and the second session can
be an OS-AP or OI-AP. In the following investigation we will assume it is an
OS-AP.

The first session authorises the access to the parent object of the object that
needs a modification of its authorisation secret. This procedure establishes a
shared secret. This shared secret will be used as a key for the Vernam encryption
of the new authorisation value. The second session verifies whether the requestor
has the right to access and change the data of the current object. Clearly there
arise two problems:

1. If the object, at which the user wants to change the authorisation data,
has no parent key, this standard protocol has to be conducted in a different
manner [TCPA02]. In our investigation we do not consider this special case.

2. Since the first session establishes a session key with the authorisation secret
of the parent node and this session key is used for the encryption of the new
authorisation value everyone who knows the parent authorisation value can
decrypt the new authorisation secret of the child object.

The last disadvantage seems to be a minor problem. However if we consider
the case where the owner of a system grants a different user the right to store
data securely and confidentially on his platform. The user has to be capable to
change the authorisation secret in a manner so that it cannot be compromised
by the owner of the platform. This is required especially in GRID computing or
for developing Digital Rights Management protocols. The protocol itself can be
divided in three parts:

1. establishment of the OS-AP session and generation of the session key

2. establishment of the OI-AP session to verify whether the requestor has the
right to access the object

3. execution of the command T'"PM _ChangeAuth to change the authorisaiton
secret

CHAPTER 8. AUTHORISATION PROTOCOLS 125

Description

The main specification ([TCPA02]) defines the protocol as follows:

Message 1. Alice - TPM : TPM_OSAP, keyHandle.Parent
nonceOddOSAP.Parent

Message 2. TPM — Alice : authHandle.Parent,authLastNonceEven.Parent
nonce EvenOSAP.Parent

Message 3. Alice - TPM : TPM_OSAP, keyHandle.entity
nonceOddOS AP.entity

Message 4. TPM — Alice : authHandle.entity, authLastNonceEven.entity
nonceEvenOSAP.entity

The first four messages are to establish the authorisation sessions between the par-
ent node and the object where the user wants to change the authorisation secret.
Since we already described the OS-AP in depth we will not elaborate on them fur-
ther. We start the description of the protocol by explaining how the shared secret
and the value NewAuth are calculated. After finishing the first two handshakes
the TPM and the initiator calculate the shared secret (key) by creating the HMAC
of the authentication secret of the parent node (usageAuth.Parent) and the two
nonces nonceEvenOSAP.Parent and nonceOddOSAP.Parent. The initiator
uses the shared secret as a key for Vernam-encrypting the new authentication
value. More precisely it concatenates the values authLastNonceEven.Parent
with sharedSecret, calculates the SHA1 hash sum of it and XORs the result
with the new authorisation value entity NewAuthData.

Message 5. Alice - TPM : tag,paramSize,ordinal, keyHandle.Parent
protocolI D, NewAuth, entityType, encDataSize
encData, authHandle. Parent
nonceQdd.Parent, continue AuthSession
HM AC (key.UsageAuth.Parent, D1) where
Dy = (InParamDigest, in AuthSetupParams)
entity Auth Handle, entity N onceOdd
continue EntitySession
HM AC (key.UsageAuth.Entity, D) where
Dy = (InParamDigest, inAuthSetupParams2)

CHAPTER 8. AUTHORISATION PROTOCOLS 126

Message 6. TPM — Alice : tag,paramSize,returnCode, outDataSize, outData
nonceEven.Parent, continueAuthSession
HM AC (key.usageAuth.Parent, D3) where
D3 = (OutParamDigest, Out AuthSetupParams)
nonce Even. Entity, continue AuthSession
HM AC (usageAuth.Entity, Dy) where
D, = (OutParamDigest, Out AuthSetupParams2)

W hereas :

InParamDigest = SH Al(ordinal, protocolI D, newAuth, entityType
encDataSize, encData)

inAuthSetupParams = authHandle.Parent, authLast N once Even.Parent
nonceOdd.Parent, continue AuthSession

AuthSetupParams2 = AuthHandle.Entity, entitylastNonceEven
entity N onceOdd, continue EntitySession

outParamDigest = SH Al(returnCode, ordinal, out DataSize, out Data)

outAuthSetupParams = authHandle. Parent, nonce Even.Parent
nonceOdd.Parent, continueAuthSession

outAuthSetupParams2 = authHandle. Entity, nonceEven. Entity
nonceOdd. Entity, continue Entity AuthSession.

In message 5a to 5f the initiator submits the TPM_Change Auth command with
all its parameters. The TPM verifies the legitimacy of this call. It does so by load-
ing the internally stored corresponding values and reverses the operations that
were performed by the initiator to produce the value inAuthSetupParams. This
also guaranties that the data is fresh, since nonces are included, and ensures the
integrity of NewAuth and encData (the important parameters). Afterwards the
TPM extracts the new authorisation value, decrypts the object, changes the au-
thorisation value of the object and encrypts the modified object again (now called
outData). After returning the output parameters of the TPM_ChangeAuth
command the TPM enforces that both session OS-AP and OI-AP / OS-AP are
terminated. In message 6 the initiator receives the feedback of the authorisation
value modification.

Discussion

After converting the protocol to a C'asper readable format we used FDR to verify
whether attacks are possible. As in the protocols before, FDR showed that the
OS-AP flaw was not rectified by the high level protocol. However, the revealed
specification violations are inconsequential for the overall functionality of the
protocol. The ADCP transmits, in message 3 and 4, the complete encrypted
object that should be altered. In the worst case, if the initiator of the protocol
assumes that the command was not executed he simply retransmits the original

CHAPTER 8. AUTHORISATION PROTOCOLS 127

object. Hence the command will again be executed upon the initial object. Side-
effects that can occur while unintentionally executing twice the same command
upon the same piece of data cannot occur.

Returning to the, initially mentioned, problems of this protocol we can con-
clude that this protocol is useless for GRID computing or DRM protocols. The
key for the encryption of the new authorisation value of the object is generated
form the authorisation secret of the parent node. Thus the owner of the par-
ent object can overhear the transaction and encrypt the new value. This grants
him continuous access to the object. TCPA has designed, specifically to circum-
vent this attack possibility, a protocol that allows an asynchronous authorisation
change. It enables the owner of the object, with the permission of the parent
object owner, to exclude the parent object owner.

8.4.2 Asymmetric Authorization Change Protocol

The Asymmetric Authorization Change Protocol (AACP) allows the owner of
the platform (or owner of parent node) and the owner of a local object to agree
on an asynchronous change of the authorisation secret. This change has to be
initiated by the owner of the parent node. After completion of the transaction
the parent is unable to inspect the content of the object. However he is still in
control, so for instance (important for DRM) he still can erase the object.

First an OI-AP session has to be initiated, afterwards the run is com-
pleted by the following two commands T'PM_ChangeAuthAsymStart and
TPM_ChangeAuthAsymFinish.

The protocol can be divided into five stages:

1. establishment of an OI-AP session and initiation of the TPM_Change-
AuthAsymStart command by the owner of the parent node

2. generation of a temporary asymmetric key pair and transmission of the
public part as well as a proof that the private part is only known to the
TPM (non-migratable key attestation) to the requestor, which in this regard
is the owner.

3. the owner of the parent node forwards to the owner of the child object the
information provided by step 2 (key + proof)

4. the owner encrypts the new authorisation value with the temporary public
key provided by the TPM and passes the data on to the owner

5. the owner submits the TPM_ChangeAuthAsymFinish command and the
TPM decrypts the value of the new authorisation secret and fulfils the
changes accordingly

Since certain parts of the protocol follow the same patterns as the protocols
described above we will only elaborate on the new parts.

CHAPTER 8. AUTHORISATION PROTOCOLS 128

Description
The AACP is defined as follows:

Message 1. Alice = TPM : TPM_OIAP

Message 2. TPM — Alice : authHandle.ID Key, authlastNonceEven

Message 3. Alice - TPM : tag,paramSize,ordinal,idHandle
antiReply.nonce, tempK ey, authHandle.I DK ey
nonceQdd, continue AuthSession
HMAC(IDKey.usageAuth, D1) where
Dy = (inParamDigestl,inAuthSetupParamsl)

W hereas :
inParamDigest]l = SH Al(ordinal, antiReply.nonce, tempK ey)
inAuthSetupParamsl = authHandle.1D K ey, authLast N onceEven
nonceOdd, continue AuthSession.

As mentioned before the command requires that an OI-AP session is established
prior to execution to grant access to the identity key of the TPM. The first
two messages are dealing with the establishment of the OI-AP session; since we
have described the OI-AP protocol in great detail, we will not elaborate fur-
ther on the first two messages. In Message 3 the owner of the parent node uses
the information form the OI-AP session to generate the required input for the
TPM_ChangeAuthAsymStart command. He includes, among various other pa-
rameters, the identifier of the ID key (idHandle), a nonce for anti reply purposes,
he stores the parameters for the public key generation in tempKey and the data
that ensures the freshness and integrity of the whole message in idAuth. The
field tempKey contains all necessary information to generate a public key pair;
one example for such a parameter would be the required key length. The value
tdAuth is calculated by an HMAC operation that uses the ID Key authorisa-
tion secret as its key and inParamDigest and inAuthSetupParams as its data
values.

Message 4. TPM — Alice : tag,paramSize,returnCode, certifylnfo
stgSize, sig, ephHandle, tempKey
nonceFEven, continue AuthSession
HMAC(IDKey.usageAuth, Dy) where
Dy = (outParamDigestl, out AuthSetupParamsl)

CHAPTER 8. AUTHORISATION PROTOCOLS 129

Message 5a. Alice - TPM : tag,paramdSize,ordinal, parentHandle, ephHandle
entityType, new Auth Link, new AuthSize
encNewAuth, encDataSize, encData
authHandle. Parent, nonceOdd, continue AuthSession
HMAC (parentKey.usageAuth, D3) where
D3 = (parentHandle,inParamDigest2,

inAuthSetupParams2)

Message 6a. Bob — Alice : tag,paramdSize,returnCode, outDataSize, out Data
saltNonce, changeProof,nonce Even
continueAuthSession
HMAC (parentK ey.usageAuth, Dy) where
Dy = (outParamDigest2, out AuthSetupParams2)

W hereas :

outParamDigestl = SH Al(returnCode, ordinal, certifyInfo, sigSize
sig, ephHandle, tempK ey)

out AuthSetupParamsl = authHandle.I D K ey, nonce Even, nonceOdd
continueAuthSession

inParamDigest2 = SH Al(ordinal, entityType, newAuth Link, new AuthSize
encNewAuth, encDataSize, encData)

inAuthSetupParams2 = authHandle.Parent, authLast N once Even
nonceQdd, continue AuthSession

outParamDigest2 = SH Al(returnCode, ordinal, out DataSize, out Data
saltNonce, changeProof)

outAuthSetupParams2 = authHandle. Parent K ey, nonce Even, nonceQdd
continueAuthSession.

Once the TPM has received message 3 it verifies the authorisation value of the
ID Key (identified by value idHandle) and the parameters that initialise the
public-key-pair generation algorithm. If these parameters evaluate in a positive
manner the TPM produces the public / private key pair and assigns the name
ephHandle to them. Afterwards it stores the public key part in tempKey and
produces a certification of the newly generated key pair. It is not clear whether
the TPM uses the command TPM _CertifyKey to do so, however it seems very
likely; For anti reply purposes the nonce antiRepy is included. This certificate
is stored in the certifylnfo field. Thereupon certifylInfo is signed with the ID
key that is referenced by tdHandle and the result of this signing process is stored
in sig.

After this process the TPM submits message 4. On receiving message 4,
the user verifies the freshness and the integrity of message 4 with the standard
operations, which were described in the earlier protocols (HMAC and SHA1 re-
calculations). At this point the specification weakens. It does not describe how

CHAPTER 8. AUTHORISATION PROTOCOLS 130

the owner of the identity key forwards the relevant information such as the public
key to the owner of the child object. In our later investigation we will discuss one
approach (see chapter 11). For the initial description it is only important that the
owner of the child node encrypts the new authorisation value with the public po-
tion of tempKey (now called encNewAuth). This value is passed on to the owner
of the ID key and he submits, in message 5, the TPM_ChangeAuthAsymFinish
command that closes the transaction.

The TPM checks whether the authHandle parameter grants access to the
ID key. Afterwards it decrypts the value endData (the object that has to be
modified) and uses the tempkey.private to decrypt encNewAuth. Then it calcu-
lates the HMAC of the decrypted new authorisation secret (newAuthSecret)
whereby it uses the old authorisation secret of the target object as a key
(stored in encData.currentAuth). This HMAC is compared with the param-
eter newAuthLink to ensure integrity. After this operation the old authorisation
secret, is replaced by the new value and the complete object is encrypted with
the key that is referenced by parentHandle. Finally the TPM produces a nonce
(saltNonce), to increase the entropy of the changeProof value. Then it calcu-
lates the changeProof certificate to testify that the desired authorisation value
modification took place. It does so by generating the HMAC of the concatenation
of the saltNonce and the value noceOdd and uses the new authorisation secret
as a key (newAuthSecret). In message 6 all required data is transferred to the
owner of the parent object.

This is the second place where the specification is fuzzy. It is not clear how
and, more important, what information is passed to the owner of the child ob-
ject. At least he has to receive the value changeProof to determine that the
transaction was successful.

Discussion

Our analysis showed that this protocol still carries the underlying identity attack.
Since this protocol is a derivative of the ADCP (see chapter 8.4.1) and the com-
plete objects that have to be altered are transmitted, the attack remains without
serious consequences.

However, we only tested the two-way communication between the owner and
the TPM. [TCPA02| mentions only in a strange way how the real protocol should
look. In our DRM chapter 11 we will expand this protocol so that it covers as
well the communication between the owner and the guest.

8.5 Conclusion

In this chapter we have shown how the basic protocols of the TCPA work. We
performed a thorough analysis of all five protocols. We described the complete

CHAPTER 8. AUTHORISATION PROTOCOLS 131

analysis technique at the OS-AP. We did so by pruning away all unnecessary
fields and modelling the subsequent behaviour in CSP. Afterwards we restricted
the ranges of the nonces and the command input and output types in such a
way, that it was possible for the initiator and the responder to have access to
a source of unbounded supply of nonces. We argued that our transformations
were sensible and employed a simplification theory developed by Lowe and Hui
to ensure that these abstractions did not introduce false-negatives. Additionally
we used the data independence theory developed by Roscoe to set our nonce and
command input / output recycling algorithm on formal grounds.

Our analysis spotted various attacks upon OS-AP and OI-AP. All of these
were based on the same principle. The intruder could redirect the messages and
therefore pretend to be another person. The claim that OS-AP and OI-AP can be
used to establish a proper authentication session [TCPA02] does not hold. This
flaw can easily be rectified by including the sender and receiver identities in the
message and in the accompanying hash sums. It is important to say that only
messages 3 and 4 have to be altered. All other messages could remain unchanged.
This is due to the rolling nonce paradigm?.

As we have discussed in the later part of this chapter, this flaw does not hinder
ADIP, ADCP and AACP to work according to the TCPA specification. They
do so by comunicating additional information, such as the complete encrypted
object that has to be altered.

!The rolling nonce paradigm requires that a nonce from one side can only be used for one
message and its reply, after that it has to be exchanged with a new value.

Chapter 9

Session Caching

The TCPA specification requires the TPM to be able to provide internal space
for only two authorisation sessions. However, it may very well be that more
parallel sessions are required. Therefore, a mechanism is provided to temporarily
suspend idle sessions and store their state information externally. The TCPA
calls this process authorisation context management. The specification defines
two commands, called TPM_SaveAuthContext and T PM_LoadAuthContext
to suspend or resume a session. These commands create or receive a blob that
contains the required information about the session. A so-called external session
manager handles the external storage and the retrieval of the data.

The specification claims that this process is not required to be trusted. In
this section we will explore whether or not this statement holds. We will gen-
erate a CSP model of all processes that are directly involved as well as certain
meta-processes that are required to ensure a proper command flow. First we will
describe the complete process as it appears in the real world. Due to the strict
state space limitations, we will use the abstracted version of the OS-AP (see
section 8) to establish communication between the TPM and the user. Addition-
ally, we prune away all features that are not directly necessary for the context
management. The resulting model confirmed the need for strict verification pro-
cedures that can determine whether or not the cached session information has
been altered. This section will conclude with a discussion about our results and
a generalisation of certain abstraction techniques in such a setting.

9.1 The real world model

As mentioned above, we will produce a model that maps the system of the real
world as accurately as possible. This system contains the following processes: An
owner that will launch an OS-AP session; an intruder that can intercept every
message that was sent to and from the owner to the TPM and can interact with
the external session manager; and the TPM with all its relevant sub- and meta

132

CHAPTER 9. SESSION CACHING 133

processes and an external data manager. Figure 9.1 shows the general overview
of the network.

send.a receive.b
Owner receive.b Intruder send.b Trusted Platform
inject

Figure 9.1: Session caching

We will only focus on the establishment of an OS-AP session; we are fully
aware that there may be other implications if we would consider other protocols
such as the AACP; to inspect more protocols lies beyond the scope of this thesis.
However, at the end of this chapter we will present techniques that ease the
development of the necessary models.

Generally, the TPM can accept as many session requests as it receives. Once
two sessions are already active, the authorisation session management launches.
It is important to note that this management process is not within the TPM.
Only one command that produces encrypted blobs, which contain all the relevant
information to resume the session, and another command to load these blobs to
resume the session are embedded in the TPM. Hence, the overall supervision
lies outside the TPM and cannot be trusted as a result. The general process of
session suspension and resumption is as follows:

1. An external process receives the request that a user wants to establish a
third session with the TPM. Thereupon, a T'PM_Save AuthContext com-
mand is sent to the TPM.

2. The TPM gathers the necessary information such as the authorisation han-
dle, nonce, digest and the ephemeralsecret and stores the information in
a specific data structure.

3. This data structure is encrypted by a public key of the TPM. The private
portion of this public-key pair is non-migratable. The command returns
the encrypted blob to the caller.

4. Finally, the external process stores the blob.

5. Once the session has to be resumed, the external process collects all relevant
information to issue the T'"P M _Load AuthContext command.

6. The TPM_LoadAuthContext command decrypts the blob and stores the
information within the internal session storage.

CHAPTER 9. SESSION CACHING 134

We tried to model the whole system as close to the specification as possible. All
events that are explicitly stated in the specification are named with the prefix
tnt_ for internal. In addition to these events, we had to introduce events, such as
addressing of memory resources, that were not stated in the main specification.
These events have the prefix meta_.

9.1.1 The TPM context management

The TPM context management process contains the two commands that enable

the session caching process. The overall process is very simple and consists of two
interleaved processes (T'PM_Load AuthContext and T PM_SaveAuthContext).

TPMContextManagement =
TPM_SaveAuthContext ||| T PM_Load AuthContext

The TPM_SaveAuthContext command receives an authorisation session
handle and collects the information about the session. It stores all relevant infor-
mation in a data structure. The specification demands that this session blob may
only be encrypted by the originating TPM — hence, we assume that this struc-
ture will be encrypted with the public part of a non-migratable key. Furthermore,
it states that this blob shall contain information that can be used to verify the
integrity of the object. Additionally, every blob is also tied to a specific TPM via
the value TPM_Proof. Hence, the TPM can always determine whether or not
it has generated a specific blob. We will further discuss this TPM_Proof value
in our results section. After generating the blob, the TPM releases all internal
resources that are linked to the session. This behaviour can be described by the
following CSP process:

TPM_SaveAuthContext =

int_startT PM _SaveAuthContext?authHandle —

meta_readSessionSpace!l?authHandlel —

meta_readSessionSpace!2?authHandle2 —

if authHandlel # authHandle A authHandle2 # authHandle

then int_TPM_SaveAuthContext FailureWrongAuthHandle —
TPM_SaveAuthContext

else meta_readSessionParallellauth Handletnonceldigest? Secret —
nt_ResetSessionlauthHandle — meta_decreaseSessionCounter —
int_finishT PM_Save AuthContext!(authHandle, nonce, digest, Secret) —
TPM_SaveAuthContext

We have divided the TPM_SaveAuthContext command into two commands, a
start command that receives the input parameters (called int_startT PM_Save-
AuthContext) and the finish command that returns the output of the op-
eration (called int_finishl PM_SaveAuthContext). This method not only

CHAPTER 9. SESSION CACHING 135

ensures atomicity of the command but also increases the readability. The
int_startT PM_SaveAuthContexrt command receives four input parameters:
TCPA_TAG, paramSize (which contains the length of the message in bytes),
ordinal (the identification number of the TPM command) and the authHandle
(the identifier of the session that has to be suspended). After receiving the
input parameters, the TPM verifies whether or not the session (identified by
authHandle) is indeed active. It does so with the event meta_readSession-
Space. This command accepts an address that points to a specific location
within the TPM’s session space and receives the identifier of the session that
is stored in the memory space. If the session in question is not active, an error
message will be raised. If the relevant information is available meta_readSession-
Parallel retrieves the necessary data. After that command is given, all resources
are freed (int_ResetSession and meta_decreaseSessionCounter). The channel
int_finishT PM _SaveAuthContext returns the TCPA_TAG, the length of the
output in bytes (paramSize), the return code of the command (returnCode),
the size of the blob (authContextSize) and the blob itself (authContextBlob).
We deliberately omit the encryption and the creation of hash sums to guarantee
the integrity of the data. We will control the desired behaviour by implementing
an intruder that cannot overhear the session blobs or cannot alter session blobs.

The TPM_Load AuthContext command is responsible for resuming a sus-
pended session. It receives a session blob, decrypts the blob, verifies its integrity
and stores the obtained information within the internal session memory. Af-
terwards the command returns the authorisation handle and the session can be
resumed. The following CSP description depicts this operation:

TPM_Load AuthContext =

int_startT PM _LoadAuthContext? Blob —

meta_readSessionCounter?counter —

if counter > 0

then int_TPM _Load AuthContextF ailureNoSessionSpace Available —
TPM_LoadAuthContext

else meta_writeSessionParallel!N! f st(Blob)!sec(Blob)!rd(Blob)! f ourth(Blob) —
meta_increaseSessionCounter —
int_finishT PM_Load AuthContext! first(Blob) —
TPM_LoadAuthContext

As with the latter command we distinguish between a start and a finish com-
mand. The int_startT PM_LoadAuthContext channel communicates all rele-
vant input parameters: the TCPA_T AG, the parameter size (paramSize), ordi-
nal (ordinal), the size of the blob (authContextSize) and the blob itself (Blob).
Thereupon, the TPM verifies whether or not memory is available to store the
required information (meta_readSessionCounter). If this test reveals that two
sessions are currently active an error message will be issued (int_T'PM_Load-
AuthContextFailture NoSessionSpace Available). If there is at least one free

CHAPTER 9. SESSION CACHING 136

session space, the command meta_writeSessionParallel stores the state infor-
mation in the available memory slot and increases the number of active sessions
(meta_increaseSessionCounter). Lastly, the process concludes by returning the
authorisation handle (int_finishT PM_LoadAuthContext) to the caller. This
channel also returns the TCPA_TAG, the length of the message (paramsSize)
and the return code (returnCode).

9.1.2 The internal session data storage

The internal session storage contains the authorisation handle, the current nonce,
a digest, which in most of the cases is a pointer that addresses a particular object,
and the authorisation secret (ephermal secret). The natural and preferable CSP
solution for FDR would be:

TPMOwnMem(authHandle, nonce, digest, ephSecret) =
TPMOwnerMemStor(1,N) ||| TPMOwner MemStor(2,N) |||
TPMOwnerMemStor(3,N) ||| TPMOwnerMemStor(4, N)

T P M OwnerMemStor(name, data) =
int_setT PM OQwnerMemdStorname?newData —
T P M Owner MemStor(name, newData)
O
int_readl PM Owner M emStorinameldata —
T PM OwnerMemStor(name, data)

One memory block consists of four interleaved processes and each process holds
a type identifier and the data value. Every sub-process offers events that allow
read (int_readT PMOwnerMemStor) and write (int_writel' PMOwnerMem-
Stor) operations on the data values. Unfortunately, this solution would increase
the complexity of the overall system dramatically. Therefore, we have only one
process for each memory block:

Session =
Session'(1, N,N,N, N,0)
[[{|meta_readSessionCounter,int_ResetSessions,
meta_increaseSessionCounter, meta_decreaseSessionCounter|}|]
Session'(2, N,N, N, N,0)

Both Session’ processes synchronise on certain meta-events. meta_readSession-
Counter, meta_increaseSessionCounter and meta_decreaseSessionCounter
are responsible for keeping track of the number of active sessions and for provid-
ing this state information to requesting processes. The internal event int_Reset-
Sessions is raised at the beginning of the boot-cycle of the trusted platform and
initialises the memory with predefined values.

CHAPTER 9. SESSION CACHING 137

The session storage itself is represented by one process that is twice instan-
tiated in a different manner. We omitted all internal commands that are not
required for the analysis of the authorisation caching mechanism.

Session'(space, authHandle, nonce, digest, ephSecret, count) =
meta_readSessionParallellauth HandlelnonceldigestlephSecret —
Session'(space, authHandle, nonce, digest, ephSecret, count)

O
meta_writeSessionParallellauth Handle?n Handle?nnonceIndigest?nSecret —
Session' (space, nHandle, nnonce, ndigest, nSecret, count)

O

meta_readSessionParallel2!spacelauth HandlelnonceldigestlephSecret —
Session'(space, authHandle, nonce, digest, ephSecret, count)

O

meta_writeSessionParallel2!space?nHandletnnoncendigesttnSecret —
Session'(space, nHandle, nonce, ndigest, nSecret, count)

O

meta_readSessionCounter!count —

Session'(space, authHandle, nonce, digest, ephSecret, count)

O

meta_readSessionSpacelspacetauthHandle —

Session'(space, authHandle, nonce, digest, ephSecret, count)

O

meta_increaseSessionCounter —

if count > 1

then Session'(space, authHandle, nonce, digest, ephSecret, count)

else Session'(space, authHandle, nonce, digest, ephSecret, count + 1)

O

meta_decreaseSessionCounter —

if count =0

then Session’(space, authHandle, nonce, digest, ephSecret, count)

else Session'(space, authHandle, nonce, digest, ephSecret, count — 1)

O

int_ResetSessions — Session'(space, N, N, N, N, 0)

O

int_ResetSessionlauthHandle — Session'(space, N, N, N, N,0)

The process Session’ is parameterised with a memory block identifier, the re-
quired information about the state of the session and the overall session counter.
The real world process would offer events to alter or read the session state infor-
mation and the session counter. Instead of the standard way of reading every bit
of information in a single command, we introduced events that read and store
the required data in one event (meta_readSessionParallel and meta_writeSes-
sionParallel). These events address the memory block by data value, whereas
the channels meta_readSessionParallel and meta_writeSessionParallel store
or read the information in the defined memory space. Finally, we provide func-

CHAPTER 9. SESSION CACHING 138

tionality for two reset operations: one that only resets a particular memory block
(int_ResetSession); and one that resets all sessions int_ResetSessions.

During the development of the session caching mechanism we discovered
that certain combinations of commands occurred frequently. Thus, in or-
der to reduce the complexity of the CSP model, we designed small processes
that represent these command sequences. One of those meta-processes is the
MetaSessionStorage.

The MetaSessionStorage process collects the state information of the two
memory blocks.

MetaSessionStorage =
meta_startsessioncount — meta_readSessionCounter?spaces —
meta_readSessionSpace!lTauthHandlel —
meta_readSessionSpace!2?authHandle2 —
meta_finishsessioncount!spaceslauthHandlellouthHandle2 —
MetaSessionStorage

The event meta_startsessioncount triggers the procedure. First, it deter-
mines how many sessions are currently active (meta_readSessionCounter)
and it then enquires about the authorisation handles of the stored sessions
(meta_readSessionSpace). The event meta_finishsessioncount conflates the
obtained information and communicates it back to the requestor.

9.1.3 The TPM

The process TPM represents the main part of the trusted platform. It consists
of four sub-processes, each handling a different state in the OS-AP. For further
particulars of the OS-AP see section 8.1. In this model we externalised opera-

tions as much as possible. Thus, we have introduced various meta-processes (e.g.
MetaT PM SessionManager).

The TPM process receives a request for an OS-AP authorisation session, allo-
cates the required resources and stores the information in the allocated memory.

CHAPTER 9. SESSION CACHING 139

The following CSP process models this behaviour:

TPM(A, B, tpmcount) =
Ul keyHandle : TkeyHandle o [nonceOddOSAP : NonceOwnere
input.A.B.Messagel —
meta_locksessionscheduler —
nt_getnewAuthHandle?aH — int_loadObject'keyHandle?secret —
meta_get NonceN once M anager! ATnonce EvenOSAP —
meta_calculateSharedSessionSecret?sessionsecret —
meta_startstore AuthHandlela H!nonceOddOS AP keyHandle!sessionsecret —
meta_finishstore AuthHandle —
meta_unlocksessionscheduler —

(TPM(A, B,tpmcount + 1) ||| TPM'(A, B,aH))

The process is parameterised by the names of the participants, in our case the
Owner and the TTPM, and a numerical value that keeps track of the number of
recently spawned authorisation sessions. Since we explained the OS-A protocol
in detail in section 8.1, we project the data values of the four messages on one
label (e.g. Messagel, Message2 etc.) and do not discuss their content further.
Initially, the process receives the authorisation session request (receiveOSAP),
and then it notifies the session scheduler that it will perform internal transac-
tions (meta_locksessionscheduler). It requests a new nonce (int_getnewNonce).
Note, that since we only focus on the caching mechanism, we omitted the random
number generator that generates this particular nonce value.

Afterwards, it loads the object that is addressed by the value within the
keyHandle field of OS-AP message 1 from the protected storage and re-
trieves the authorisation secret that is necessary to access this object. The
meta_startstore AuthHandle and meta_finishstore AuthHandle events allocate
not only the required memory, but also store the authorisation handle, the nonce
that was sent by the owner, the key handle and the session secret (HMAC (secret,
nonceOddOSAP, nonceEvenOSAP)) in that memory block. Later we will discuss
in more detail what operations are necessary to achieve this transaction. After
completing the internal operations, meta_unlocksessionscheduler ensures that
other sessions can process their internal commands. Finally, the T'"PM process
can receive another OS-AP request or proceed with the current session. Note that
since the two possesses are interleaved, the option of launching another OS-AP
session remains open until the system terminates.

CHAPTER 9. SESSION CACHING 140

The TPM' process represents the second stage in the protocol.

TPM'(A, B, cauthhandle) =
meta_locksessionscheduler —
meta_startrequest Auth Handlelcauthhandle —
meta_finishrequest Auth Handle!lcauthhandle?nonce?key Handle?secret —
meta_get NonceNonceM anager! ATauthLast N once Even —
output.B.A.Message2 —

meta_unlocksessionscheduler —
TPM"(A, B, cauthhandle, authLast N once Even))

As in the previous stage, the session scheduler events prevent other sessions for
executing internal operations. The events meta_startrequest AuthHandle and
meta_startstore AuthHandle ensure that the session with the name authHandle
is stored within the internal session memory and they return all relevant infor-
mation about the state of the session. Afterwards, one new nonce is generated
(authLastNonce Even) and the required information is collected within message
2. The sendOS AP sends message 2 to the Owner.

The TPM" process is built upon the same structure as TPM'. Tt locks the
session scheduler, receives OS-AP message 3 and extracts the relevant informa-
tion.

TPM"(A, B, cauthhandle, authLastNonceEven) =
meta_locksessionscheduler —

U nonceOdd : Nonce o
U secret : Tsecret o

U nonceOdd : NonceOwner o
nput.A.B.Messaged —
meta_startrequest Auth Handlelcauthhandle —
meta_finishrequest Auth H andle!cauthhandle?nonce?keyHandle? stsecret —
meta_startstore AuthHandle!cauthhandle!lnonceOdd!\key H andle!stsecret —
meta_finishstoreAuthHandle —
if stsecret = secret
then meta_T PM GrantAccesstolkeyHandle! A —
meta_unlocksessionscheduler —
TPM" (A, B, cauthhandle)
else meta_T'PM AccessRejected keyHandle! A —
meta_unlocksessionscheduler —
TPM" (A, B, cauthhandle)

The meta_startrequest AuthHandle and meta_finishrequest AuthHandle ac-
cess the internal session memory to obtain the relevant information about the
state of the internal memory. meta_startstore AuthHandle and meta_finish-
storeAuthHandle save the updated information about the authorisation session.

CHAPTER 9. SESSION CACHING 141

Thereupon, the TPM verifies whether or not the ephermal secret, stored in the
session memory, is equal to the recently received secret. If the secrets are equal
meta_T PMGrant Accessto indicates that the owner has successfully accessed the
object, if not, meta_T' PM AccessRejected will be communicated.

The T'PM"™ finishes the current OS-AP session. It locks the session scheduler,
retrieves the state information of the relevant session and releases the resources
that are linked to the authorisation handle (meta_ResetSession). Lastly, it
unlocks the session scheduler and sends OS-AP message 4 to the Owner.

TPM" (A, B, cauthhandle) =
meta_locksessionscheduler — meta_startrequest AuthHandlelcauthhandle —
meta_finishrequest Auth Handle!cauthhandle?nonceOdd?key Handle?secret —
int_ResetSession!cauthhandle —
meta_unlocksessionscheduler —
output.B.A.Messaged —
SKIP

The session scheduler guarantees the proper ordering of the various OS-AP
runs.
SessionScheduler =
meta_locksessionscheduler —
meta_unlocksessionscheduler — SessionScheduler

It only consists of the meta_locksessionscheduler and meta_unlocksession-
scheduler events.

9.1.4 The session management meta processes

The process MetaT PM SessionManager is responsible for ensuring that a cer-
tain authorisation session is active and that a newly generated session can be
stored in a free memory block. The process is further divided into two sub-
processes. These two processes do not communicate with each other — thus,
they are interleaved.

MetaT PM SessionManager =
MetaT PM SessionManager' |||
MetaT PM SessionManager”

CHAPTER 9. SESSION CACHING 142

MetaT PM SessionManager' contains all operations that are necessary to ac-
tivate a certain authorisation handle.

MetaT PM SessionM anager’ =

meta_startrequest AuthHandle?cauthhandle — meta_startsessioncount —

meta_finishsessioncount?spaces?authHandlel?authHandle2 —

if cauthhandle = authHandlel V cauthhandle = authHandle2

then meta_readSessionParallellcauthhandle?nonce?keyHandle?secret —
meta_finishrequest AuthHandle!cauthhandle!noncelkey Handle!secret —
MetaT PM SessionManager’

else meta_startT PM _Load AuthContext!cauthhandle —
meta_finishT PM_Load AuthContext —
meta_readSessionParallellcauthhandle?noncelkeyHandle?secret —
meta_finishrequest AuthHandle!cauthhandle!noncelkey H andle!secret —
MetaT PM SessionM anager’

The initial event meta_startrequest AuthHandle receives the authorisation han-
dle that has to be activated. meta_startsessioncounter and meta_finishses-
stoncounter inform the process whether or not the session in question is al-
ready active. If the session is stored in the internal memory, and therefore
usable, int_readSessionParallel reads the complete information from of the
internal session storage and communicates this information back to the caller
(meta_finishrequest AuthHandle). If the session is not active, the MetaT P M-
SessionManager' assumes that it was cached and therefore attempts to trig-
ger the authorisation session resumption operation (meta_startT PM_Load Auth-
Context and meta_finishT PM_LoadAuthContext). After completing the in-
teraction with the external session manager, it verifies whether or not the au-
thorisation handle is indeed the one it is has requested; if not an error mes-
sage is raised (meat_MetaT PM SessionManager FailureCachedSessionW as-
Deleted). In case the handles match, the channel int_readSessionParallel re-
quests the state information of the session and meta_finishrequest AuthHandle
communicates that data back to the caller.

MetaT PM SessionManager” represents the counter operation of the latter
process. It stores the state information of a certain authorisation session. If
there is not enough free memory, it caches one of the active sessions and stores
the state information in the memory block, which is vacant form now on.

CHAPTER 9. SESSION CACHING 143

MetaT PM SessionManager” =
meta_startstoreAuthHandle?aH tnonce?keyHandle?secret —
meta_startsessioncount —
meta_finishsessioncount?spaces?authHandlel?authHandle2 —
if authHandlel = aH V authhandle2 = aH
then (meta_writeSessionParallellaH!aH!noncelkey Handle!secret —
meta_finishstoreAuthHandle — MetaT PM SessionManager™)
else if spaces = 0
then (meta_writeSessionParallel2!llaH'noncelkey Handle!secret —
meta_increaseSessionCounter —
meta_finishstore AuthHandle — MetaT PM SessionManager”)
else if spaces = 1 then
(meta_writeSessionParallel! NlaH'noncelkey Handle!secret —
meta_increaseSessionCounter —
meta_finishstore AuthHandle — MetaT PM SessionManager”)
else
(meta_startT PM_Save AuthContextlauthHandlel —
meta_finishT' PM_SaveAuthContext —
meta_writeSessionParallel2!1la H!noncelkey Handle!secret —
meta_increaseSessionCounter —
meta_finishstore AuthHandle —
MetaT PM SessionManager™)

The initial event meta_startstoreAuthHandle receives the session state infor-
mation from the caller, and then requests data about free memory blocks. If
the session in question is already active, it reports the appropriate data back to
the caller. On the other hand, if the session does not exist in the internal ses-
sion storage, MetaSessionStorage communicates that no or only one memory
block is taken by another active session and stores the session state information
in a vacant memory slot (int_writeSessionParallel2). If no memory block is
available, the caching mechanism will be triggered. Note that we do not elab-
orate on the caching strategy — hence, we always externalise the session that
resides in memory block 1. The specification does not enforce a particular design.
meta_startT PM_SaveAuthContext and meta_finishT PM _SaveAuthContext
clear a memory block and save the information in the external session mem-
ory. After completion, int_writeSessionParallel2 stores the session state in the
vacant memory block.

CHAPTER 9. SESSION CACHING 144

9.1.5 The protected storage

The protected storage harbors all sealed objects. In our study we only need to
store two objects. Thus, we designed the following CSP process:

ProtectedStorage =
ProtectedStorage' (01, secl) ||| ProtectedStorage' (02, sec2)

whereas:

ProtectedStorage' (idl, secretl) =
int_loadObjectlidl!secretl — ProtectedStorage' (idl, secretl)

The master process ProtectedStorage initialises two sub-processes, each with
a different object identifier (e.g. O1) and a corresponding authorisation secret
(e.g. secl). The two sub-processes are combined with the interleaving operator.
Note that if we would attempt to design a precise model of the sealed storage,
there would be interactions between different objects. However, whether or not
the protected objects are stored inside a tree structure has no influence on this
examination. The interactions between the stored objects and the owner of these
objects are kept as simple as possible. Therefore we only provide a read operation
(int_loadObject). This read operation returns to the caller the authorisation
secret, that is required to successfully access the object.

9.1.6 The external session manager

The duties of the process ExternalSessionManager are to handle the mainte-
nance of cached sessions. It should receive session blobs and store them onto the
hard disc drive, and, on request, retrieve the appropriate session blob so that
T PM_LoadAuthContext is able to resume the session. However, since the spec-
ification does not enforce a certain design upon this process, it can be expected
that the different implementations that will emerge on the market will vary from
each other considerably. Moreover, [Pea02] states that this process does not have
to be trustworthy. Thus, we not only implement a session blob storage and re-
trieval operation, but also include delete and inject session blob events that can
be used by our intruder to interact with the external session manager. The over-
all CSP process consists of four sub-processes, each of which provide a different
functionality.

All processes are interleaved with each other except FEuxternalSession-
Manager™ and ExternalSessionManager™ . The ExternalSessionManager””
synchronises on the channels meta_startT PM_Save AuthContext and meta_fi-
nishT PM _SaveAuthContext to use the save authentication context functional-
ity of ExternalSessionManager™ .

CHAPTER 9. SESSION CACHING 145

The ExternalSessionManager' interacts only with the intruder. It offers the
possibility of deleting a session blob.

External SessionManager’ =
meta_deleteSession?space —
meta_deleteSession ExtSessionStoragelspace —
External SessionManager’

meta_deleteSession takes the identification number of a stored session blob and
deletes the session blob by calling meta_deleteSessionExtSessionStorage from
the external session storage process.

The EuxternalSessionManager” communicates only with the intruder. It gives
the intruder the opportunity to inject pre-designed session blobs.

External SessionManager” =
meta_injectSession?authHandleTnonce?digest?sec —
meta_storeSession ExtSessionStorage! N!(auth Handle, nonce, digest, sec) —
External SessionManager”

It accepts a session blob from the intruder (via meta_injectSession) and stores
this piece of data in the external session storage (via meta_storeSessionExtSes-
sionStorage).

The FEuxternalSessionManager” covers the operations that are necessary to
cache an active authorisation session. This starts with creating the session blob
and finishes with storing the blob inside the dedicated storage.

External SessionM anager”' =
meta_startl PM _SaveAuthContext?authHandlel —
int_startT PM_SaveAuthConteztlauthHandlel —
int_finishT PM _Save AuthContext?authContext Blob —
meta_storeSessionExtSessionStorage! NlauthContext Blob —
meta_finishT PM_Save AuthContext — External SessionManager™

The channel meta_startT PM_SaveAuthContext precedes the complete opera-
tion. The caller communicates which authorisation session should be suspended
through this event. Since no one can interfere with the internal session memory,
a verification whether or not the session in question is active can be omitted.
The process forwards the authorisation handle to the TPM_Save AuthContext
process, via the event int_startT PM _SaveAuthContext. This process returns
the appropriate session blob through channel int_finishT PM_Save AuthCon-
text. Finally, meta_storeSessionExtSessionStorage stores the session blob in
the external session storage and meta_finishT PM _Save AuthContext signals to
the caller that the suspend operation has been completed.

CHAPTER 9. SESSION CACHING 146

The FExternalSessionManager™ represents the counter action of External-

SessionManager” . This process receives an authorisation handle and resumes
the identified session by loading the appropriate data blob from the external
storage.

External SessionManager”" =

meta_startlT PM _Load AuthContext?authHandle —
meta_retriveSession ExtSessionStoragelauth Handle?blob —
meta_startsessioncount —
meta_finishsessioncount?spaces?authHandlel?authHandle2 —
if spaces =0V spaces =1
then int_startT PM _Load AuthContext!blob —

int_finishT PM _Load AuthContext?authHandle —

meta_finishT PM_Load AuthContext — ExternalSessionManager””
else meta_startT PM _Save AuthContext!lauthHandlel —

meta_finishT' PM_SaveAuthContext —

int_startT PM _Load AuthContext!\blob —

int_finishT' PM _LoadAuthContext?authHandle —

meta_finishT PM_Load AuthContext — ExternalSessionManager””

meta_start] PM_Load AuthContext receives the authorisation session identifier
of the session that should be resumed. authHandle is used to collect the associ-
ated session blob (via meta_retrieveSessionExtSessionStorage). meta_start-
sesstoncount and meta_finishsessioncount provide the process with informa-
tion about whether or not session space is available inside the internal TPM mem-
ory. According to this information, int_start Load AuthContext and int_finish-
LoadAuthContext activate the session by communicating with T'P M _Load Auth-
Context. If no session space is available an active session is suspended. As in
the process MetaT PM SessionStorge we omit the implementation of a sophis-
ticated caching strategy. Instead, meta_startl PM _SaveAuthContext suspends
the session that is stored in memory slot one. meta_finishT PM_SaveAuth-
Context returns the appropriate session blob and channel meta_storeSession-
EztSessionStorage stores that information in the external session storage. After
resetting memory block one, ExternalSessionManager™ picks up the activa-
tion process by communicating int_start Load AuthContext and int_finishLoad-
AuthContext. Lastly, the event meta_finishT PM_Load AuthContext informs
the caller about the successful transaction.

9.1.7 The external session storage

The external session storage, in theory, provides space for an unlimited number
of session blobs. Therefore, we parameterise the process with a list of quadruples.

ExternalSessionStorage =
ExternalSessionStorage' (1,(N,N, N, N))

CHAPTER 9. SESSION CACHING 147

External SessionStorage' (space, storage) =
meta_retriveSession ExtSessionStorage! first(storage)lstorage —
SKIP
O
meta_deleteSessionExtSessionStorage!space — SKIP
O
meta_storeSession ExtSessionStorage! first(storage)?newdata —
ExternalSessionStorage(space, newdata) |||
ExternalSessionStorage(space + 1,(N, N, N, N))

The process itself is designed to provide only the necessary operations for our
model. The storage consists of one process per stored blob. The channel
meta_retriveSessionExtSessionStorage synchronises on the values authHandle
and on the session blob itself. The caller can use the authHandle to retrieve the
desired data block. After the blob is delivered to the caller, the blob is erased.
This is done by terminating the process. The delete operation works in a similar
fashion. Finally, whenever a caller stores data inside the external session storage,
a new FEuxternalSessionStorage’ process is spawned. Thus, there is always one
more process in which to write.

9.1.8 The TPM owner

The process Owner bears all the functionality necessary to launch and conduct
an OS-AP session. In contrast to the T'PM process, this process is much simpler
because it does not need to perform internal operations. The process itself is
divided into two parts.

Owner(A, B, protocolcount, keyHandle, secret) =

meta_startOS AP!Alprotcount —

meta_get N onceNonceM anager! ATnonceOddOSAP —

output.A.B.Messagel —

if protocolcount > 1

then Owner' (A, B, keyH andle, secret, nonceOddOS AP)

else (Owner(A, B, protocolcount + 1, keyHandle, secret) |||
Owner'(A, B, keyHandle, secret, nonceOddOSAP))

Owner is parameterised by the identities of the sender and receiver. In our
case this is the label O for the owner and T representing the TPM. Further,
it requires a numerical value (protocolcount) that keeps track of the number of
launched authorisation sessions, an object identifier (keyHandle) and its corre-
sponding authorisation secret (secret). The process starts with the signalling
event meta_startOSAP. This event indicates that an OS-AP session is about
to begin; it also communicates the number of the session. meta_getNonce-
NonceManager requests a fresh nonce from the nonce manager. The next event
(output) sends message 1 to the TPM. For further particulars about the OS-AP
please see section 8.1. In theory the owner can initiate an unlimited amount of

CHAPTER 9. SESSION CACHING 148

sessions. To recreate this functionality, an Qwner process is interleaved by an
Owner' process. Thus, the overall process has the chance to proceed with the
current protocol run or it can start a new one; of course it also has the option
of launching the second protocol run at any given point in time. The process
Owner' handles the remainder of the OS-AP session.

Owner'(A, B, keyHandle, secret,nonceOddOSAP) =
U authHandle : TauthHandle o

U authLastNonceEven : NonceT PM o

U nonce EvenOSAP : NonceT PM e

input.B.A.Message2 —

meta_get NonceN once M anager! ATnonceOdd —
meta_calculateSharedSessionSecret?sessionsecret —
output.A.B.Meassage3 —

input.B.A.Messaged —

SKIP

Owner' is initialised by the same parameters as the parent process and by the
nonce (nonceOddOSAP) that is required to obfuscate the authorisation secret
(in message 3). The rest of the process is self-explanatory. The owner receives
message 2. Thereupon, it produces the components to compile message 3 (e.g.
hash sum calculation) and sends the result to the TPM. Finally, it receives OS-AP
message 4.

9.1.9 The intruder

The intruder process is based on the same framework as the intruder process
in our OS-AP model. We had to extend the standard intruder model, since we
not only consider the protocol, but also the internal activities that are triggered
upon reception of protocol messages. Thus, the intruder should also have the
power to take control over every non-trusted process. Note that the expression
‘non-trusted’ in this context refers to the TCPA framework, thereby describing a
process that has no means of proving that it is working in a desired manner. In
our model the external session manager represents such a process. The intruder
can encourage this process to delete or inject any session data he wants. The

CHAPTER 9. SESSION CACHING 149

following CSP process models that behaviour:

Intruder (1K, Storage) =

recetwe?O . T . — Intruder(IK U {z}, Storage)

.

[z :IK, O,T: Agent ® send.O .T .z — Intruder(IK, Storage)

M deletesession — Intruder(IK, Storage)

.

[1(z,Y) : Deductions,Y CIK AN'Y C Storage o
injectsession . (z,Y) — Intruder(IK, Storage)

.

[1(z,Y) : Deductions, Y C IK e
infer.(z,Y) — Intruder(IK U {z}, Storage).

The Intruder process is initialised by the initial knowledge (I K') and a set con-
taining all possible session blobs (Storage). The set 1K contains the identifier
of the other participants (Owner and TPM), enough data to launch an OS-AP
session (e.g. nonce), the identifier of the protected object that belongs to the
intruder and its corresponding authorisation secret. The event receive is used
to monitor the conversations between the owner and the TPM. After performing
the receive operation, the intruder adds the collected message z to its knowl-
edge. The process intruder can also send, via the send event, every message
contained in its knowledge base. Moreover, as mentioned before, it can also
delete (deletesession) or inject (injectsession) certain session blobs. Lastly, the
intruder can make deductions upon its collected knowledge to gain new informa-
tion. This infer operation is only available if the set Y is a subset or equal to its
knowledge base. For more information see section 8 or [RSGT01].

9.1.10 The system

Figure 9.2 shows the structure of the overall system. In this picture we omit-
ted the precise interactions between the different building blocks to increase its
readability.

The intruder is connected to the external session manager process via inject
and delete channels. The trusted platform itself is divided into an external
(trusted sub-system) and internal area (TPM). The trusted sub-system con-
tains the external session manager, the external session storage and the pro-
tected storage. The TPM includes processes to model the behaviour of OS-AP,
the meta session manager, the internal session storage and the context manage-
ment. The arrows indicate whether or not synchronisations between the various
modules exist. After synchronising the processes we hide all channels except
meta_T PMGrantAccessto. This allows us to use a very efficient specification.

CHAPTER 9. SESSION CACHING 150

Protected

Intruder Storage

~ Trusted Platform Module (TPM)

=1 0S-AP Session
—= Storage

Meta_Session TPM_Load TPM_Save
Manger (1-2) AuthContext | AuthContext

f=—-

inject / delete ExternalSession External_

Manager (1-4) SessionStorage

Figure 9.2: Session caching — the trusted platform

The specification is kept very simple since we have hidden nearly all events.
The sole purpose of this specification is to determine whether or not the intruder
can access an object (O1) that does not belong to him without knowing the
corresponding authorisation secret (secl). The following CSP process enables us
to do so:
Spec =
(O keyHandle : {O1}e Oy :{O}e
metap PMGrantAccesstolkeyHandlely — Spec)
O
(O keyHandle : {O2}e Oy : {I}e
metap PMGrantAccesstolkeyHandlely — Spec)
The process Spec can only communicate the event meta_1'PMGrantAccessto in
a very restricted manner. Only the owner (label O) can access the object that is

addressed by the key handle O1, and only the intruder (label I) can authorise to
object O2.

9.2 The finite model

The model we have described so far is as (logically) accurate to the real world
system as possible. In order to restrict the state space of the model, we apply
the same techniques as in chapter 2.2 and 8. Therefore, at this point we will only
briefly elaborate on our abstractions. They can be summarised in three points:

1. Instead of using the full OS-AP, we use the restricted version from section

CHAPTER 9. SESSION CACHING 151

8.1. This abstraction has far-reaching effects on nearly every data type
involved (e.g. scope of session blobs).

2. We allow the owner to launch only 3 parallel sessions. This is enough to
exercise the complete behaviour of the session caching system which, in
turn, allows us to restrict the number of parallel sessions that are accepted
by the TPM.

3. We combine certain processes to reduce (unintended) parallelism, via the
external choice operator. For instance, we consequently combine the pro-
cesses TPM_LoadAuthContext and TPM_SaveAuthContext. The resulting
AuthContext process may not reflect the logical structure of the real world
TPM as precisely as before, but this process structure is more accurate,
from an operational point of view. In the real world both commands are
atomic and the TPM seems to be single threaded (commands are always
executed sequentially). Therefore, in the real world the TPM offers the
choice between engaging in a TPM_LoadAuthContexrt or in a TPM_Save-
AuthContext operation. Besides the AuthContext process, we internally
merged MetaTPMSessionManager and ExternalSessionManager with their
respective sub-processes.

9.3 Results

After applying all simplifications to our system we used FDR to evaluate whether
or not the system refines our specification. FDR found various traces that violated
our specification. One exemplary trace is appended in chapter A. In order to
reduce the complexity of the traces, we modified the internal session memory so
that it can only store information about one session at a time.

In the attack, the intruder pretends to be another TPM and starts a ses-
sion with the TPM (receive.T.T.(Msgl,Sq.(Na2,02),())). The TPM acts as
it should. It allocates the necessary resources by generating a new session
identifier (Ahl) and loads the object O2 from the protected storage. Then
it stores the authorisation secret of that object along with the nonce Na2
and the authorisation handle Ah1l in its internal session memory. Finally,
it sends an appropriate reply (send.T.T.(Msg2,Sq.(Ahl,Nt1),())) to the in-
truder. After receiving message two, the intruder starts another session with
the TPM. This forces the TPM to clear the internal session memory. It uses
the context management to store the state information of the first session
in a session blob (int_finishT PM_Save AuthContext ExternalSession M ana-
ger3.Storage.(Ahl, Na2,02, sec2)). Meanwhile, the owner of the platform tries
to launch another OS-AP session (send.O.T.(Msgl, Sq.(Na2,01),())). The in-
truder intercepts that message and analyses its content. He learns the object
identifier of the object that the owner tried to access (O1). With that identifier

CHAPTER 9. SESSION CACHING 152

he has all the information he needs to forge and to inject his own session blob into
the external session storage (meta_injectSession.Storage.(Ahl, Na2, O1, sec2)).
To generate this faced blob, he uses the authorisation handle that identified his
first session with the TPM (Ahl), a random nonce (Na2), the recently acquired
object identifier (O1) and the authorisation secret to unlock his own object (sec2).
Then he forces the TPM to resume the first (cached) session by sending message 3
of the OS-AP. The TPM receives the message, evaluates its internal session mem-
ory, discovers that the required state information is not available, and launches
the context management to retrieve the information (int_startT PM _LoadAuth-
ContextExternal SessionManager4.Storage.(Ahl, Na2, 01, sec2)). After load-
ing the necessary information in the internal memory, the TPM compares the au-
thorisation secret that was stored inside the session blob with the secret that could
be deduced from message 3 (for further particulars see chapter 8). Since the in-
truder has injected his own authorisation secret, the two secrets match — and the
TPM allows him to access the owner’s object (meta_T' PMGrantAccessto.O1.T).

This attack is possible because the intruder can generate his own session blob
on the one side and the TPM is unable to distinguish between faked and self-
generated blobs on the other.

Interpretation As said before, the specification states [TCPA02] two particu-
lar properties about session blobs without stating how these attributes have to
be achieved:

The contents of an authorisation context blob SHALL be discarded
unless the contents have passed an integrity test.

and

The contents of an authorisation context blob SHALL be discarded
unless the contents have passed a session validity test.

The first requirement deprives the intruder of the ability to alter session blobs
and the second demand prevents the intruder from injecting his own faked ses-
sion blobs. If the actual implementation of the session blob generation satisfies
these two conditions, then the attack that FDR discovered clearly does not exist.
It remains to be seen whether or not the first implementations really harbour
possibilities that allow an intruder to successfully produce false session blobs.

This does not mean, however, that if we would add additional TPM func-
tionality to our model, there would still be no other way to exploit the context
management. A full-scale analysis of the TPM and the interactions between all
features would be impossible for FDR. The only way to do so would be to show
that certain features have no impact (directly or indirectly) on other features.
This would give one the formal justification for pruning away non-related func-
tionality. However, the development of the necessary compositional arguments
with their formal ground-work lies beyond the scope of this thesis.

CHAPTER 9. SESSION CACHING 153

9.4 Abstracting low-level protocols

Within the trusted computing environment it is common that one has to verify
hardware components that can interact with their environment, via certain pro-
tocols. The focus of such verifications lies not on the protocols themselves, but
on the internal response of the addressed hardware component. Hence, it would
be useful if we could find a way to reduce the model of external communication
to only the necessary stimuli to exercise all possible behaviors (responses) of the
hardware component. The internal transactions are usually complex enough to
bring a complete state space exploration to its limits. In this section we will dis-
cuss certain properties of protocols such as authentication or secrecy and show
how one can prune away the elements that guarantee these properties. This
will result in a greatly reduced system which enables us to design the internal
transactions of the sender or receiver in greater detail.

This work is an extension of the work done by Broadfoot and Lowe [BL03].
We will briefly review their work. Then we will analyse various properties of
security protocols as well as correlate trace specifications that guarantee these
properties.

We will split the integrity property into two categories: stream integrity and
drop resistant stream integrity. Stream integrity demands that not a single mes-
sage nor the communication stream itself can be altered. Drop resistant stream
integrity on the other hand, requires that all messages that reach the destination
are not modified during transit. Thus, messages can be lost without interrupting
the protocol flow. We will distinguish between three properties, and one property
will be divided into two subclasses. Hence, we will consider 6 different models.

1. authentication in combination with drop resistant stream integrity
2. authentication in combination with stream integrity

3. secrecy in combination with drop resistant stream integrity

4. secrecy in combination with stream integrity

5. authentication and secrecy in combination with drop resistant stream in-
tegrity

6. authentication and secrecy in combination with stream integrity (more de-
tails in [BL03])

As mentioned before this work is based on [BL03]. Broadfoot and Lowe discuss
the general problem of verifying security architectures. Usually these protocols
are divided in more than one layer. They give an example of a simple transaction
protocol that deals with the purchase and payment of goods via an un-trusted
network. The transaction protocol itself only provides the bare minimum of the

CHAPTER 9. SESSION CACHING 154

required security properties; e.g. it does not provide secrecy. This problem, in the
today’s industry, is solved by using another protocol such as secure socket layer
(SSL [DA99]) as a foundation. This leads to a more complex overall protocol
structure. If we use Casper and CSP to verify such a protocol this leads to an
increased state space of the model.

Broadfoot and Lowe confront this problem by adjusting the standard threat
model [LBHO1] by pruning away the low level protocol (e.g. SSL). They do so in
three steps:

1. they discuss the possible methods an intruder can perform in the protocol
setting under observation;

2. from this Broadfoot and Lowe derive a model that satisfies the modified
most general intruder description;

3. finally they show that their model still satisfies the required security prop-
erties.

Unfortunately [BLO3] only includes the abstracted models of SSL and TLS; sys-
tems that provide authentication with stream-integrity and secrecy. We will take
their approach and extend it so that it supports most of the scenarios that are
likely to occur in the trusted computing environment.

9.4.1 Properties of protocols

Protocols can have various properties that ensure the faultless operation of a
higher level protocol. It may be confusing to distinguish between the terms high
and low level protocols. For these two expressions we will use the meaning that
has been used within the crypto-protocol environment. Low level describes a
protocol that can encapsulate another protocol (called the high level protocol),
thus inheriting its security properties to the higher level protocol. Note this
this is exactly the opposite of the definition within the computer programming
environment.

[RSGT01] discusses various security properties such as: secrecy, authentica-
tion of origin, entity authentication, integrity, anonymity and various others. We
will only focus on integrity, authentication (the classical definition) and secrecy.
However we will discuss integrity in more detail, as mentioned before, we will di-
vide the integrity property into two categories — drop resistant stream integrity
and stream integrity.

Stream integrity represents the classical integrity requirement. No message
within a given session, between two honest agents, can be altered, dropped or
assume a different position then the intended one. The general integrity property
is usually combined with the authentication property.

CHAPTER 9. SESSION CACHING 155

Ya, b : Honest; s : Session e tr | receives.b.a.s < tr | send.a.b.s.
(9.1)
This trace-specification expresses that within a given session s the receiver b
can only process messages that honest agent a has sent to him. The symbol <
represents the prefix relation. Since the sequence of data items communicated on
the receive channel are a prefix of the sequence communicated on the send channel
it is impossible to drop messages between the start and the end of the protocol.
Depending on whether the CSP model includes start and close signaling events,
that are communicated on these channels, it may be that the last message can
be dropped. Hence careful consideration should be given to such a phenomenon.
If the stream integrity property should be described without authentication
the trace-specification looks slightly different:

Ya, b : Honest; s : Session; i: Dishonest e (9.2)
tr | receives.b.a.s < tr | send.a.b.s
V
tr | receiwves.b.a.s < tr | inject.i.b.s.

Similar to specification (9.1) this specification demands that the ordering of
messages remains untouched. However this time the receiver cannot be certain
whether the session was launched by the honest agent a or by the intruder.

Drop resistant stream integrity demands that messages cannot be altered
without the knowledge of the receiver. In contrast to this, the classical definition
of integrity requires that every message transmitted between the honest partic-
ipants can not be modified as well as the communication stream itself. Hence,
the protocol can 'lose’ messages without violating the specification.

Applications for drop resistant stream integrity protocols can be real time
protocols or secure video conference systems. Certain encryption standards do
not require a complete data-stream to work properly. In general, real-time ap-
plications that are controlled via remote protocols can not afford to wait for re-
transmission of lost packets — as long as a certain proportion of packets reaches
the receiver.

Another aspect may be that messages can assume different positions within
the communication stream. Since we can not think of the usefulness of such a
protocol we will omit the distinction between an enforced ordering and a lose
ordering of messages. The trace specification for a protocol that allows the con-
tinuation after packet loss is as follows:

CHAPTER 9. SESSION CACHING 156

Vb : Honest; s : Session; 3 a: Agent e (9.3)
tr | receives.b.a.s < tr | send.a.b.s
V
tr | recewwes.b.a.s <X tr | inject.a.b.s

whereas :
V tr' . Traces o tr <X tr' =
3 f : domtr — domtr' e
Vj € domtr e tr(j) = tr'(f(j))
AN
Va,y € domtr ez <y = f(z) < f(y).

The expression tr | X hides the communications of all channels that are not
within X, further it extracts the data values of the channels of X; leaving a
sequence of data items. The function dom can be applied to a specific set of
tuples! and returns the first element of each tuple.

This specification demands that the sequence of data elements that are com-
municated over the channel receives.b.a.s is a subsequence (<) of the channel
send.a.b.s or of the channel inject.a.b.s. The second half of the specification
defines the subsequence operator (<). In order to be a valid subsequence there
has to exist a total injective function (called f()) that projects the domain of one
trace to another trace. There are two restrictions upon this function. First, for
all elements in the domain of trace ¢r (the elements the receiver processes) has
to hold that the message that is on position j in trace tr is equal to the element
f(j) of trace tr'. This ensures the total injective property of function f(). This
guards us from receiving messages that were not send by the originator. The sec-
ond restriction demands that a message cannot outpace another message. Hence
messages may be lost but can never swap position with other messages.

If the ordering is pushed to a higher level protocol it may very well be that out-
of-order traffic is allowed as well. In this case the second part of the specification
can be omitted. We will not further pursue this case in depth since, as mentioned
before, we are not aware of a scenario where this is useful.

One has to be very careful with many layered protocols at this point: it may
very well be that a certain state in a protocol run, that was not abstracted away,
has to be reached in order to allow certain packets to be lost without resetting
the current protocol session. So for instance could the protocol include an initial
negotiation part. This negotiation could ensure that the sender and receiver agree
upon certain conditions of the upcoming protocol run. Every lost message within

TA sequence can be defined as
seg X == {s:N—= X|dn:Nedoms=1.n}

this provides us with tuples that consist of a position number and a data value.

CHAPTER 9. SESSION CACHING 157

these first messages would inevitably reset the protocol. However once agreed
upon the conditions the sender and receiver switch into an operational mode
that allows message loss without retransmission. An example for a two — state
protocol is the TELN ET protocol [PR83].

If the protocol has to reach a certain state before it allows message to be
dropped, one has to include certain counters that guard this requirement. On
the other hand it seems highly unlikely that a case arises were one can not collapse
that functionality on to a higher level protocol and subsequently abstract that
high level protocol away. Because of its rarity we will not further pursue this
scenario.

Authentication or more precisely authentication of origin [RSGT01] demands
that every message received by B within a session with A was indeed sent by
agent A. Usually this also includes the integrity property. In our analysis we will
adopt the same approach, the trace specification given in the integrity description
(condition (9.1)) is valid. If you want to achieve proper authentication you have
to include the identities of the participants in a direct or indirect manner. Hence
if the intruder wants to breach authentication he has to alter the messages; this
contradicts the integrity property. Therefore the integrity property may stand
alone, however it is not possible for a protocol to enforce authentication but not
integrity.

Secrecy is sometimes called confidentiality. There are two ways one can in-
terpret this property. One can demand of the protocol that an intruder can not
deduce elements that are defined as confidential. This interpretation of secrecy is
easy to verify. The other version is more strict. It demands that the intruder can
not deduce any information about the communication between the participants.
This includes sending and receiving patterns in the communication stream as
well as basic timing behaviour of all participants. For more information on the
topic of information—flow see [RSG101]. We will not further discuss this type
of secrecy.

We can capture the simpler version of the confidentiality property by defining
a set SEC that includes all messages (elements) that should be known only to
the honest participants (set Honest) of a session. The event signal provides us
with the information about the legitimate users of the knowledge. The following
trace specification captures the desired behaviour [LBHO1]:

Vmessages : SEC e signal.Claim_Secret.a.b.messages in tr (9.4)
Na € Honest N b € Honset = —(leak.message in tr).

The specification expresses that all messages that are communicated on
signal.Claim_Secret.a.b, whereas a and b are honest agents, cannot be com-
municated on the leak channel in the same trace. We only consider the case

CHAPTER 9. SESSION CACHING 158

where the complete data stream will be encrypted. Thus we consider every mes-
sage sent in a protocol run between honest agents as secure. Using the definition
above every message that is sent is also communicated on the signal channel.
From this we can derive a intruder centered description of the specification:

Vi : Dishonest ;a : Agent ;s : Session ;m : Message ;tr' : Tracee (9.5)
(tr'™(receive.a.i.s.my < tr) =
IIK U{m|3a: Honest;i: Dishonest ;s : Session
e send.a.i.s.m in tr'} F m.

This trace specification guaranties that the intruder can only send a message
to an honest participant if he has: received it from another agent, deduced it
from his knowledge base or if it was in his initial knowledge (set I7K). (9.5)
is only suitable for the case where secrecy and authentication are provided. In
the absence of authentication we have to slightly adjust the specification (see
condition (9.10)).

The standard intruder model according to Dolev-Yao [DY83] specifies var-
ious actions that can be performed by an intruder.

1. He can monitor messages that traverse the network.
2. He can use his knowledge-base to generate and send new messages.

3. He can drop messages that travel through his domain.

W

. He can participate in a legitimate protocol session as an common agent.

We will not discuss this model in more detail since we already introduced the
intruder process in section 8. Now we will focus in turn on every of the intruder’s
abilities and discuss how certain security goals will influence them. With the
modified set of intruder capabilities we will design a new intruder model. Finally
we will show that our model still satisfies the security properties and that our
modifications have not restricted the intruder in an illicit manner.

9.4.2 Authentication only

To transform the standard model (as used in chapter 8) of a system in which
the underlying communication between the participants of a session is authen-
ticated, first we investigate the abilities that a intruder would have in such an
environment.

1. He can monitor messages that traverse the network. This point remains
unchanged since the protocol does not provide secrecy. Hence whenever
the intruder in the old system learns a certain fact then the intruder in the
new one does also.

CHAPTER 9. SESSION CACHING

2. He can use his knowledge-base to generate and send new messages.

159

He

can send messages with his own identity. However he cannot inject crafted
messages into a session, except if he is one of the participants.

3. He can drop messages that travel through his domain. This may or may
not be true depending on whether the protocol provides stream or drop
resistant stream integrity with authentication. In the following model we
will consider both cases. If attacker wants to drop messages he is able to do
so if the underlying protocol only insists on drop resistant stream integrity.
However he is never able to change the order of the messages.

4. He can participate in a legitimate protocol session as a common agent.

As mentioned before the standard intruder model places the intruder process
between the sender and receiver process. For our low-level environment analyser
we remove the intruder from this position and place him outside. See figure 9.3.

send.a.i

Intruder

see

Sender

send.a.b ‘

Buffer

receive.a.b

Buffer

Receiver

Figure 9.3: Authentication only

Since the intruder is still capable to withhold certain messages we place a
buffer between participant A and B. As already discussed the intruder is still
capable to overhear the traffic between A and B. To include this in our model we
allow the intruder to inspect the content of the buffer. For reusability we recom-
mend a three-way synchronisation on the send.A.B event between the sender, the
buffer and the intruder. The channels send.a.i and receive.b.i allow the intruder
to communicate directly with the honest participants. If the protocol supports
stream integrity, the following FIFO buffer is installed between the two channels:

CHAPTER 9. SESSION CACHING 160

Buffera,b - |||s:SessionBuffera,b,s(<>)

whereas :
Buf ferqps(sequence) = Buf fer, (sequence) > Buf fery, .
and
Buf fery,, ,(sequence) =
send.a.b.s?m — Buf fer, s(sequence™ (m))
(|

sequence # () & receive.b.a.s.head(sequence) —
Buf ferqps(tail(sequence))

and
Buf fer”, = send.a.b.s?m — Buf fer”

a,b,s a,b,s*

Every session possesses one buffer per communication direction. These buffers
do not interfere with each other directly; hence they are combined by the inter-
leaving operator. The process Buf fer;,b,s(sequence) requires the identities of the
participants, the session identifier and a sequence of stored messages as input
parameters. The buffer itself can receive (via the send event) or send (via the
receive event) a message; the sequence that stores the messages is updated ac-
cordingly. The buffer does not contain additional channels that could be used
by the intruder to inject messages. However the intruder can drop messages that
traverse the channels. At this point we have to make the distinction between
message and stream integrity. The buffer described above implements the stream
integrity requirement. This means as soon as the buffer loses one packet in the
data stream the complete session will be terminated since the buffer stops to
forward packets. We used the sliding choice operator to accomplish an equivalent
process.

The following CSP description shows the case where the protocol only provides
drop resistant stream integrity:

Buffera,b - |||s:SessionBuff€Ta,b,s(<>)
whereas :
Buf feryp s(sequence) =
send.a.b.s?m —
(Buffera,b,s(sequence"(m)) M dTOp.a.b.S.m —
Buf ferqp.s(sequence))
|
sequence # () & receive.b.a.s.head(sequence) —
Buf feryps(tail(sequence))

The buffer has the same overall architecture. However a special drop event is
included that indicates which message was lost (or intercepted) during transit.
After the drop occurred the process returns to its initial state without flushing
its temporary message storage (sequence).

CHAPTER 9. SESSION CACHING 161

Soundness of our model has to be discussed in two ways: first we have to show
that our reduced model still satisfies the protocol requirements, second that we
did not restrict the intruder in an illicit fashion.

To show that the communication stream of our model satisfies the authorisa-
tion trace specifications we have to determine the traces of every element within
the overall system.

The buffer that is used in our stream integrity model can be described as?:

traces(Buf ferqp(())) = {tr € {|receive.b.a, send.a.b|}*| (9.6)
Vs : Session e tr [receive.b.a.s < tr | send.a.b.s}.

The buffer that satisfies drop resistant stream integrity can be described as:

traces(Buf ferqp(())) = {tr € {| receive.b.a, send.a.b, drop.a.b|}* | (9.7)
V b : Honest; s : Session; 3 a: Agent e

tr | recewves.b.a.s < tr | send.a.b.s
}.

The intruder process is a derivation of the original intruder in the way it can
communicate. The intruder can only communicate via the receive.b.i event and
can receive new information via the channels send.a.t and send.a.b. He has no
restriction on its knowledge base. This leads to following intruder:

traces(Intruder) =
{tr € {|receive.a.i, send.a.i, send.a.bla € Honest A b € Honest|}*|
Vb : Honest ;i : Dishonest ; s : Session ; m : Message ;tr' : Tracee
tr'~(receive.b.i.m) < tr = I1K U collected ByIntruder(tr') - m}
whereas :
collected ByIntruder(tr') = sentTolntruder(tr')U
monitored By Intruder(tr')
and
sentTolntruder(tr')={m|Ja : Honest ; s : Session e send.a.i.s.mintr'}
and
monitored ByIntruder(tr')={m|3a : Honest ;b : Honest ; s : Sessione
send.a.b.s.mintr’ A a # b}.
(9.8)
Since we have to be general about the conduct of the protocol (about the commu-
nication flow) the only thing we can say about the traces of the honest participants
is that:

Va: Honest e tr | {|send.a, receive.b|} € traces(Participant,). (9.9)

2The symbol tr | X erases all elements in trace tr except those where channel X is involved
and {|receive|} represents the set of all messages on channel receive.

CHAPTER 9. SESSION CACHING 162

In other words if we reduce the traces of the overall system to the send.a and
recetve.a events, the resulting traces have to be traces that are within the traces
of participant a.

Employing the semantic definition of the parallel composition® we can obtain
the traces of the overall system by applying the restrictions of every participant
to the initial traces (3.7). In other words every valid trace of the overall system
has to satisfy the restrictions that every single participant harbors. This leads to
following overall trace (for stream integrity):

(For the Agents)
Va: Honest e tr | {|send.a, receive.b|} € traces(Participant,)
A
(For the Buf fer)
Vs : Sesston etr | recetve.b.a.s < tr | send.a.b.s
A
(For the Intruder)
Vb : Honest ;i: Dishonest ; s : Session ; m : Message ;tr' : Tracece
tr'™(receive.b.i.m)y < tr = [I KU
collected ByIntruder(tr') = m}
whereas :
collected ByIntruder(tr') = sentTolntruder(tr') U monitored ByIntruder(tr')
and
sentTolntruder(tr')={m|3Ja : Honest ; s : Session & send.a.i.s.mintr'}
and
monitoredByIntruder(tr'y={m|3a : Honest ;b: Honest ; s : Sessione
send.a.b.s.mintr’ A a # b}.

The requirement for authentication combined with stream integrity, as discusses
above!, are only met by traces that satisfy condition 9.1. We can observe that
the trace specification of the buffer is already enough to restrict the traces so
that they all satisfy the demanded authentication specification. All other trace
restrictions only reduce the amount of legitimate traces even more, hence the
overall system satisfies the condition (9.1).

The proof whether or not the system that handles authentication with drop
resistant stream integrity satisfy condition (9.3) is equivalent to the latter one.
It is already enough to observe the buffer to see that only, according to (9.3),
legitimate traces are within the system.

The fact that our model does not restrict the system in an illicit manner can
be seen directly. Since the traces of the buffer are precisely the same that are
permitted by the authorisation trace specification, our buffer enforces only the

Straces(P allp Q) = {tr €| A € traces(P) A tr | B € traces(Q)}.
“Ya, b : Honests : Session e tr | receives.b.a.s < tr | send.a.b.s

CHAPTER 9. SESSION CACHING 163

minimum restrictions upon the system. This applies to both cases, stream and
drop resistant stream integrity.

9.4.3 Secrecy only

Having shown how one can obtain a model that provides us with an authenticated
communication stream, we will now discuss, in similar fashion, how one can obtain
a secure channel without authentication. As in section 9.4.2 we will discuss
message and stream integrity separately from each other. If we assume that the
protocol in use does not allow other agents to overhear important data, then the
intruder has the following capabilities:

1. He can monitor messages that traverse the network. The intruder cannot
obtain information about the content of the communication between hon-
est participants. He can only add new information to his knowledge base
whenever he directly receives a message or whenever he has obtained enough
knowledge to deduce new facts.

2. He can use his knowledge base to generate and send new messages. Since
the messages are not authenticated the intruder can inject messages into
every session. 'This feature remains even if the overall system demands
stream integrity. However in this case the intruder can not inject messages
into an ongoing session: instead he has to launch the faked session between
I, and B himself. In this case agent A would not anymore be able to
communicate with B within this session.

3. He can drop messages that travel through his domain. He can only do so if
the protocol does not provide stream integrity.

4. He can participate in a legitimate protocol session as an common agent.

Similar to the model above (section 9.4.2) we construct a buffer that can be placed
between the input and output channels of the honest participants. The intruder
is transferred outside the direct communication channels (see Figure 9.4). Since
we have no authentication the receiver of a message can not verify where the
message originated from. Hence it should be possible for the intruder to inject
certain packets into the buffer. The channel that provided the intruder in our
last model with the information about the content of the communication has to
be removed in order to satisfy the secrecy condition. Depending on whether we
have stream or drop resistant stream authentication we include a drop event that
allows the buffer to lose information. Figure 9.4 shows the general layout of the
system. The intruder can inject messages, however only if he is the first that
addresses the receiver.

CHAPTER 9. SESSION CACHING 164

Intruder
send.a.i inject
send.a.b ‘ receive.b.a
Buffer | .
Sender 1 Receiver
I
receive.a.b Buffer 3 1 ‘ send.b.a
I
vV
drop

Figure 9.4: Secrecy only

First we will introduce the buffer that establishes connections that provide
secrecy and stream integrity. The following CSP description satisfies our needs:

Buffera,b,i - |||s:SessionBuffera,b,i,S(<>7 N)

whereas :
Buf ferqp,s(sequence, x) = Bufferfl,b,i,s(sequence, x) > Buf fery,;
and
Buf fery,; [(sequence, x) =
x # I & send.a.b.s?m — Buf fery; s(sequence™(m), A)
(Il
x # I &inject.i.b.s?m — Buf fer,p, (sequence, A)
(Il
r # A& inject.i.b.s?m — Buf feryy, s(sequence™(m),)
O
x # A& send.a.b.s?m — Buf fer,; s(sequence, I)
(Il

sequence # () & receive.b.a.s.head(sequence) —
Buf ferqp, s(tail(sequence))

and
Buffer;’,byiys =

n
send.a.b.s?m — Buf fery, .
O

send.i.b.s?m — Buf fery,. .
At first sight the buffer seems more complicated then necessary. However since
we guarantee stream integrity it is not possible for the intruder to inject or delete
messages within an active session. Therefore once the agent a has sent one packet
the intruder is not capable to inject packets anymore although we do not provide
authentication. This switch is performed by introducing an additional tag, at
each process, that determines what agent (A for honest agent and I for the

CHAPTER 9. SESSION CACHING 165

intruder) started the session. The only legitimate possibility for the intruder to
send packets to agent b is via his direct channel (receive.b.i) or if he starts the
session in the disguise of agent a. If the latter is the case agent a is not able to
participate in the same protocol session. In case the buffer loses one message, the
session is not continued; similar to section 9.4.2.

If we model a protocol that provides us with drop resistant stream integrity
the buffer process becomes simpler:

Buffera,b,i - |||s:SessionBuff€’ra,b,i,s(<>7 N)
whereas :
Buf ferqp,s(sequence, x) =
x # 1 & send.a.b.s?m —
(Buf ferqps(sequence™(m), A) M drop.a.b.m —
Buf feryp.s(sequence, A))
td
x # 1 &inject.i.b.s?m — Buf feryp,; s(sequence, A)
([
r # A& inject.i.b.s?m — Buf ferq s(sequence™(m), I)
td
v # A& send.a.b.s?m — Buf ferq,,; s(sequence, I)
td
sequence # () & receive.b.a.s.head(sequence) —
Buf ferqp, s(tail(sequence)).

This buffer is similar to the one above, except this one provides the option to
drop packets within a session without resetting the current session.

Correctness Similar to the authentication part we have to show that our over-
all system still satisfies the trace-specification for secrecy with stream integrity
and secrecy with drop resistant stream integrity. We will do so by first adapting
the general secrecy specification to our needs, then we will investigate how the
traces of our system relate to the specification.

The case where the abstracted protocol provides us with secrecy and drop
resistant stream integrity demands that we alter our general secrecy specification
(9.5). The traces of our new intruder contain one more channel that can be
used to communicate with the environment. Our trace specification uses the
output channels of the intruder to enforce a restriction upon the usage of available
knowledge. Hence we have to include this new channel (inject). This results in
following trace specification:

Vi : Dishonest ;a: Agent ;s : Session ;m : Message ; tr' : Tracee (9.10)
tr' ™ (receive.b.i.s.m) < tr V tr'™ (inject.b.i.s.m) < tr =
IIK U{m|3a: Honest ;i: Dishonest ; s : Sessione
send.a.i.s.m in tr'} = m.

CHAPTER 9. SESSION CACHING 166

The intruder has slightly increased capabilities in a sense that he can inject
messages in the buffers. The emphasis is on the restriction upon the messages the
intruder can send via inject or recerve.b. He can only send messages that where
already in his knowledge, that some honest agent sent to him or messages that
can be deduced from its knowledge base. The intruder that has to be employed
in a system that provides us with stream or drop resistant stream integrity and
secrecy can be described as follows:

traces(Intruder) =
{tr € {|receive.b.i, send.a.i, inject.i.bla,b € Honest \i € Dishonest|} * |
Vb : Honest ;i: Dishonest ;s : Session;m,m' : Message ; tr' : Tracee
(tr' ™ (receive.b.im) < tr =
ITK U{m|3a: Honest ;s : Session ® send.a.i.s.m in tr'} = m})
AN
(tr'~(inject.bim’)y < tr =
ITK U{m'|Ja: Honest ;s : Session ® send.a.i.s.m’' in tr'} = m'})}.
(9.11)
The overall system is generated by using the parallel composition operator
(P 4||pQ). Thus in order for a trace to be a legitimate trace of the overall
system the trace has to satisfy the description of every participant.

The restrictions that the intruder enforces on its output channels are exactly
those that are demanded to satisfy condition (9.10). In combination with the
semantics of the parallel composition operator one can conclude that the system
satisfies the secrecy specification. Moreover since the buffers are not included, this
holds independently of the condition whether the underlying protocol supports
stream or drop resistant stream integrity. Now we have to consider the stream
integrity case. We have to show that our overall system satisfies the stream
integrity specification. We do so by describing the traces of the buffer in use.
The buffers traces can be described as follows:

traces(Buf ferqpi(())) = {tr € {|receive.b.a, send.a.b, inject.i.b [}*| (9.12)
Ya, b : Honest; s : Session; i : Dishonest e
tr | receiwves.b.a.s < tr | send.a.b.s
V
tr | receives.b.a.s < tr | inject.i.b.s}.

As in the cases before it is plain to see that the traces of the buffer are precisely
those that satisfy the stream integrity property (condition (9.2)). Hence we can
not only be certain that our overall model satisfies (condition (9.2)) but also that
we did not over abstract.

If the protocol is resistant against message loss, we have to use our second
buffer. This buffer has following traces:

CHAPTER 9. SESSION CACHING 167

traces(Buf ferqpi(())) = {tr € {|receive.b.a, send.a.b, inject.i.b [}*| (9.13)
Ya, b : Honest; s : Session; i : Dishonest o
tr | receives.b.a.s < tr | send.a.b.s
V
tr | receives.b.a.s < tr | inject.i.b.s}.

Again it is plain to see that our overall system satisfies the specification for drop
resistant stream integrity. The traces of our buffer are the only traces allowed.
This also means that we did not restrict our system more then necessary.

9.4.4 Authentication and secrecy

Since Broadfoot and Lowe [BL03] have already shown a way to simplify SSL and
TLS (secrecy, authentication and stream integrity) we will only focus on drop
resistant stream integrity. In such an environment the intruder has following
capabilities:

1. He can monitor messages that traverse the network. Since the underlying
protocol guaranties secrecy the intruder is not able to monitor the data
stream between two honest participants.

2. He can use his knowledge-base to generate and send new messages. He
may do so, however because of the authentication property he is not able
to impersonate another honest participant. He can only communicate via
channel receive.b.i.

3. He can drop messages that travel through his domain. He can always do so,
however if the protocol enforces stream integrity the session will immedi-
ately stop (discussed in [BLO03|). The case we will discuss below however,
only demands drop resistant stream integrity, hence the intruder can drop
any message he wants.

4. He can participate in a legitimate protocol session as an common agent.

Figure 9.5 shows the overall architecture from our system. It is very similar
to the architecture from our authentication only system. The only difference
— the intruder is not able to investigate the content of the buffer, due to the
added secrecy property. This model employs the same buffer as in section 9.4.2
(condition (9.7)).

CHAPTER 9. SESSION CACHING 168

Intruder
send.a.i receive.b.i
send.a.b ‘ receive.b.a
Buffer | .
Sender 1 Receiver
L B —
receive.a.b Buffer 3 1 ‘ send.b.a
I
vV
drop

Figure 9.5: Authentication and secrecy

Soundness will be established in the same fashion as before. Since we have
already the traces of the buffer (condition (9.7)) and participant (condition (9.9))
we only need to establish the set of traces for the intruder:

traces(Intruder) =
{tr € {|receive.a.i, send.a.ila € Honest Nb € Honest|} x |
Vb : Honest ;i : Dishonest ;s : Session ;m : Message ; tr' : Tracee
tr'™(receive.b.i.m) < tr = IIK U sentToIntruder(tr') = m}
whereas :
sentTolntruder(tr')={m|Ja : Honest ; s : Session e send.a.i.s.mintr'}.
(9.14)
This intruder is a combination of (9.8) and (9.11) in a sense that he lacks the
injection channel and the facility to obtain information about the content of
the secure protocol session. His knowledge base can only draw conclusion upon
messages that were already in his knowledge (I1K) or that were directly send to
him (via send.a.i).
Now we can directly establish the traces of the overall system. As mentioned
before, the processes are tied together with the parallel composition operator.
The traces of the system satisfy the following:

CHAPTER 9. SESSION CACHING 169

(For the Agents)
Va: Honest o tr | {|send.a,receive.b|} € traces(Participant,)
A
(For the Buf fer)
Vb : Honest; s : Session; 3 a: Agent e
tr | recewves.b.a.s < tr | send.a.b.s
A
(For the Intruder)
Vb : Honest ;i : Dishonest ;s : Session ;m : Message ;tr' : Tracee
tr'~(receive.b.i.m) < tr =
ITKU{m|3a: Honest ;s : Session ® send.a.i.s.mintr'} = m

Since we have already established that the conjunct for the intruder matches
the secrecy requirement (condition (9.10)) and the conjunct for the buffer is
equivalent to condition (9.3) we can be certain that our model still satisfies the
drop resistant integrity and authentication property. We can also see that this
system does not satisfy the specification for stream integrity (condition (9.1)),
since messages can be dropped. Furthermore we can be certain that we did not
prune away to much detail. The traces of the intruder and the buffer perfectly
match the secrecy, both integrity and the authorisation specification.

9.4.5 Conclusion

In this chapter we have shown how one can build a model of the TCPA’s rec-
ommended session caching (and key caching) process. Our analysis showed that
whenever one interprets the fuzzy parts of the specification in an unexpected
manner vulnerabilities in the overall system arise. Since we used a specification
as the foundation of our model, we can not claim to have found new weaknesses.
One may only say that in case the specification is interpreted in the wrong way or
certain parts are implemented erroneously errors will occur (similar to Chapter
3.5 and 3.4).

In our approach the TPM was not capable of determining whether or not a
cached session data item was generated by the TPM. In this case the intruder
could inject a session blob that allowed him to gain access to an object that
belonged to another user without knowing the authorisation secret.

Our analysis revealed one problem with this type of verification process.
Whenever we want to test the internal transactions of a hardware component
and these internal activities depend on the input of a certain protocol or pro-
tocols, the state-space easily increases to an unmanageable level. Therefore the
need arises for general abstraction techniques that on one hand prune away the
functionality of the high level protocol that restricts the intruder in some way

CHAPTER 9. SESSION CACHING 170

(via its security properties) and on the other that do not restrict the intruder in
its functionality.

To provide the security community with such a possibility we used Broadfoot
and Lowe’s paper [BL02] as a foundation and introduced a distinction between
stream and drop resistant stream integrity. Drop resistant stream integrity re-
quires that messages cannot be altered during transit. This however does not
prevent an intruder form erasing certain data items form the data stream. Stream
integrity on the other hand demands that every message in a particular session
is received unmodified and no messages were dropped or injected. We discussed
simplifications for six different protocol property combinations:

1. authentication in combination with drop resistant stream integrity
2. authentication in combination with stream integrity

3. secrecy in combination with drop resistant stream integrity

4. secrecy in combination with stream integrity

5. authentication and secrecy in combination with drop resistant stream in-
tegrity

6. authentication and secrecy in combination with stream integrity (more de-
tailed in [BLO3])

As mentioned before we did not include the case where the data stream within one
session was not context sensitive. This leads to an enforced ordering of messages.
We could not come up with a plausible scenario where it does not matter at
what particular position a message is transmitted. On first glance this may
be the case with various multimedia protocols that are capable of transferring
great data files through the network. However as soon as the data reaches the
application level the data has to be ordered. Hence even if the lower level protocol
would permit an out-of-order communication the overall communication remains
an in-order communication. For the unlikely event that one cannot transfer this
enforced ordering to the higher level protocol® one has to change the FIFO buffer
into a set. Other cases we did not consider are message integrity and secrecy
or authentication without any notion of integrity. Message integrity allows an
attacker to interfere freely with the communication stream, except that he cannot
modify a message send within a session. We believe that these cases are seldom
relevant within the trusted computing environment. If the need arises is should
be straight forward to adapt our models accordingly.

The buffers we described are unbounded, hence not usable in a FDR supported
analysis. For this, one has to restrict the buffer size appropriately. Broadfoot

5This may be the case if the hardware functionality that has to be investigated lies between
the protocol layer and the layer where the data is ordered.

CHAPTER 9. SESSION CACHING 171

and Lowe have already discussed this issue in [BL03]. The buffer has to be of
size N, whereas N is the maximum number of messages send into one direction
without expecting a message back.

Finally we showed that our abstractions are sound in the sense that they
satisty the protocol requirements.

Chapter 10

Boot sequence

In this chapter we will present a CSP model of the boot sequence of a trusted
platform. We will discuss the problems that may arise if we use the TCPA’s
integrity reporting systems for an integrity challenge-response protocol. The
integrity challenge-response protocol is used whenever an external entity wants to
determine whether a platform is trustworthy or not. In chapter 11 this entity will
be a movie on demand service provider, hence for continuity reasons the example
entity in this chapter will as well be a movie provider. This chapter closes with
a discussion about the expressiveness of the TCPA’s integrity metrics.

In TCPA terms there are three different ways to boot a trusted platform. The
first choice is to boot the system without aid of the TPM and without verification.
This leaves the system, after boot, in a non-trusted state. This corresponds to a
standard boot as it is done in a usual PC. If the owner of a platform wants to
use trusted agents or wants to operate with an external platform that demands
a trusted system state, he can use two different ways to do so: the authenticated
boot and the secure boot. The authenticated boot is the procedure we will look
at more closely. Its main paradigm is that every security critical component has
to be verified before it is executed and the result of the verification has to be
stored in a tamper resistent memory. On the other hand, the secure boot takes
this even further. After a component has verified the element that has to be
executed next, it compares the result with reference values (stored inside the
Data Integrity Registers). If these values deviate from each other the owner of
the platform is informed.

Authenticated boot The precise procedure of an authenticated boot depends
on the architecture upon which the trusted platform is based. The procedure we
are using is the reduced boot cycle that is described in [Pea02]. This description
focuses on the PC environment and mentions only the basic processes. For a full
description see the PC specific TCPA specification [TCPA03g]. We believe no
additional information can be extracted if we include the missing processes in our
model. Figure 10.1 shows a sequence diagram of the authenticated boot cycle.

172

CHAPTER 10. BOOT SEQUENCE 173

‘ M. log ‘ TPM H BBB BIOS H ROMs || OS loader 0os oS comp.‘
measurement
result
update PCR-

exec. handle

measurement

result
update PCR-1
exec. handle
:l usual
commands
exec. handle
measurement
result
update PCR12 exec. handle
easurement
result
date PCR-3
up exec. handle .
continous
result
neasurement
update PCR-4

Figure 10.1: Authenticated Boot

The BIOS-Boot-Block starts the boot process. It verifies its own code, the
integrity of the BIOS and records the results. The logging operation updates the
PCR-0 and the trusted platform measurement storage (TPMS). As mentioned
before the hash saved in PCR-0 ensures the integrity of the more descriptive
measurement log file. Afterwards the BIOS-Boot-Block transfers the command
to the BIOS. The BIOS performs its usual tasks, measures the Option ROMs,
updates the measurement log and stores the digest in PCR-1. Then the execution
handle is passed on to the Option-ROMs. They in turn execute their commands
and, upon completion, hand over the execution right back to the BIOS. The BIOS
verifies the OS-Loader, updates the trusted platform measurement storage and
stores the measurement hash in PCR-2. After the OS-loader has received the
execution handle, it performs its regular operations and measures the operating
system (OS). The hash sum of that measurement result is stored in PCR-3 and
the extended version is stored in the appropriate log file. Once the operating
system has taken over, it evaluates the operating components as well as additional
software. The paradigm here is that everything has to be evaluated before it is
executed; of course, this applies only to code that changes the security state of
the system. The OS stores its measured integrity digests inside PCR-4.

10.1 Model

We tried to implement a CSP model as efficiently as possible. In theory, the
state space of the boot cycle is infinite. Only looking at the results for a single
measurement makes this clear. In our model we reduce the nearly infinitely
(210 different results) many possible results to ok, faulty and shut. ok indicates
that the integrity digest assumes a desired value. Hence the process that has been

CHAPTER 10. BOOT SEQUENCE 174

evaluated behaves in the desired manner. Under desired behaviour in this case we
understand that the application complies with the requirements of the integrity
challenger (video on demand service provider). faulty on the other hand stands
for the contrary — the requirements of the service provider are not met. This does
not necessarily mean that the system is in an unstable or generally un-trusted
state; another service provider may still find the integrity metrics sufficient. The
shut value is a meta value introduced to signal that a particular application or
process has not been executed. In the real world there is no such a value, instead
the service provider has to check whether there is a banned application execution
in the log files. The implementation of such a procedure would increase the state
space dramatically and would gain no additional functionality for the integrity
challenger or the dishonest owner of the platform.

Another abstraction that is necessary is the quantum of applications under
observation. In the real world there is a myriad of security-relevant processes that
can be started. However, we need only two applications to exercise all possible
cases during the boot process and the preceding challenge-response phase. We
name them mediaplayer and pirate. mediaplayer stands for the application
that requests the right from the service provider to play a movie. The integrity
challenger starts a challenge-response procedure to determine whether the system
is running some illicit process that could copy the movie. In our model the illicit
program is called pirate.

Furthermore, as mentioned before, we omitted certain elements of the boot
cycle, hence we model only a reduced boot process.

Additionally, we made the assumption that the log file, stored in the trusted
platform measurement store, is tamper resistant and accurate. This relieves us
from the need to model the program control registers. In the real world the
measurement log by itself is not tamper resistant. However since the program
control register stores a hash sum of the log file no one is able to alter the log file
unnoticed. By omitting the PCR we would allow the dishonest user to modify
the registered system state. Such an abstraction would introduce many false
positives. Hence, we design the trusted platform measurement storage as tamper
resistant in the first place.

Finally, we prune away the message transfer of the challenge-response proto-
col. This abstraction is based on the assumption that our integrity challenger
insists on vulnerability free protocols. Therefore, the dishonest user can never get
information that was only designated for the mediaplayer. Note the procedure
we are modelling cannot only be used for a video on demand system. The same
or a very similar setting arises with any interaction that demands a rigorous in-
tegrity challenge-response between a trusted platform and another remote entity
that wants to extend its chain of trust onto the platform. Examples for this are
intrusion detection agents that want to verify whether the central management
station can be trusted. Ounly if the station does not run illicit processes, agents
perform a message exchange (e.g. share new signatures). We only focused on

CHAPTER 10. BOOT SEQUENCE 175

the video on demand system since this chapter is considered to be one of the
foundations for our digital rights management chapter (chapter 11).

System The overall system consists of 9 different processes. Figure 10.2 shows
the interactions between the various processes. The arrows are named after the
channels on which the processes at either end are synchronising. Moreover, the
alignment of the arrows indicates the direction of the information flow. The
processes are plotted by rectangles.

Program Control Register ‘

reportToPCR reportToPCR verify reportToPCR
‘ receiveExecHandle
Option-ROMs OS-Loader Operating System
verify] verify
. . receiiveExecHandle.pirate
verify) repeiveExecHandle i P receiveRequestShutdown. mediaplayer
verify recefiveRs .pirate

BIOS

receiveExecHandle

verify
receiveExecHandle
EOS—BOO!—BWCK

reportToTPMS

Pirate ‘ 4—{ Media Player ’>

receiveRequestStart.pirate receiveRequestStart.mediaplayer

receiveExecHandl

Trusted Platform Measurement Storage (TPMS) Integrity (Service Provider) }»

‘ reportFromTPMS T

Figure 10.2: Boot sequence overall system

BIOS-Boot-Block The BIOS-Boot-Block is responsible for starting the con-
struction of the chain of trust. It is the first code that is executed on the trusted
platform. The CSP process that models the behaviour of the BIOS-Boot-Block
is parametrised by its own name (bbb), the next entity in the chain of trust (bios)
and the index of the program control register that must be used to store the
integrity digest of the measurement result.

BiosBootBlock (bbb, bios, per) =
startBootSequence — verifyltsel flbbbTvalue —
reportT ol P M S'bbblvalue — reportToPC R!perlvalue —
verifylbios?value — reportT ol PM Slbios!lvalue —
reportlToPC Rlperlvalue — receive ExecHandlelbios — SKIP.

The first event, start BootSequence, is a meta event that makes the resulting FDR
traces more readable. Channel verifyltsel f indicates that the process measures
its own integrity!. reportToT’ PMS and reportToPCR are used to communicate

!One may wonder whether this measurement is really necessary, since in case the BIOS-
Boot-Block was compromised it does not make sense to trust the measurement result. Hence
one can only assume this piece of software is working properly.

CHAPTER 10. BOOT SEQUENCE 176

the results of the self-evaluation to the trusted platform measurement storage
and to the program control registers. Afterwards the same channels are used to
verify the BIOS. Before the BIOS-Boot-Block terminates successfully, it transfers
the execution handle to the BIOS (via receive ExecHandle).

BIOS The BIOS has basically the same structure as the previous process. It
is parametrised by its own name (bios), the next two applications that have to
be evaluated (optionrom and osloader) and their corresponding program control
register indexes (1 for the Option-ROMs and 2 for the OS-loader).

Bios(bios, optionrom, osloader, pcr, per2) =
receive ExecHandlelbios — executeOperations!bios —
veri fyloptionrom?value — reportToT P M S'optionrom!value —
reportToPC Rlpcr!lvalue — receive ExecH andleloptionrom —
receive ExecH andleloptionrom — verifylosloader?value —
reportT ol P M S'osloader'value — reportToPC Rlper2lvalue —
receive ExecHandlelosloader — SKIP.

First, the BIOS receives the execution handle via receive ExecH andle and ex-
ecutes its regular operations (executeOperations). Then it measures the option-
ROMs, reports the measured result and submits the execution handle to the
option-ROMs. After the option-ROMs have done their duty the execution han-
dle is sent back to the BIOS. In the finial stage the BIOS verifies the OS-loader
and transfers the execution handle over to the OS-loader after storing the mea-
sured values.

Option-ROM The option-ROM is actually of inferior significance. It is only
parametrised by its own name (optionrom).

OptionRom(optionrom) =
receive ExecH andleloptionrom — executeOperationsloptionrom —
receive ExecH andleloptionrom — SKIP.

The process OptionRom receives the execution handle, performs its usual tasks

e.g. resetting the card’s start up values) and returns the execution token back
g g
to the BIOS.

Operating system loader The structure of the OS-loader CSP process is sim-
ilar to the structure of the BIOS. It is parametrised by its own name (osloader),
the next element in the chain of trust and the index of the PCR that can be used
to store the integrity digest of the measurement result.

CHAPTER 10. BOOT SEQUENCE 177

OsLoader(osloader, os, pcr) =
receive ExecH andlelosloader — executeOperations!osloader —
verifylos?value — reportT ol PM S'os!lvalue —
reportlT'oPC Rlperlos — receive ExecHandlelos — SKIP.

Initially the OS-loader receives the execution handle and performs the tasks for
which it was designed. The channels verify, reportToT PM S and reportToPCR
complete the measurement cycle of the operating system. Finally the right to
execute its code is submitted to the operating system.

Operating system The operating system is divided in two processes, and both
are parametrised by their own name and their corresponding PCR index. The
process OS models the basic behaviour of the operating system that is necessary
to reach a software state that enables the owner to execute other programs. OS5’
covers the regular operations of the operating system during its run-time.

OS(o0s,per) =
receive BxecHandlelos — executeOperationslos —
0S'(os, pcr)

whereas

OS'(0s, per) =
receive RequestStart?agent — verifylagent?value —
reportT ol PM S'agent!lvalue — reportToPC Rlperlvalue —
receive ExecHandlelagent — OS'(os, per)
(Il
receive RequestShutdown?agent?value —
reportT ol PM Slagent'value — reportToPC R'perlvalue —
0S'(os, per).

The process OS receives the right to execute its code (receive ExecHandle), exe-
cutes the set of initial operations (executeOperations) and moves into its second
stage. The second stage symbolises the running operating system. Clearly in our
model we only deal with, for our analysis, relevant activities. The process can
either receive the request to start a new application (via receive RequestStart)
or close a running process (receiveRequestShutdown). On engaging in event
receive RequestStart the operating system has to extend the chain of trust so
that it also covers the software that has to be executed. It does so by using the
same method as used in the previous processes. Finally, it allows the software
agent, called a trusted agent, to have execution rights. Because more trusted
agents can run concurrently, the process loops back on itself.

If the channel receive RequestShutdown is evoked, the operating system logs
the shutdown in the trusted measurement storage and the program control reg-

CHAPTER 10. BOOT SEQUENCE 178

ister. The receive RequestShutdown event only becomes available through syn-
chronisation if a trusted agent is willing to suspend its tasks exists.

Trusted agent The trusted agent sits on top of the operating system and
is therefore the last element in the chain of trust. We are only including two
different applications in our model. A media player (called mediaplayer) that
can decrypt and play files from our service provider and a software that can tap
between the decrypted data stream of the media player and the graphics adaptor
(called pirate).

Agent(name) =
receive RequestStart'name — recetveExecHandle!name —
executeOperationsiname — receive RequestShutdown!name!shut —
Shutdown!name — Agent(name).

Every trusted agent follows a common behavioural template. First, the owner
sends a request to the operating system to start a specific application (via channel
receive RequestStart). On receiving the resources that are needed to operate
properly, the agent immediately starts to execute its operations. In the case of
the media player this would be to decrypt the movie file and to display it. In
case of the pirate software this would be to copy the movie data stream to a file
on hard disk.

After they have completed their task, the owner can shut them down via
the receive RequestShutdown channel. This channel also instructs the operating
system to act appropriately. The event Shutdown is not really necessary. It is
an introduced meta event that should increase the readability of the FDR, traces.

Trusted platform measurement storage This storage facility consists of
8 different processes that are interleaved with each other. Intuitively one may
assume the best way to model a log file is by designing one process that harbours
a sequence of tuples and every tuple consists of the name of the application and
its status. This would force FDR to explore the behaviour of the storage process
for every possible value of the sequence. This would dramatically increase our
state space. Instead, we decided to apply a technique that is used to increase the
efficiency of the standard intruder model [RSGT01]. We model every tuple that
can be stored in the trusted platform measurement store as its own process. The
process 1T'PM S’ puts these interleaved processes together.

TPMS" = TPMS (bbb, shut) ||| ... ||| TPMS (pirate, shut).

Every storage cell (process TPMS) is parametrised by the name of the piece
of code it stores information about and the result of the corresponding integrity

CHAPTER 10. BOOT SEQUENCE 179

measurement. Initially every log entry has the value shut.

TPMS (name, value) =
reportToT PM S'name?x — T PMS(name, x)
]
reportFromT P M Sname!value — TP M S (name, value).

The memory block itself (I'PMS) can only store a measurement result
(via reportToT' PMS) or communicate the content of its log entry (using
reportFromTPMS). The channel reportToT PMS is only synchronised with
the appropriate trusted software to guarantee that no unauthorised entity can
modify the content of the measurement storage.

Service provider The service provider process has a similar structure to the
trusted platform measurement storage. We decided to model the integrity ver-
ification process in that way to increase the efficiency of the overall model (see
TPMS). We tried to design the integrity evaluation to be as general as possible.
For instance, it is possible for the service provider to cancel the process at any
point.

Integrity(z) =
receive RequestStart!mediaplayer — startIntegrity Request —
(reportFromT PMS'zlok — Integrity'(bios)
M errorIntegrity Request — Integrity(bbb)).

The process Integrity is parametrised by the first element (bbb) that has to
be matched with the first log entry of the measurement log. The meta event
startIntegrity Request indicates that a challenge-response is in progress. After-
wards the service provider has the choice to abort the integrity verification process
(errorIntegrity Request) or to accept the value of the pattern under observation.
This evaluation is performed through a synchronisation of the Integrity and the
corresponding T'P M S process on the channel reportFromT PMS. 1f the trusted
measurement log contains a value that differs from the demanded signature (in
our case ok) then no agreement takes place. Thus, the challenge-response proto-
col cannot be finished and the media player never receives the permission to play
the movie.

If the measurement log contains the desired value, the process Integrity’ is
parametrised by the next element of the desired measurement log file (bios).

The process Integrity’ is similar to the previous process. Hence, we will not
elaborate on the CSP code. If the trusted platform measurement storage contains
the desired value for the bios entry, the challenge-response protocol moves into
its next stage (optionrom). This kind of evaluation progresses until it reaches the
last link in this integrity challenge-response process. The corresponding process

CHAPTER 10. BOOT SEQUENCE 180

Integrity"! verifies whether any non-trusted application is running. It does so
by inspecting the pirate log entry. The desired log entry must be shut; indicating
that the application is not running.

Integrity"! (z) =
report FromT PM S'pattern!shut —
receive ExecHandlelmediaplayer — Integrity(bbb)
O errorIntegrity Request — Integrity(bbb).

The process Integrity’! uses the chanmnel reportFromTPMS to determine
whether the pirate software is running or not (value shut). If this is true, the
service provider signals the media player the right to play the movie (receive-
ExecHandle). In the real world this would be done by transferring the necessary
cryptographic key (see chapter 11).

Specification The specification should determine whether it is possible for a
dishonest user to run the media player and the pirate software at the same time.
To enable us to design a specification as simple as possible we hide all events in
the overall system except receiveExecHandle and Shutdown. This is the bare
minimum that is required to successfully keep track of the running trusted agents
on the platform.

Spec =
receive ExecHandlelpirate — Shutdown!pirate — Spec
O

receive ExecH andle!mediaplayer — Shutdown!mediaplayer — Spec.

The specification offers the choice between starting the pirate or the mediaplayer
process. Once an application is picked it, has to be closed first in order to allow
the other application to be executed.

10.2 Results

We used FDR to verify whether our specification is refined by our overall system.
FDR found various traces that all stem from the same problem. Therefore, we
will only focus on one example to explain the underlying problem.

startBootSequence, verifyltself.bbb.ok, reportToTPMS.bbb.ok
reportToPCR.0.0k, verify.bios.ok, reportToTPMS.bios.ok
reportToPCR.0.0k, receiveExecHandle.bios, executeOperations.bios
verify.optionrom.ok, reportToTPMS.optionrom.ok, reportToPCR.1.0k
receiveExecHandle.optionrom, executelperations.optionrom
receiveExecHandle.optionrom, verify.osloader.ok

CHAPTER 10. BOOT SEQUENCE 181

reportToTPMS.osloader.ok, reportToPCR.2.0ok
receiveExecHandle.osloader, executeOperations.osloader, verify.os.ok
reportToPCR.3.0k, receiveExecHandle.os, executeOperations.os

The first steps are as they should be: the chain of trust is established until
the complete platform is operational (the operating system has taken over). This
state is indicated by the event executeOperations.os. We omit a detailed descrip-
tion of every event, since the trace does not deviate from the desired behaviour
that was described above.

receiveRequestStart.mediaplayer, startIntegrityRequest,
reportFromTPMS.bbb.ok, reportFromTPMS.bios.ok, reportToTPMS.os.ok
reportFromTPMS.optionrom.ok, reportFromTPMS.osloader.ok
reportFromTPMS.os.ok,verify.mediaplayer.ok

reportToTPMS .mediaplayer.ok, reportFromTPMS.mediaplayer.ok
reportToPCR.4.0k, reportFromTPMS.pirate.shut

receiveExecHandle .mediaplayer

The event receive RequestStart.mediaplayer signals that the user wants to see
the movie. For this, the operating system verifies the executable of the media
player in the standard fashion. To receive the decryption key for the movie
file the service provider verifies the system state via the dedicated channels
(e.g. reportFromT PMS.mediaplayer.ok). Finally, the provider agrees upon
recetve ExecH andle.mediaplayer and the file is decrypted and the movie is
started.

receiveRequestStart.pirate, verify.pirate.ok
reportToTPMS.pirate.ok, reportToPCR.4.ok
receiveExecHandle.pirate

In the final stage of this attack the dishonest user simply starts the pirate software;
thus both programs are running at the same time. This problem is often known
as the Tume of check to time of use problem. Clearly the vulnerability of the
design lies in the absence of a continuous integrity challenge-response procedure.
In the next section we will discuss the implications of this obvious attack.

10.3 Discussion

The result we obtained and the underlying problem have to be considered very
carefully in order to come to the proper conclusions. Theoretically the chain of
trust that is established during the boot cycle seems to be flawless in the sense
that the true system state can always be determined. If the information about
the system state were available at all times to the integrity challenger (service
provider), then the system would be perfect.

A possibility for encountering the problem is to demand that a specific trusted
agent, which allows other trusted agents to register their demands, is present at

CHAPTER 10. BOOT SEQUENCE 182

any given point in time. This supervisory trusted agent continuously monitors
the measurement log and the program control register. Whenever the system
changes into a new state, a reevaluation for all registered agents has to take
place. This strategy is similar to the push model of dynamic web services. Look-
ing at TCPA specification 1.1b [TCPA02] the only way to enable the supervisor
agent to retrieve the required state information is by evoking TCPA shielded
capabilities. This requires the authorisation of the user. The only feasible way
to handle this situation is to force the user to hand over his authorisation secret.
With this secret, however, the supervisory agent could engage not only in the
necessary commands but all functions. This is clearly unacceptable. Specifica-
tion 1.2 [TCPA03d] remedies this drawback, by introducing a fine granulated
delegation mechanism that allows a user to transmit execution rights of single
functions to other entities.

Another issue that the TCPA leaves nearly un-addressed is to what degree,
and to what extent or how the security relevant activities are measured. Focusing
on the logging process of executed software (e.g. BIOS), Microsoft in its Next
Generation Secure Computing Base (NGSCB) approach demands that the initial
memory block that is reserved for the executable is logged and hashed. However
they do not provide information on successive processes. During normal operation
of the platform it may very well be that a user starts a trusted agent and this
application needs additional library functions. The standard way to deal with this
situation is that the application dynamically loads an additional library (in the
Windows environment this is called a Dynamic-Link-Library (DLL)). That DLL
contains the required functionality. The question that arises is whether or not the
DLL code is verified before execution. It would be an easy task for a dishonest
user to hide additional functionality in the library, thus acting in an illicit manner.
If the memory block that is reserved for the DLL is measured as well, it will result
in an altogether different problem. Clearly then the integrity measurement log
would be very accurate. However, the log file itself would become extremely
difficult to interpret.

Returning to the situation in our integrity challenger example: when we con-
sider all the different BIOS versions with all their different configuration possibil-
ities, it becomes clear that even considering merely the first link in the chain of
trust a vast number of valid measurement results exist; adding other links of the
chain of trust increases the number of legitimate log traces exponentially. The
only feasible way to verify such a trace seems to be that the challenger uses the
hash sums to verify the log file and then sends the different measurements to the
vendor of the corresponding measured application. The vendor could then deter-
mine whether or not the settings and the executed code are compliant with the
security specifications. This would somewhat tackle the problem of evaluating a
simple boot cycle without the above mentioned dynamic link library problem:.

Let us assume that we have a system that measures every executable (includ-
ing dynamic link libraries) and that there exists an infrastructure that allows

CHAPTER 10. BOOT SEQUENCE 183

the service provider to out-source the evaluation of the measurement log to the
vendors of the corresponding applications. Now considering the case where a user
uses his business PC and an office suite during the day and, after work, he wants
to launch an trusted application (watch a movie on demand) that requires an
integrity-challenge response procedure. The fact that the measurement log car-
ries the complete history of the working day tremendously increases the resources
required to evaluate one application. In addition to that fact, some users may
decide just to log off their machines instead of shutting them down. This would
mean that every call from a specific application for an additional executable over
the last few days would have to be verified.

This example shows that such an approach does not scale well with the run
time of the trusted platform (e.g. DLLs).

Finally, the question on how one can determine that a specific software is
not running is another un-addressed issue. In terms of our example, the service
provider has to possess a reference list that contains every forbidden application,
including every version of each application. Even if he has such a file, a sophis-
ticated dishonest user could write his own illicit application, which would then
clearly not be on the reference list.

It remains interesting to see how the TCPA tries to solve these problems.

10.4 Conclusion

In this chapter we have investigated the first steps of the chain of trust that are
vital for the trusted computing environment. We have designed a CSP model
involving the BIOS-Boot-Block, the BIOS, option-ROMs, OS-Loader, the oper-
ating system and various applications. To test whether the collected information
about the system state can be used to perform a proper integrity challenge-
response, we added a service provider that would allow an installed application
(mediaplayer) to execute only if the platform was in a desired state.

FDR provided us with a very obvious example that defied the demands of
the service provider. The underlying flaw is rooted in the fact that no service is
provided that continuously monitors the system state and that matches a changed
setting against temporal security requirements (e.g. pirate is not running as long
as mediaplayer is executed).

The chapter was closed by a discussion about the implications of introduc-
ing a supervisory application and about the expressiveness of the measurement
log itself. The supervisory agent has to keep track of state transition within
the trusted platform and if necessary, re-initiates an integrity challenge-response
procedure to determine whether some application specific security policies are
violated.

A final note concerning the value of the FDR counter-example: we do not
know whether this issue has not been addressed because of marketing-political

CHAPTER 10. BOOT SEQUENCE 184

reasons or because the specifying body did not investigate carefully enough the
specification on an operational rather than on a functional level. Hence, we
cannot claim that our model reveals a novel attack. However, what we can say
at least is that our model and the underlying technique enabled us to think
thoroughly about the overall system.

Chapter 11

Digital Rights Management

In this chapter we will look at one application that could profit from the enhanced
feature set of a TCPA trusted platform. There are various interesting environ-
ments that profit from the functionality we have described so far. We chose
Digital Rights Management (DRM). DRM is the management, maintenance and
enforcement of accessibility rules upon digital content. Within that area we focus
on a simple video on demand infrastructure. The goal of this chapter is to give
an example that there are scenarios where the attacks discovered in 8 lead to
serious vulnerabilities.

We will suggest a DRM protocol that should ensure that the user can down-
load a movie and that he can only use the obtained file in a legitimate fashion.
In this case the service provider determines the legitimacy of an action. We will
use the AACP (Asymmetric Authorisation Change Protocol) to design a protocol
that suites our purpose.

DRM is a frequently discussed tropic in today’s media, especially since Mi-
crosoft and the TCPA presented architectures that would allow the enforcement
of reliable rights management [And03, Pfi02, Plu02b, Plu02, Him02, Pfi02]. The
topic itself is very broad and most of the main issues within that area have a
wide scope. Therefore, before we start describing our approach, we will give an
overview of DRM.

11.1 Review of current problems and solutions

DRM systems are becoming increasingly important in a world that relies more
and more on the digital distribution of services (i.e. content). As with non-
digital transactions, the seller or producer of goods does not want a customer
to reproduce the goods without his permission. Hence, the right owner of the
protected content must have continuous control over the content even when it
leaves the owner’s digital sales table. More precisely, DRM strives to guarantee
the following:

185

CHAPTER 11. DIGITAL RIGHTS MANAGEMENT 186

1. It should not be possible to consume content without the permission of the
intellectual-property owner.

2. It should protect the content from being modified in an illicit manner.
3. It should identify protected content with the intellectual property owner.
4. It should prevent unintended reproduction of content.

Protection mechanisms that safeguard such restrictions, can be implemented in
various ways. The most prominent way of distinguishing between the various
approaches is by implementation level. For example, iTunes resides in the appli-
cation layer [VerO1]; Microsoft’s Rights Management System (RMS) originates in
the operating system level [Mic04]; and the Content Scramble System (CSS) was
an attempt to root the DRM protection on the hardware level [Kes00].

Another way to classify DRM systems is by their architecture. [Par00] intro-
duces a common taxonomy [AH04|. [Par00] distinguishes between systems that
use or do not use a virtual machine, that use fixed embedded or external rights
sets and that use a direct or indirect communication line between the service
provider and the customer.

The virtual machine is a trusted agent that is installed on the customer’s
platform and has to be obtained from the service provider. The digital content
can only be accessed via this trusted agent. The DRM model we are discussing
makes use of such a virtual machine. The rights set contains all necessary in-
formation about the operations the customer is allowed to perform. These sets
can be fixed sets that are defined once, and, thereafter, are applied to all DRM
protected content. These sets are usually incorporated in the virtual machine.
Another option for defining the control sets, is be to embed the rights sets in the
content. This would make the whole DRM system more flexible because they
can easily vary from content to content. Finally, the sets could be stored exter-
nally. Therefore, whenever the customer wants to use the DRM protected data,
the virtual machine must request the appropriate set to determine whether the
requested operation is permitted.

The protocol we discuss uses a virtual machine (trusted agent) and an external
rights set.

Mainly negative points of view are taken in today’s news [mic03, Cli04]. This
is due to some serious issues that have not yet been fully addressed. The main
issues are:

1. Privacy - in order to keep track of the digital content, identification numbers
have to be introduced. This allows service providers to keep track of certain
behaviour of the user.

2. Fair use - the user’s legal rights sometimes clash with the rights granted
by the service provider. So, for instance, one is allowed to burn backup

CHAPTER 11. DIGITAL RIGHTS MANAGEMENT 187

copy of a music Compact Disc (CD). DRM systems with a coarse granular
rights set may not allow this. More generally, the DRM may not permit all
actions that are legally permitted [AHO04].

3. External control - the DRM system gives the service provider certain control
over the user’s platform [And03].

This introduction is far from complete and the interested reader is referred to
[AHO04, RD03, Lyo01, Par00] for an introduction in DRM. For a more elaborate
requirement analysis on DRM participants see [BCP+99]. [MHBO03] discusses the
interference of DRM systems with the legal rights the purchaser of digital content
can expect. Additional information about the legal rights and implications of over
restriction through DRM systems can be found in [Gro03, WIPOO04].

11.2 The integrity challenge-response protocol

Clearly we cannot include all problems that arise because of legitimate transfer
and modification of rights. We will omit these issues in the following design.
Thus the only resulting requirement for our protocols is:

The owner of the platform must not use the digital content without
the direct permission of the rights owner.

The basic architecture for our approach consists of a service provider, a user that
may or may not be honest and a fully certified trusted platform.

In section 10 we introduced a term called integrity challenge-response proto-
col. For our boot sequence model it was not important to consider the integrity
challenge’s precise transactions between the remote entity and the trusted plat-
form. For the following discussions however we have to take a closer look at a
version of this protocol. The following protocol intends to allow a remote entity
to store data securely on a trusted platform. Secure in this sense means that the
data is only available if the system is in a trusted system state. We will quote
directly from [Pea02]:

Another choice is to build encrypt the data at the target. This uses a
variant of the standard challenge/response protocol, called by TCPA
an ”integrity challenge”. The source sends a nonce to the target plat-
form, which signs the nonce with a TP identity key and incorporates
the current PCR values into the signature. The target returns to the
source the signed nonce and PCR values. The source verifies that the
nonce is correct, verifies that the signature was done using an identity
key of a genuine TP, and verifies that the PCR values indicate a safe
software environment. The source sends plain test data to the target.
The target then uses the bulk encryption to encrypt the plain text

CHAPTER 11. DIGITAL RIGHTS MANAGEMENT 188

data and wraps the bulk encryption using a non-migratable wrapping
key bound to certain PCR values.

At this point we omit a C'asper driven analysis because it is manifestly apparent
that this protocol does not work. If we use our standard intruder scenario, the
intruder could overhear the plain text. Since the plain text is not protected, he
could circumvent the on DRM based restrictions. The assumption that the chal-
lenger uses an encryption protocol as a basis for the suggested protocol eliminates
this attack possibility. Another issue is that this approach does not properly au-
thenticate the platforms to each other. This leads to another obvious attack
scenario.

The dishonest user could have two platforms: one in an un-trusted condition
and another in a trusted software state. He could use the un-trusted platform
to trigger the action that requires the integrity challenge response. The integrity
challenger would then establish an encrypted (e.g. SSL) connection with the
platform and send his nonce (Na)'. Afterwards, the dishonest platform launches
an integrity challenge with the trusted computer and uses the nonce Na. The
trusted platform answers in the obvious way and returns the singed nonce and
the PCR values. The dishonest computer then injects the received data into the
SSL connection. The initial integrity challenger then finishes the protocol run
by sending the plain text data. Again, the dishonest user could use the data at
his will. This problem could be solved if the trusted platform identity key that
is used to sign the integrity response could be linked to the identity that is used
for the SSL based authentication. Unfortunately, trusted platforms possess an
identity key system (see privacy certification authorities (P-CAs) Chapter 7) that
should prevent an entity from correlating information about the activities of a
platform. Therefore this solution would not bode well with the demands of the
privacy community.

Nonetheless, at this point we assume that the integrity-challenge is built upon
a protocol that ensures authentication, integrity and secrecy Moreover, the au-
thentication is directly or indirectly tied to the identity key that has been used to
sign the nonce and the PCR values. Indirectly in this sense means that a trusted
third party vouches that the SSL identity and the identity key refer to the same
TPM. This solution could solve the privacy concerns.

An altogether different solution is to include the challenger’s and responder’s
IDs in the integrity response. For our AACP based DRM protocol we will only
use the first part of this procedure (we will omit the transmission of the plain
text and its successors).

Assuming now that this procedure is doing what it is supposed to do, little
more is required to complete a DRM protocol.

!Note that the SSL connection guarantees authentication and secrecy. However, this au-
thentication refers to a host-to-host authentication rather than an identity-to-identity authen-
tication.

CHAPTER 11. DIGITAL RIGHTS MANAGEMENT 189

11.3 The AACP version

The approach’s purpose is to give an example of that even if the attack upon the
AACP (see chapter 8) found earlier had no immediate impact, it still can have
one if another protocol wants to use the protocol as basis for a more complex
protocol. First we will describe the general procedure of the DRM protocol and
then we will extend the AAC protocol. Finally, we will discuss the vulnerabilities
of the system.

The key part of the protocol is the creation of an encrypted object that
contains the symmetric key for the encrypted data file. This key object is created
via the ADIP, and the authorisation secret is changed via the AACP to a value
that is unknown to the user. This key object is stored on the user’s side and
the corresponding object handle is stored inside the code of the trusted agent.
Initially the trusted agent also contains a public/private key pair that is linked to
his ID and a hash sum of the private key. Once the AACP session is completed,
the trusted agent requests the authorisation secret to initialise the key object
with his private key. After he has stored his private key inside the object he
erases the private key from his code base. This should prevent a sophisticated
user from reverse engineering the key (i.e. extracting it form the binaries).

Whenever the user requests a movie file it is symmetrically encrypted and
the symmetric key is encrypted with the public key of the trusted agent. If the
user wants to access the restricted data, he has to launch the trusted agent.
The trusted agent requires the authorisation secret of the key object to read his
private key and to subsequently unlock the data file. Thus, he requests the secret
from the service provider. This communication is encrypted via SSL. The service
provider performs an integrity challenge and verifies whether or not the system
state is agreeable and whether or not the user has sufficient rights to access the
data. If so, he transmits the authorisation secret.

At this point we assume that the vulnerability discussed in chapter 10 is solved
and that the integrity challenge response procedure is also without vulnerabilities
(no SSL session hijacking). Therefore, the service provider can be sure that the
system is in the desired state and that the only entity receiving the authorisation
secret is the trusted agent. The trusted agent uses the received information to
access the decryption key for the file. More precisely, the trusted agent unseals
the key object, uses the hash sum to verify the obtained private key and finally
decrypts the symmetric key. Note that the key object is not only tied to a specific
authorisation value, but also to a specific TPM. Thus, it is impossible for another
TPM to access the object. Furthermore, the key object can only be accessed if
the systems PCR has the right value. This approach has the following advantages
(mostly for the service provider):

1. It is more flexible. The service provider can change rights basically on the
fly. Clearly this advantage has terrible disadvantages for the user. [And03]

CHAPTER 11. DIGITAL RIGHTS MANAGEMENT 190

discusses the scenario where the service provider can remove the rights of
any user at good will in great detail. For our extremely simplified DRM
this is, however, of no concern.

2. It provides more security against sophisticated attacks, since the authori-
sation secret / private key is stored outside the trusted agent’s executable.
Another solution would be to encode it into or store it in the trusted agent.
This, however, would allow a dishonest user to reverse-engineer certain parts
of the trusted agent, and obtain the authorisation secret through this.

11.3.1 Analysis of the protocol

We will only focus on the core of our small DRM protocol - the change of the
authorisation secret of the key object. For this we extend the AACP of section
8 to a three participant system. Figure 11.1 shows the information flow between
the owner of the platform, the TPM and the service provider.

Service Provider

k Platform Owner TPM
(ObjectOwner)

Message 1 (OI-AP)

Message 2

Message 3 (antiReply.nonce)

Message 4 (TPM_ChangeAuthAsymStart)

Message 5 (Output)

Message 6 (certifyInfo, tempKey)

Message 7

Message 8

Message 9 (TPM_ChangeAuthAsymFinish)

Messgge 10

Figure 11.1: The extended AACP

Since we already described the AACP, we will only focus on the parts that
have to be changed. The general succession of commands is changed slightly
[Pea02]. The platform owner initiates the OI-AP session, submits the command
TPM_ChangeAuthAsymStart and receives the output. The second command
however (TPM_ChanceAuthAsymFinish) is sent by the object owner [Pea02].
Since the command TPM_ChangeAuthAsymStart, sent in message 3 of the orig-
inal protocol includes the data value antiReply.nonce and this value should be
provided by the object owner, we include a message that sends that data value

CHAPTER 11. DIGITAL RIGHTS MANAGEMENT 191

from the object owner to the platform owner (Message 3).

Message 3. ObjectOwner — Quwner : antiReply.nonce
Message 4. Owner — TPM : tag,paramSize,ordinal,idHandle
antiReply.nonce, tempKey

The specification mentions this transfer only indirectly. Thus, we do not include
additional data or manipulate the data in any way (i.e. encrypt). The TPM then
acts as described in chapter 8. Once the platform owner has received the output
of the command, he has to communicate certain information to the object owner.
We will quote this part from the specification:

It is envisaged that tempkey and certifylnfo are given to the owner of
the entity whose authorisation is to be changed. That owner uses cer-

tifylnfo and a TPM_IDENTITY_CREDENTIAL to verify that temp-
key was generated by a genuine TPM.

We introduce the missing protocol communication (Message 6) only consisting
of tempkey and certifylnfo:

Message 5. TPM — Quwner : tag, paramSize, returnCode, certifylnfo
stgSize, sig, ephHandle, tempK ey
nonceEven, continueAuthSession
HMAC(IDKey.usageAuth, data)

Message 6. Owner — ObjectOwner : certifylnfo,tempKey

The object owner verifies the received data by using various public certificates
and prepares to submit the command TPM_ChanceAuthAsymFinish. Various
parameters are required for this command :

Message 9. ObjectOwner — TPM : tag, paramSize,ordinal, parentHandle
ephHandle, entityType, newAuthLink
newAuthSize, encNewAuth, encDataSize
encData, authHandle.Parent, nonceOdd
continueAuthSession
HMAC (parentKey.usageAuth, data)

We will omit a description of the meaning of every parameter since we have
already described them in chapter 8. It is only important to notice that to
guarantee the integrity of all parameters, the authorisation secret of the parent
object is required (HMAC(parentKey.usageAuth, data)). However, the object
owner is not in possession of that secret, and the platform owner cannot transmit
the secret. If he would transmit the secret otherwise, the object owner could
unlock more than just one protected object. This leaves only one choice —

CHAPTER 11. DIGITAL RIGHTS MANAGEMENT 192

the object owner generates the values entityType, newAuthLink, newAuthSize,
encNewAuth, encDataSize, encData and nonceOdd and transmits them to the
owner of the platform (Message 7).

Message 7. ObjectOwner — Quwner : tag,paramdSize,ordinal, parent Handle
ephHandle, entityType, newAuthLink
newAuthSize, encNewAuth, encDataSize
encData, authHandle. Parent, nonceOdd

continueAuthSession

The owner of the platform then generates the HM AC over all parameters and
returns the resulting digest.

Message 8. Owner — ObjectOwner : HM AC (parentKey.usageAuth, data)

Then the object owner submits (see Message 8) the full command to the TPM.
The TPM processes the command and returns the output to the object owner
(Message 10).

Message 10. TPM — ObjectOwner : tag,paramdSize, returnCode, outDataSize
outData, salt Nonce, changeProof
nonce Even, continue AuthSession
HMAC (parentKey.usageAuth, data)

For the further course of this analysis it is important to take a closer look at the
field changeProof. It uses the structure TCPA_CHANGEAUTH_VALIDATE.
This structure is defined as follows [TCPA02]:

typedef struct td TCPA_CHANCEAUTH_VALIDATE {
TCPA_SECRET newAuthSecret;
TCPA_NONCE ni;
} TCPA_CHANCEAUTH_VALIDATE;

After receiving Message 10, the object owner cannot validate the integrity of
the message since he cannot recreate the HMAC. Additionally, the changeProof
certificate does not include enough information to verify more than the fact that
the authorisation value of an object has been changed to the value stored in
TCPA_SECRET and that this protocol change did include the nonce nl (non-
ceOdd).

To obtain a suitable Casper description we applied the same simplifications
as in the initial AACP. See chapter 8 for more details.

CHAPTER 11. DIGITAL RIGHTS MANAGEMENT 193

11.3.2 Results

FDR provided us with various traces that violated the specifications. Rather
than explaining one trace we will directly generalise the attacks found and apply
it onto our DRM scenario afterwards. The interested reader can obtain one
example trace from the appendix A.

Basic attack The traces found by FDR is facilitating the fact that the in-
tegrity of the second command TPM_ChanceAuthAsymFinish is not properly
guaranteed. The object owner must rely on the good will of the platform owner
because only he has the parentKey.usageAuth that is necessary to generate or
verify the HMAC, which is responsible for the integrity of Message 10. Thus,
the dishonest owner could intercept message 8 and inject his own authorisation
secret (exchanges encNewAuth and newAuthLink).

In parallel, he could launch another AACP session with the TPM and submit
the intercepted Message 9 unchanged to the second AACP session. Therefore, the
TPM would perform two asymmetric authorisation changes upon the same object
— once with the faked secret of the dishonest owner and once with the secret
of the object owner. The dishonest owner could intercept both replies from the
TPM (Message 10) and forge a new Message 10 in order to submit that message
to the object owner. The faked response could contain the data object that can
only be accessed via the faked authorisation secret and the changeProof that was
generated to certify that the authorisation secret of the object has been altered to
the value the object owner has provided. Since the object owner cannot verify the
keyed hash sum of Message 10 (HMAC(parentKey.usageAuth, data)) and the
changeProof certificate does not include identities, he cannot discover that the
certificate changeProof does not belong to the encrypted object in the message
(outData).

Extended attack If we apply this attack to our scenario, we obtain the fol-
lowing;:

1. The service provider generates a secure object on the platform of the dis-
honest user.

2. The service provider initiates an AACP session to change the authorisation
secret to a value that is unknown to the user.

3. The dishonest user uses the AACP attack to fool the service provider into
accepting the object with the faked authorisation secret. On behalf of the
service provider, the trusted agent stores the key object on the trusted
platform and stores the key handle inside his code base.

4. The trusted agent initialises the key object with his private key and removes
that key from his code base.

CHAPTER 11. DIGITAL RIGHTS MANAGEMENT 194

5. The dishonest user uses his authorisation secret to change the PCR setting
of the key object so that it can be accessed even if the system is not in a
trusted state.

6. The dishonest user triggers the procedure for accessing the protected con-
tent, thereby launching the trusted agent of the service provider.

7. The platform itself is in an un-trusted system state at that stage. The
trusted agent acts according to our DRM protocol and requests the relevant
authorisation secret.

8. The dishonest user injects his own authorisation secret. The trusted agent
relies on the fact that, if he receives the right authorisation secret and the
key object is accessible, then the platform is in a desired state.

9. The trusted agent accepts the secret, loads the object and requests the
TPM to access the key object.

10. The TPM verifies the object, the authorisation secret and the system state
and grants access to the object.

11. The trusted agent obtains his private key and decrypts the symmetric key
to access the protected data. content.

11.3.3 Discussion

If one assumes that the trusted platform is a single user system, this attack clearly
does not exist. However, the specification states that the AACP was introduced
for cases in which the ADCP the owner of the platform (owner of the parent
object) could overhear the conversation. Therefore, he could deduce the new
secret. This only makes sense if there are more users or agents involved. We are
aware that if we would change the overall structure of our DRM protocol it is
possible to counterbalance the AACP flaw. An easy way to prevent the attack
would be to include the identity of the AACP initiators (service provider and
platform owner) in the changeProof certificate.

We have only focused our analysis on the AACP part. The complete DRM
protocol, however, is comprised of many sequentially executed protocols. This,
as discussed in chapter 9 means, for a thorough analysis, we also have to verify
whether or not there are feature interactions between the protocol runs that
could lead to an illicit outcome. Since we made the most restrictive assumptions
about all the protocol parts except the AACP, we are pretty confident that this
is not the case in our little example. However, to tackle similar and more realistic
examples, it is necessary to develop techniques that can guarantee or even enforce
that there are no unintended interactions between the protocol runs. As already
discussed in 9 this is an avenue for future research.

CHAPTER 11. DIGITAL RIGHTS MANAGEMENT 195

11.4 Conclusion

In this chapter we have briefly introduced digital rights management and some
issues that have to be solved. We used TCPA technology to suggest a simple
DRM protocol.

The approach used the AACP protocol from chapter 8. In the authorisation
chapter we only included two participants - the owner of the platform and the
platform itself. We used the information in [TCPA02] to extend the protocol so
that it involved the intended three participants: the owner, the remote entity
and the trusted platform. Whilst the vulnerability discovered in chapter 8 did
not directly affect the functionality of the protocol, it did so in the version with
three participants. We discussed how a dishonest user could circumvent the DRM
protection that was based on the AACP. Finally, we discussed the seriousness of
the discovered flaw.

Note this protocol did not include the general management of of the digital
content’s usage rights it is trying to protect. Introducing a holistic solution that
solves current problems within the DRM area is left for future research.

Chapter 12

Conclusion

12.1 Summary

In this thesis we have shown that general-purpose model checkers such as FDR
can be used to analyse intrusion detection systems, trusted platforms and their
environment.

Current testing methods to evaluate IDSs are not sufficient for meeting the
increasing needs for security. They use predefined attack scripts to verify whether
the IDS is working properly. These approaches seem favourable on first sight since
they are not difficult to set up and the results are easy to interpret. However most
of them suffer from one or more of the following problems: they are largely unable
to find more complex attacks such as emergent faults, they are usually unable to
find new attacks and they are unable to verify designs. The last point is, in early
stages of the development of security critical systems, of utmost importance.

Trusted platforms seek to establish chains of trust between processes. These
processes do not necessarily reside on one host. Thus protocols are required
that link these processes together. This situation increases the complexity and
difficulty of verifying the trusted platforms.

Our goal was to find new ways to verify the detection capability of IDSs and
to use CSP to analyse the trusted platform concept of the TCPA. The results
can be summarised as follow:

Investigation whether CSP is suitable to model intrusion detection infrastruc-
tures and trusted platforms. In the IDS’s case, we did so by first considering the
reproduction of known attacks. Once we reached that goal, we used our knowl-
edge to broaden the focus and to decrease the restrictions of our models. In
section 3.3, we considered whether the Internet Protocol version 4 (IPv4) gives
an attacker the opportunity to launch an undetected attack against a target. In
section 3.4 we increased the complexity of our CSP model. The model from now
on considers all, for packet reassembly, relevant fields. Section 3.5 describes a
non-deterministic process based on RFC 815, thus enabling us to verify the in-

196

CHAPTER 12. CONCLUSION 197

teractions between network nodes that use different reassembly algorithms. For
the first two models we also suggested improvements that prevent the occurrence
of the detected vulnerabilities.

To investigate whether or not CSP can be used to verify the TCPA’s approach
we analysed the built-in authorisation protocols, the boot sequence, the context
management and an appropriate DRM setting. In chapter 8 we showed how
one can use the approach presented in [BL02] to verify a stream authentication
protocol. Moreover we discussed the seriousness of the discovered weaknesses
and their relevance for future protocols. Chapter 9 discusses not only the session
caching process of the TPM but also ways how one can reduce the complexity
of external communication protocols. In chapter 10 we presented a CSP model
of the boot sequence and its logging process. In addition, we discussed various
weaknesses of the model and their implications on the commercial market. Finally
in chapter 11 we extended one of the authorisation protocols in an attempt to
design a DRM protocol.

Development of simplifications that reduce the unmanageable state space of
our models. Intrusion detection systems have to guard events within a network,
therefore these systems are usually very complex. This complexity is further
increased by the degree of distribution of the network under surveillance. If
the network is highly distributed many agents have to be employed to oversee
the system. These agents have to communicate with other agents to share vital
information. The complexity is additionally increased by more elaborate attack
techniques. Hence the IDS and the environment it is embedded in can only be
modelled accurately by a process that has very many states.

Unfortunately, since FDR scans through the whole state space of its models
and the data complexity of the model is above a certain threshold, not necessarily
infinite, it becomes unfeasible to use FDR. In order to meet this requirement we
pruned away certain fields and functionality of IPv4. Further we restricted the
network topology and the scope of every involved data type.

However by applying these abstractions it remained unclear whether these
restrictions did not hide vulnerabilities. In section 4 we showed that detail we
pruned away did not harbor additional attacks.

We changed the focus of the time-to-live model from section 3.3, to move
towards a more complete analysis, now only requiring {A, B} as potential bit
sequences. Finally, we generalised the parameters of the system further. We
showed, by emloying data independence techniques [Laz97|, that a buffer of size
5 and the range {1..3} for the TTL field are sufficient. Finally we discussed the
generalisation of the network topology.

Investigation of time in relation to intrusion detection. We inspected not
only different ways to model timeout mechanisms within the CSP calculus but
also derived from our results a method to convert untimed processes that use

CHAPTER 12. CONCLUSION 198

the timeout operator into a corresponding discrete timed process. We used two
approaches, first we designed an easy-to-build CSP model, and second we intro-
duced, a more complicated, discrete time CSP model. The first model employed
a sliding choice operator to model the timeout mechanism in the [Pv4 reassembly
algorithm. Whilst the model was easy to develop the results obtained were am-
biguous and difficult to interpret. Hence we designed a more precise system with
tock events. This discrete timeout model was more difficult to develop however
the results left no room for wrong interpretations.

This examination concluded with a discussion about the relationship between
these models. Using these relations we derived a function f that transforms
untimed processes into a discrete timeout process. We showed that whenever the
specification is refined by an untimed model then it is also by the corresponding
discrete model. This gives us the option, for untimed safety specifications, to
verify the process using the simpler version of timeouts, without fearing to miss
a specification violation in the more complex discrete time model.

Finding ways to reduce the complexity of external communication protocols.
In chapter 9 we had to model a system that relied on external input. The focus
of the investigation was not on the communication protocol but on the internal
transactions that take place after receiving a certain piece of data. If one wants to
verify processes within the TCPA setting we described, this scenario repeatedly
occurs. In section 9.4 we discuss certain ways how one can prune away details
of external communication protocols. We classified protocols according to the
properties they offer and picked five classes that occur frequently:

1. authentication in combination with drop resistant stream integrity
2. authentication in combination with stream integrity

3. secrecy in combination with drop resistant stream integrity

4. secrecy in combination with stream integrity

5. authentication and secrecy in combination with drop resistant stream in-
tegrity

For every case we discussed the possible actions an intruder can perform. From
them we derived a model that incorporated the most general intruder and finally,
we showed that our model still satisfied the required security properties.

12.2 Related work

Vulnerability identification and analysis has been a key topic in computer science
for some time now. One of the first attempts to build an automatic vulnerability

CHAPTER 12. CONCLUSION 199

detector was COPS [FS90]. In common with other approaches (SATAN, TIGER
and NESSUS [Nes]) it looks for already known attacks. It manages this by firing
known attack patterns against a particular host. However, this kind of direct
testing is not suitable for spotting unknown attacks.

[LEGT00a, LEGT00b, PN98] used synthetic or real world attack sets to verify
whether or not IDSs are able to detect the attacks. However, since the test sets
contain either known or designed, synthetic attacks, by human hands [RDS99],
they are not able to detect completely novel weaknesses.

In [RA00], Ritchey and Ammann propose a high level approach to detect
whether it is possible for an attacker to leverage the existing vulnerabilities in
the network to get a higher degree of access. The configurations of the network
nodes were abstracted to state machines and the attacks were represented as state
transitions in these machines.

In contrast to that [RS02] uses a low level description of a UNIX file system to
spot single configuration vulnerabilities. The focus is more on finding new attacks
rather then finding a combination of attacks that enables the attacker to penetrate
the system even more. The differences between ours and Sekar’s approach lies in
the state space: they use an infinite model and we use approximation to restrict
our model to a finite one. Therefore, we can use a common model checker such
as FDR. Additionally they use invariants to manifest their security policy in
contrast to using a specification, as we do. The difference becomes clear during
the examination of the counter examples: they have to establish an intentions
model to prune away all paths that are against the defined invariant but do not
violate the security policy — we have no such paths.

Another approach of using model checkers for vulnerability identification is
proposed in [AB00, ADX00]. However they use the model checker combined with
mutation testing techniques to generate and recognise test sets rather then testing
directly.

[RB01] was using our paper [RL02] as a foundation to show that the language
TLA+ can be used to achieve the same as CSP. Furthermore, they showed how
to use TLA+ to introduce time into our model. In comparison to our approach
(completed early 2003) they do not distinguish between different ways how one
can model time.

The topic of trusted computing is a frequently discussed topic in today’s
media [Him02, Pfi02, Plu02, Plu02b, And03]. At the beginning the majority of
published work was very negative about the TCPA’s and Microsoft’s approach
[Him02, Pfi02, Plu02, Plu02b]. The main arguments against the architecture
were: loss of privacy and loss of control of the own computer platform. A great
portion of the justifications that were used were based on wrong understanding
of the design descriptions. This was only partly the fault of the the media, since
the TCPA’s initial descriptions were very ambiguous. This has improved since
the beginning of 2002. However even now we faced serious restrictions because of
poor descriptions of mandatory functionality. This, as shown in 3.5, is can lead

CHAPTER 12. CONCLUSION 200

to vulnerabilities in the system’s final implementation.

Since the TCPA’s vision of an extendable trusted platform system is still very
young there are no formal verifications that analyse this set of features (as far as
the author is aware of). Clearly, there are many papers that describe and discuss
the specification [TCPA03d, TCPA02], such as [Pea02] or [Mh04] but they all fall
short on formally justifying the weaknesses or advantages they highlight.

On the other hand there are many publications that relate to the approaches
we used to verify the parts of the trusted platform; for instance [LR97, RSGT01,
LBHO1] concern with the formal verification of security protocols using model
checkers. Broadfoot and Lowe in [BL02] build the foundation for our analysis of
the stream authentication protocol OS-AP (and OI-AP). They analyse the time
efficient loss-tolerant authentication protocol which uses key chains to bind the
messages of a data stream together. [BL03| investigates the relation ship between
the secure transport layer protocol (SSL) and a high level protocol that is using
it. They suggest how one can abstract away a low level protocol that provides
authentication, secrecy and integrity. In section 9.4 we extend their work by
introducing the distinction between stream and message integrity. We discuss 5
different models that allow to prune away the transaction overhead that is needed
in order to guarantee the properties of the low level protocol.

The advantages of the approach we use to verify IDSs and the TCPA archi-
tecture are:

e The approach finds all possible attacks subjected to the modelling assump-
tions, not just known ones, due to the working principle of our model checker
FDR.

e FDR provides us with easy-to-understand counter examples.
e The traces can be converted into signatures or profiles (IDS only).

e Due to the modularity of our models, the workload to add new processes
or to change the network in our intrusion detection verification is low.

e We use a finite model, which allows us to use common model checkers.

e Our testing is specification based, which keeps the effort of encoding security
policies low.

12.3 Future work - IDS

As shown so far, the CSP approach is a suitable way for identifying emergent
faults. We will explore some new protocols and their impact on the intrusion

detection area. IPv6 [CEC02, HD98b, KA98a, KA98b, KA98c, MD99, MDM96]
is the upcoming protocol, so we will model and analyse it.

CHAPTER 12. CONCLUSION 201

Since attacks are getting more sophisticated (e.g., distributed [CTA99, Gib02])
more complex systems structures of IDSs are required to collect and interpret ex-
pressive data [JM00, BR, Hel00]. If we consider other security policy enforcing
devices such as firewalls, the verification of the overall systems seem to be un-
manageable. [JWO01] uses formal methods to analyse the behaviour of firewall
rule sets. The extension of this and our work would include the verification of
the whole security perimeter. Considering the size of out current IDS models
and the size of the model in [JWO01] this seems to be unmanageable at first sight.
However, it should be possible by employing the following three strategies: us-
ing more layers of abstraction; data-independence techniques to restrict scopes
of identifiers; as well as using data independent induction [CR00, CR99] to re-
strict the complexity of arbitrary network topologies. The last two methods are
well explored [RLO03] and it should be a feasible task to adapt them accordingly.
However, even combining these three tasks may not be sufficient to cover all the
interactions within the systems. Thus, by inspecting only particular modules of
the overall system, hidden interactions between features [RL02| can cover new
vulnerabilities.

One could use the Ritchey / Ammann approach [RA00] as a high-level rep-
resentation and the approach described in this thesis as a low-level foundation.
First we would be able, by using FDR, to retrieve the possible weaknesses on a
process level. Afterwards we could use the [RA00] approach to verify whether
these vulnerabilities can be used to penetrate the system even more. In other
words one can use [RA00] as a vulnerability interactions verifier. The remaining
work would be to build a bridge between these two layers. To do so we could
use our traces to generate an attack graph [JSW02, Sch99, HWS*01] the attack
graph then could be used to generate the Ritchey / Ammann model. [RA00] uses
a natural language to describe the vulnerabilities and relations between the net-
work nodes. Using the attack graph approach would have the advantage that we
would obtain an unambiguous specification of the overall system with all its at-
tack possibilities. As an extension towards this end one could design a algorithm
that uses our formal description to generate the high-level model automatically.

Another problem that has been mentioned earlier, which remains unaddressed
in this thesis, is concerned with the automatic generation of signatures or profiles
of IDSs. An algorithm has to be designed that uses the structure of a simulated
intrusion detection environment and the resulting traces to generate universal
signatures that encompass all possible variations of the trace provided. Since
FDR theoretically finds not only one instantiation of a specific attack but also
all variations, the algorithm has to correlate all retrieved traces to more generic
super classes. With these super classes it should then be possible to derive proper
signatures. Using formal methods to derive signatures or profiles was already pro-
posed in [AD03] and [MRSO01], however their approaches were by far not free from
flaws and more of a theoretical nature, thus only usable in a highly theoretical
environment.

CHAPTER 12. CONCLUSION 202

In another vein, through the long term it is quite unsatisfying only to be
capable of verifying IDSs that are based on signature detection. Therefore we
have to solve the following problems:

e How can we classify and represent vulnerabilities and attacks? We have
to find a better way than representing an attack as a bit pattern, because
some [DSs are not signature based.

e How does this technique apply to industrial-scale problems? Usually model
checking can only be applied to small or medium sized problems. A multi
layer abstraction framework needs to be established to address large-scale
problems. One possibility could be to close the gap between the Ritchey and
Ammann [RA00] approach and ours. Hence it would be possible to evaluate
the interactions between single modules on a low level and to convert the
obtained results into a high level model to analyse the relations between
the spotted vulnerabilities.

e How can we abstract a network or a network node without losing too many
details? As mentioned before the problem with abstraction is that one may
lose important detail. It would be of great use to design a technique that
allows us to prove whether or not the lost detail was important.

12.4 Future work - TCPA

In this thesis we have shown that CSP and various abstraction techniques allow
us to verify certain processes of the TCPA architecture. In the future we aim to
model more functionality of the TPM. So far we have not included the operating
system. Especially if we want to extend our work to cover the NGSCB (if a proper
specification is available), we have to include more details about the software state
of the trusted platform. Towards this end we have to develop techniques that can
determine whether unintended feature interaction between certain sub modules
takes place. Closely related to that, many high level protocols consist of many
sequentially executed protocols. In addition these protocols usually are to large
to be verified together. Hence, in order to, realistically, determine whether the
overall protocol satisfies the requirement we have to establish a framework with
which we can determine whether or not the individual protocol runs harbour
some hidden interactions that could enable an intruder to exploit the system.

As mentioned in the DRM chapter, the protocol we suggested fell short on
many points that are important for being a realistic DRM protocol. It is a goal
of future research to remedy this. Therefore we have to develop an architecture
that includes the virtual machine, the rights sets and the distribution strategy.
Special care will be taken to find a suitable way to represent the description
language of the rights sets; so that modifying the sets is an easy task.

CHAPTER 12. CONCLUSION 203

Besides the obvious functionality our approach should provide answers to
following questions:

e What happens if one wants to transfer the digital content to another ma-
chine?

e What happens if one wants to generate a backup?

e How can a user restrict the degree of control a service provider possesses
over his platform?

The DRM represents only one example of an application scenario that could
profit from the TCPA’s trusted platform. Other scenarios such as e-voting and
general e-commerce transactions are possible areas that could be included in our
investigation.

Appendix A

Appendix

Example trace for attack on the session caching mechanism.

receive.T.T. (Msgl,Sq.<Na2,02>,<>)
meta_locksessionschedulerTPM
meta_startstoreAuthHandleTPM.Ah1.Na2.02.sec2
meta_startsessioncountMetaTPMSessionManagerl
meta_readSessionCounterMetaSessionStorage.0
meta_finishsessioncountMetaTPMSessionManagerl.0.Ahl.Ahl
meta_writeSessionParallel2MetaTPMSessionManager2.1.Ahl.Na2.02.sec2
meta_increaseSessionCounterMetaTPMSessionManager?2
meta_finishstoreAuthHandleTPM
meta_unlocksessionschedulerTPM
meta_locksessionschedulerTPM
meta_getNonceNonceManagerB.Nt1
send.T.T. (Msg2,Sq.<Ah1,Nt1>,<>)
meta_unlocksessionschedulerTPM
receive.T.T. (Msgl,Sq.<Na2,02>,<>)
meta_locksessionschedulerTPM
meta_startstoreAuthHandleTPM.Ah2.Na2.02.sec2
meta_startsessioncountMetaTPMSessionManagerl
meta_readSessionCounterMetaSessionStorage.1
meta_readSessionSpaceMetaSessionStorage.1.Ahl
meta_finishsessioncountMetaTPMSessionManagerl.1.Ahl.Ah1l
meta_startTPM_SaveAuthContextMetaTPMSessionManager2.Ahl
int_startTPM_SaveAuthContextExternalSessionManager3.Ahl
meta_readSessionSpaceTPM_SaveAuthContext.1.Ahl
meta_readSessionParallelTPM_SaveAuthContext.Ahl.Na2.02.sec2
int_ResetSessionTPM_SaveAuthContext.Ahl
meta_decreaseSessionCounterTPM_SaveAuthContext
int_finishTPM_SaveAuthContextExternalSessionManager3.Storage.
(Ah1,Na2,02,sec2)
meta_storeSessionExtSessionStorageExternalSessionManager2.N.

204

APPENDIX A. APPENDIX

Storage. (Ah1,Na2,02,sec2)
meta_finishTPM_SaveAuthContextMetaTPMSessionManager2
meta_writeSessionParallel2MetaTPMSessionManager2.1.Ah2.Na2.02.sec2
meta_increaseSessionCounterMetaTPMSessionManager?2
meta_finishstoreAuthHandleTPM
meta_unlocksessionschedulerTPM
meta_locksessionschedulerTPM
meta_startrequestAuthHandleTPM. Ahl
meta_startsessioncountMetaTPMSessionManagerl
meta_readSessionCounterMetaSessionStorage.1
meta_readSessionSpaceMetaSessionStorage.1.Ah2
meta_finishsessioncountMetaTPMSessionManagerl.1.Ah2.Ah2
send.0.T. (Msgl,Sq.<Na2,01>,<>)
meta_deleteSessionExtSessionStorage.1
meta_injectSession.Storage. (Ahl,Na2,01,sec2)
meta_startTPM_LoadAuthContextMetaTPMSessionManagerl.Ahl

meta_storeSessionExtSessionStorageExternalSessionManager2.N.Storage.

205

(Ah1,Na2,01,sec2)

meta_retriveSessionExtSessionStorageExternalSessionManager4.Ahl.

Storage. (Ahl,Na2,01,sec2)

meta_startsessioncountExternalSessionManager4
meta_readSessionCounterMetaSessionStorage.1
meta_readSessionSpaceMetaSessionStorage.1.Ah2
meta_finishsessioncountExternalSessionManager4.1.Ah2.Ah2
meta_startTPM_SaveAuthContextExternalSessionManager4.Ah2
int_startTPM_SaveAuthContextExternalSessionManager3.Ah2
meta_readSessionSpaceTPM_SaveAuthContext.1.Ah2
meta_readSessionParallelTPM_SaveAuthContext.Ah2.Na2.02.sec2
int_ResetSessionTPM_SaveAuthContext.Ah2
meta_decreaseSessionCounterTPM_SaveAuthContext
int_finishTPM_SaveAuthContextExternalSessionManager3.Storage.

(Ah2,Na2,02,sec2)

meta_storeSessionExtSessionStorageExternalSessionManager2.N.

Storage. (Ah2,Na2,02,sec2)

meta_finishTPM_SaveAuthContextExternalSessionManager4
int_startTPM_LoadAuthContextExternalSessionManager4.Storage.

(Ah1,Na2,01,sec2)

meta_readSessionCounterTPM_LoadAuthContext.O
meta_writeSessionParallelTPM_LoadAuthContext.N.Ah1l.Na2.01.sec2
meta_increaseSessionCounterTPM_LoadAuthContext
int_finishTPM_LoadAuthContextExternalSessionManager4.Ahl
meta_finishTPM_LoadAuthContextMetaTPMSessionManagerl
meta_readSessionParallelMetaTPMSessionManagerl.Ahl.Na2.01.sec2
meta_finishrequestAuthHandleTPM.Ahl.Na2.01.sec2

receive.T.T. (Msg3,5q.<01,Ah1>,<>)

APPENDIX A. APPENDIX 206

receive.T.T. (Msg3a,Sq.<T,Na2>,<>)

receive.T.T. (Msg3b,Hash. (HMAC,<T,T,sec2,Na2,01,Nt1,Na2>),<>)
meta_startstoreAuthHandleTPM.Ah1.Na2.01.sec2
meta_startsessioncountMetaTPMSessionManagerl
meta_readSessionCounterMetaSessionStorage.1
meta_readSessionSpaceMetaSessionStorage.1.Ahl
meta_finishsessioncountMetaTPMSessionManagerl.1.Ahl.Ahl
meta_writeSessionParallel2MetaTPMSessionManager2.1.Ah1.Na2.01.sec2
meta_finishstoreAuthHandleTPM

meta_TPMGrantAccessto.01.T

Bibliography

[ABOO]

[AD03]

[ADX00]

[AH04]

[AK96]

[AKS96]

[And80]

[And03]

[Arc02]

P. Ammann and P. Black. Test Generation and Recognition with
Formal Methods. In First International Workshop on Automated
Program Analysis, Testing, and Verication (WAPATV’00), pages 64—
67, 2000.

Luigi V. Mancini Antonio Durante, Roberto Di Pietro. Formal Spec-
ification for Fast Automatic IDS Training. In Formal Aspects of Se-
curity Volume 2629 / 2003, pages 191-204, 2003.

Paul Ammann, Wei Ding, and Daling Xu. Using a Model Checker
to Test Safety Properties. 2000. ISE Department, MS 4A4, Georg
Mason University, 4400 University Drive Fairfax, VA 22030 USA.

Alapan Arnab and Andrew Hutchison. Digital Rights Management
- A current review. In Technical Report CS04-04-00, Department of
Computer Science, University of Cape Town, 2004. http://pubs.
cs.uct.ac.za/archive/00000114/

Ross Anderson and Markus Kuhn. Tamper Resistance - a Cautionary
Note. The Second USENIX Workshop on Electronic Commerce Pro-
ceedings, Oakland, California, November 18-21, 1996, pp 1-11, ISBN
1-880446-83-9. http://www.cl.cam.ac.uk/ "mgk25/tamper.html

T. Aslam, I. Krsul, and E. H. Spafford. Use of a Taxonomy of Secu-
rity Faults. In Proc. 19th NIST-NCSC National Information Systems
Security Conference, pages 551-560, 1996.

J. P. Anderson. Computer Security Threat Monitoring and Surveil-
lance. In Tech. Rep., James P Anderson Co., Fort Washington, PA,
1980.

Ross Anderson. TCPA /Palladium-FAQ. Aug 2003. http://www.cl.
cam.ac.uk/“rjal4/tcpa-faq.html

Myla Archer. Proving correctness of the basic TESLA multicast
stream authentication protocol with TAME. In Workshop on Issues
in the Theory of Security, 2002.

207

BIBLIOGRAPHY 208

[ATT99]

[AXE9Sa]
[AXE9Sb]
[Axe00]

[BCP+99]

[Bel93]
[Bid04]

[BL02]

[BLO3]

[Bla9g]

[BLROO]

[BaRa]

[Bro01]

AT & T Research. Beyont Concern: Understanding Net Users’ Atti-
tudes About Online Privacy. 1999. http://www.research.att.com/
resources/trs/TRs/99/99.4.3/report.htm

AXENT. Intrusion Detection Methodologies. Feb 11 1998.
AXENT. Security Assessment Methodologies. Mar 9 1998.

Stefan Axelsson. Intrusion Detection Systems: A Survey and Taxon-
omy. Technical Report 99-15, Chalmers University, Mar 2000.

Franco Bartolini, Vito Cappellini, Alessandro Piva, A. Fringuelli
and Mauro Barni. Electronic Copyright Management Systems: Re-
quirements, Players and Technologies. DEXA Workshop 1999: 896-
898. http://csdl.computer.org/comp/proceedings/dexa/1999/
0281/00/02810896abs.htm

Steven M. Bellovin. Packets Found on an Internet. 1993.

Peter N. Biddle. Next-Generation Secure Computing Base. Win-
HEC2004, Nov 2004.

P.J. Broadfoot and Gavin Lowe. Analysing a Stream Authentication
Protocol using Model Checking. In Proceedings of the 7th European
Symposium on Research in Computer Security (ESORICS). May
2002.

Philippa Broadfoot and Gavin Lowe. On Distributed Security Trans-
actions that use Secure Transport Protocols. In Proceedings of the
16th IEEE Computer Security Foundations Workshop, 2003.

Uyless Black. TCP/IP and Related Protocols. Computer Communi-
cations. McGraw-Hill, 1998.

P.J. Broadfoot, Gavin Lowe, and A.W. Roscoe. Automating Data
Independence. In Proceedings of ESORICS, pages 175 — 190, 2000.

Joseph Barrus and Neil C. Rowe. A Distributed Autonomous-Agent
Network-Intrusion Detection and Response System. Code cs/rp,
Naval Postgraduate School, Monterey, CA 93943.

Thomas Ball and Sriram K. Rajamani. The SLAM Project: Debug-
ging System Software via Static Analysis. Microsoft Reasearch.

P. J.Broadfoot. Data Independence in the Model Checking of Secu-
rity Protocols. PhD thesis, University of Oxford, University College,
Trinity Term 2001.

BIBLIOGRAPHY 209

[BW97]

[CC02]

[CDYS]

[CEC02]

[CER02]

[CERO03]

[Che99|

[CIA99)

[CIDF]

[Cis04]

[CJPL02]

[Cla82]

[C1i04]

Andreas Bonnard and Christian Wolff. Gesicherte Verbindung von
Computernetzen mit Hilfe einer Firewall. http://www.bsi.de/
literat/studien/firewall/fwstud97/fw-stud.pdf

Lus Caires and Luca Cardelli. A Spatial Logic for Concurrency (Part
I). IC special issue on TACS’01, 2002.

A. Conta and S. Deering. RFC 2463, Internet Control Message Proto-
col (ICMPv6) for the Internet Protocol version 6 (IPv6) Specification.
Dec 1998.

Commission of the European Communities. New Generation Internet
- Priorities for Action in Migrating to the new Internet Protocol IPv6.
COM(2002) 96 final:15, Feb 2002.

CERT/CC. Code Red Worm Exploiting Buffer Overflow in IIS In-
dexing Service DLL. In CERT Advisory CA-2001-19, 2002.

Coordination Center CERT. Analysis Console for Intrusion
Databases. 2003. http://www.cert.org/kb/acid/

Cheskin. Research and Studio Archetype. In eCommerce Trust Study.
http://www.sapient.com/cheskin/

CIAC. Distributed System Intruder Tools Trinoo and TFN. CIAC
00.040, Dec 21 1999.

Common Intrusion Detection Framework (CIDF). http://www.isi.
edu/gost/cidf/

Cisco IDS. 2004. http://www.cisco.com/warp/public/cc/pd/
sqsw/sqidsz/index.shtml

Amy Carroll, Mario Juarez, Julia Polk, and Tony Leininger. Microsoft
"Palladium”: A Business Overview, Combining Microsoft Windows
Features, Personal Computing Hardware, and Software Applications
for Greater Security, Personal Privacy and System Integrity. Microsoft
Windows Trusted Platform Technologies (formerly Content Security
Business Unit),August 2002.

David D. Clark. RFC 815 IP Datagram Reassembly Algorithms. MIT
Laboratory for Computer Science Computer Systems and Communi-
cations Group, Jul 1982.

Cliff. Linux and DRM?. Feb 2004. http://slashdot.org/article.
pl?sid=04/02/10/2329229&mode=thread

BIBLIOGRAPHY 210

[CW6]

[CR99]

[CROO]

[CS02]

[CZC00]

[DAYY]

[Dav93]

[Den87]

[Dit05]

[dR81]

[dR81b]

[DY83]

[EgaTh]

[Ein01]

E. M. Clarke and J. M. Wing. Formal Methods: State of the Art and
Future Directions. ACM Computing Surveys, 28 (4), Dec 1996.

S. Creese and A. Roscoe. Formal Verification of Arbitrary Network
Topologies. In Proc. of the Int. Conf. on Parallel and Distributed
Processing Techniques and Applications (PDPTA’99). CSREA Press,
1999.

S. Creese and A. Roscoe. Data Independent Induction over Structured
Networks. In International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA ’00), Las Vegas,
USA, June 2000.

Sadie Creese and William Simmonds. Specification and Verification of
Selected Intrusion Tolerance Properties using CSP and FDR. MAF-
TIA deliverable D7 IST-1999-11583, QuinetiQQ (UK), Feb 2002.

D. Brent Chapman, Elizabeth D. Zwicky, and Simon Cooper. Building
Internet Firewalls. O’Reilly, Jun 2000. ISBN: 1-56592-871-7.

T. Dierks and C. Allen. RFC 2246 - The TLS Protocol Version 1.0.
Jan 1999. http://www.fags.org/rfcs/rfc2246.html

J. W. M. Davies. Specification and Proof in Real-Time. Cambridge
University Press, 1993.

D. E. Denning. An Intrusion-Detection Model. In IEEE Transactions
on Software Engineering, SE-13, pages 222-232, 1987.

Dave Dittrich. Distributed Denial of Service (DDoS) Attacks/tools.
Jan 2005 . http://staff.washington.edu/dittrich/misc/ddos/

Marina del Rey. RFC 791 Internet Protocol: DARPA Internet Pro-
gram Protocol specification, 1981.

Marina del Rey. RFC 793 Transmission Control Protocol DARPA
Internet Program Protocol Specification. Sep 1981.

D. Dolev and A. C. Yao. On the security of public-key protocols. In
Communications of the ACM, 29(8):198-208, Aug 1983.

J. Egan. Signal Detection Theory and ROC Analysis. In New York:
Academic, 1975.

Nathan Einwechter. An Introduction to Distributed Intrusion Detec-
tion Systems. http://www.securityfocus.com, Jan 8 2001.

BIBLIOGRAPHY 211

[E1s00]

[FS90]

[FQO2]

[GGHH00]

[Gib02]

[GI8S

[Gro03|

[GS97]

[GUOO]

[Hac00]

[HacO01]

[HD98a)

[HD9Sb]

David Elson. Intrusion Detection, Theory and Practice. http://www.
securityfocus.com, Mar 27 2000.

Daniel Farmer and Eugene H. Spafford. The COPS Security Checker
System. In USENIX Summer, pages 165170, 1990.

Cormac Flanagan and Shaz Qadeer. Predicate Abstraction for Soft-
ware Verification. Compaq Systems Research Center, 103 Lytton Ave,
Palo Alto, CA 94301; 2002.

Paul Gardiner, Michael Goldsmith, Jason Hulance, David Jackson,
A.W. Roscoe, and Bryan Scattergood. FDR2 User Manual. Formal
Systems (Europe) Ltd., 2000.

Steve Gibson. Distributed Reflection Denial of Service ,Description
and Analysis of a Potent, Increasingly Prevalent, and Worrisome In-
ternet Attack. Feb 2002. http://www.grc.com/dos/drdos.htm

C. A. Gunter and A. Jung. Coherence and Consistency in Do-
mains. Third Annual Symposium on Logic in Computer Science,
Computer Society Press of the IEEE, 1988. citeseer.ist.psu.edu/
gunter90coherence.html.

Jeff Grove. Legal and technological efforts to lock up content threaten
innovation. In Communications of the ACM. http://doi.acm.org/
10.1145/641205.641222

S. Graf and H. Saidi. Construction of Abstract State Graphs with
PVS. 9th International Conference on Computer Aided Verification
(CAV’97), 1997. citeseer.ist.psu.edu/graf97construction.
html.

Patricia Gilfeather and Todd Underwood. Fragmentation
made friendly. http://www.cs.unm.edu/ "maccabe/SSL/frag/
FragPaperl/Fragmentation.html, Jan 31 2000.

Eric Hacker. Re-Synchronizing a NIDS. http://www.
securityfocus.com, Sep 22 2000.

Eric Hacker. IDS Evasion with Unicode. http://www.
securityfocus.com, Jan 03 2001.

R. Hinden and S. Deering. RFC 2373, IP Version 6 Addressing Ar-
chitecture. Jul 1998.

R. Hinden and S. Deering. RFC 2460 Internet Protocol, Version 6
(IPv6) Specification. Dec 1998.

BIBLIOGRAPHY 212

[Hei03]

[Hel00]

[HF00]

[HGOO]

[Him02]

[HK98]

[HLO1]

[Hoa78|

[Hoa85]

[How97]

[HSTLI0]

[HWS*01]

Stephen Heil. Windows Trusted Platform and Infrastructure Infor-
mation Newsletter. Windows Trusted Platform and Infrastructure
Team, Apr 2003.

G. Helmer. Intelligent Multi-Agent System for Intrusion Detection
and Countermeasures. Phd thesis, lowa State University, Ames, A,
USA, Dec 2000.

Steven A. Hofmeyr and Stephanie Forrest. Architecture for an Artifi-
cial Immune System. Evolutionary Computation, 8(4):443-473, 2000.

Greg Hoglund and Jon Gray. Multiple Levels of De-Synchronization
and other Concerns with Testing an IDS. http://www.
securityfocus.com, Aug 2000.

Gerald Himmelein. Der digitale Knebel, Intel und Microsoft wollen
Daten vor dem Anwender schtzen. In C’t, 2002.

Josef van Helden and Stefan Karsch. Grundlagen, Forderungen und
Marktbersicht fr Intrusion Detection Systeme (IDS) und Intrusion
Response Systeme (IRS). Oct 1998. http://www.bsi.de/literat/
studien/ids/ids-stud.pdf

Mei Lin Hui and Gavin Lowe. Fault-preserving simplifying transfor-
mations for security protocols. In Journal of Computer Science, 9(1,
2):3-46, 2001.

C. A. R. Hoare. A Model for Communicating Sequential Processes.
Communications of the ACM, 21:666-677, 1978.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall,
1985. ISBN: 0-13-153271-5.

John D. Howard. An Analysis of Security Incidents on the Internet
1989-1995. In PhD Thesis, Carnegie Mellon University, Pittsburgh,
Pennsylvania, 1997.

K. Chen Henry S Teng and S. C. Lu. Security Audit Trail Analy-
sis using Inductively Generated Predictive rules. In Proceedings of
the 11th National Conference on Artificial Intelligence Applications,
pages 24-29, 1990.

Guy Helmer, Johnny Wong, Mark Slagell, Vasant Honavar, Les Miller,
and Robin Lutz. A Software Fault Tree Approach to Requirements
Analysis of an Intrusion Detection System. 1st Symposium on Re-
quirements Engineering for Information Security Indianapolis, 2001.

BIBLIOGRAPHY 213

[ID93]

Ng93)]

[Inn01]

[Ip96]

[1SS05)

[JHO3]

[IMO0]

[TW01]

[JSW02]

[KA98a]

[KA9Sb)

[KA98¢]

[KB]

Department of Computer Science, 226 Atanasoff Hall, Iowa State Uni-
versity.

C.N. Ip and D.L. Dill. Better Verification Through Symmetry.
Computer Hardware Description Languages and their Applications,
Elsevier Science Publishers B.V., Amsterdam, Netherland, 1993.
citeseer.ist.psu.edu/article/ip93better.html.

Koral Tlgun. USTAT: A Real-Time Intrusion Detection System for
UNIX. In Proceedings of the 1993 IEEE Symposium on Research in
Security and Privacy, pages 16-28, Oakland, CA, 1993.

Paul Innella. The Evolution of Intrusion Detection Systems. http:
//www.securityfocus.com, Nov 2001.

Chung-Wah Norris Ip. State Reduction Methods For Automatic For-
mal Verification. Ph.D. Thesis Stanford, Dec 1996.

Internet Security Systems. Proventia Intrusion Detec-
tion. http://www.iss.net/products_services/enterprise_
protection/proventia/a_series.php

Joe McAlerney James Hoagland, Stuart Staniford. SnortSnarf. In
SnortSnarf Handbook, 2003. http://www.snort.org/dl/contrib/
data_analysis/snortsnarf/

J. Allen J. McHugh, A. Christie. Defending Yourself: The Role of
Intrusion Detection Systems. In IEEE Software 17, pages 42-51, 2000.

Jan Jrgens and Guido Wimmel. Specification-Based Testing of Fire-
walls. 2001. http://www4.in.tum.de/” juerjens/research.html.

S. Jha, O. Sheyner, and J. Wing. Two Formal Analyses of Attack
Graphs. Journal of Computer Security, 10:49 — 63, 2002.

S. Kent and R. Atkinson. RFC 2401, Security Architecture for the
Internet Protocol. Nov 1998.

S. Kent and R. Atkinson. RFC 2402, IP Authentication Header. Nov
1998.

S. Kent and R. Atkinson. RFC 2406, IP Encapsulating Security Pay-
load (ESP). Nov 1998.

J. Kim and P. Bentley. The Artificial Immune Model for Network
Intrusion Detection. http://www.dcs.kcl.ac.uk/staff/jungwon/
publication.html

BIBLIOGRAPHY 214

[KB99)

[KBO1]

[KCBY7]

[Ken01]

[Kes00]

[KFL94]

[Ko96]

[Krs98]

[KS94]

[Kum95]

J. Kim and P. Bentley. The Human Immune System and Network
Intrusion Detection. In 7th European Congress on Intelligent Tech-
niques and Soft Computing (EUFIT ’99), Aachen, Germany, Septem-
ber 13-19, 1999.

Jungwon Kim and Peter J. Bentley. An Evaluation of Negative Se-
lection in an Artificial Immune System for Network Intrusion Detec-
tion. In Lee Spector, Erik D. Goodman, Annie Wu, W. B. Lang-
don, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo,
Shahram Pezeshk, Max H. Garzon, and Edmund Burke, editors, Pro-
ceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), pages 1330-1337, San Francisco, California, USA,
7-11 2001. Morgan Kaufmann.

H. Krawczyk, R. Canetti and M. Bellare. HMAC: Keyed-Hashing for
Message Authentication. Feb 1997. http://www.faqs.org/rfcs/
rfc2104.html

Frederick Karen Kent. Network Intrusion Detection Signatures —
Part 1. http://www.securityfocus.com, 2001.

Gregory Kesden. Lecture 33 (Wednesday, December 6, 2000). In
Course: 15-412 Operating Systems: Design and Implementation.
http://www-2.cs.cmu.edu/ dst/DeCSS/Kesden/

Calvin Ko, George Fink, and Karl Levitt. Automated Detection
of Vulnerabilities in Privileged Programs by Execution Monitoring.
Technical report, Department of Computer Science, University of Cal-
ifornia at Davis, 1994.

Calvin Ko. Execution Monitoring of Security Critical Programs in
a Distributed System: A Specification-Based Approach. PhD thesis,
Department of Computer Science, University of California at Davis,
1996.

I. Krsul. Software Vulnerability Analysis. In PhD thesis, Purdue
University, West Lafayette, Indiana, 1998.

S. Kumar and E. H. Spafford. A Pattern Matching Model for Misuse
Intrusion Detection. Proceeding of the 17th National Computer Se-
curity Conference, pages pp. 11-21, Oct 1994. Baltimore, MD, USA.

S. Kumar. Classification and Detection of Computer Intrusions. Phd
thesis, Purdue University, West Lafayette, IN, USA, Aug 1995.

BIBLIOGRAPHY 215

[LAOO]

Brian Laing and Jimmy Alderson. How To Guide-Implementing a
Network Based Intrusion Detection System. Internet Security Sys-
tems, 2000.

[LABW92] Lampson, Abadi, Burrows and Wobber. Authentication in Dis-

[Laz97]

[LBHO]

[Lev95)

tributed Systems: Theory and Practice. In ACM0734-2071/92/1100-
0000, 1992.

Ranko Lazi¢. A Semantic Study of Data-Independence with Applica-
tions to the Mechanical Verification of Concurrent Systems. D.Phil.,
Oxford University, 1997.

Gavin Lowe, Philippa Broadfoot and Mei Lin Hui. Casper - A Com-
piler for the Analysis of Security. Dec 2001.

N. G. Leveson. Safeware: System Safety and Computers. Addision-
Wesley, Reading, MA, USA, 1995.

[LFGT00a] Richard Lippmann, David Fried, Isaac Graf, Joshua Haines, Kristo-

pher Kendall, David McClung, Dan Weber, Seth Webster, Dan
Wyschogrod, Robert Cunningham, and Marc Zissman. Evaluating
Intrusion Detection Systems: The 1998 DARPA off-line intrusion de-
tection evaluation. In Proceedings of the DARPA Information Sur-
vivability Conference and Exposition, Los Alamitos, CA, 2000. IEEE
Computer Society Press.

[LFGT00b] Richard Lippmann, David Fried, Isaac Graf, Joshua Haines, Kristo-

[Lin04]

[LNY*00]

[LR97]

[LS98]

pher Kendall, David McClung, Dan Weber, Seth Webster, Dan
Wyschogrod, Robert Cunningham, and Marc Zissman. The 1999
DARPA off-line Intrusion Detection Evaluation. In RAID 2000, LNCS
No. 1907, Springer Verlag, New York, 2000.

Pete Lindstrom. Truth and Fiction about Microsoft’s 'Palladium’.
Mar 2004. http://www.csoonline.com/analyst/report2317.html

Wenke Lee, Rahul A. Nimbalkar, Kam K. Yee, Sunil B. Patil, Prag-
neshkumar H. Desai, Thuan T. Tran, and Salvatore J. Stolfo. A
Data Mining and CIDF based Approach for Detecting Novel and Dis-
tributed Intrusions. Lecture Notes in Computer Science, 2000.

Gavin Lowe and A.W. Roscoe. Using CSP to Detect Errors in the
TMN Protocol. Aug 6 1997.

Wenke Lee and Salvatore Stolfo. Data Mining Approaches for Intru-
sion Detection. In Proceedings of the 7th USENIX Security Sympo-
sium, San Antonio, TX, 1998.

BIBLIOGRAPHY 216

[Lun90]

[Lun93]

[Lyo01]

[MD99]

[MDMO96]

[MHBO03]

[mic03]

[Mic02]

[Mic03]

[Mic03a]

[Mic03b]

[Mic04]

T. F. Lunt. IDES: An Intelligent System for Detecting Intruders.
In Proceedings of the Symposium: Computer Security, Threat and
Countermeasures, 1990.

Teresa F Lunt. A survey of Intrusion Detection Techniques. In In
Computer Security, pages 405-418, 1993.

Gordon Lyon. The Internet Marketplace and Digital Rights
Management. National Institute for Standards and Tech-
nology, Jun 2001. http://www.itl.nist.gov/div895/docs/
GLyonDRMWhitepaper.pdf

P. Marques and F. Dupont. RFC 2545, use of BGP-4 Multiprotocol
Extensions for IPv6 Inter-Domain routing. Mar 1999.

J. McCann, S. Deering, and J. Mogul. RFC 1981, path MTU discovery
for IP version 6. Aug 1996.

Deirdre K. Mulligan, John Han and Aaron J. Burstein. How DRM-
based content delivery systems disrupt expectations of ” personal use”.
In DRM '03: Proceedings of the 2003 ACM workshop on Digital rights
management. http://doi.acm.org/10.1145/947380.947391

michael. DRM From the Viewpoint of the Electronic Indus-
try. Slashdot. http://slashdot.org/article.pl?sid=03/11/25/
1821218&mode=thread&tid=126&tid=141&tid=188

Microsoft. MS Palladium Initiative - Technical FAQ. August 2002.
http://www.microsoft.com.

Microsoft. NGSCB: Trusted Computing Base and Software Au-
thentication. 2003. http://www.microsoft.com/resources/ngscb/
documents/ngscb_tcb.doc

Microsoft. Hardware Platform for the Next-Generation Secure Com-
puting Base. 2003. http://www.microsoft.com/resources/ngscb/
documents/NGSCBhardware.doc

Microsoft. Security Model for the Next-Generation Secure Comput-
ing Base. 2000. http://www.microsoft.com/resources/ngscb/
documents/NGSCB_Security_Model.doc

Microsoft. Rights Management Services in Windows. Aug
2004. http://www.microsoft.com/technet/prodtechnol/
windowsserver2003/technologies/rightsmgmt/default.mspx

BIBLIOGRAPHY 217

[Mic05]

[MRS01]

[Mh4]

[Nes]

[NIST95]

[NISTO1]

[Nor99)

[Oua01]

[Par00]

[Pax99]

[Pea02]

[Pfi02]

[P1u02]

[Plu02b]

Microsoft. Next-Generation Secure Computing Base. 2005. http:
//www.microsoft.com/resources/ngscb/archive .mspx

John A. Marin, Daniel Ragsdale, and John Surdu. A Hybrid Approach
to Profile Creation and Intrusion Detection. In Proc. of DARPA In-
formation Survivability Conference and Exposition, June 12-14, 2001.

Michael Mhle. Analyse von TCPA. Groer Beleg, Technische Universitt
Dresden, Feb 2004.

Nessus a remote Security Scanner. http://www.nessus.org/.

National Institute of Standards and Technology. Secure Hash Stan-
dard. In FIPS PUB 180-1, April 1995. http://www.itl.nist.gov/
fipspubs/fip180-1.htm

National Institute of Standards and Technology. Specification for the
Advanced Encryption Standard (AES). In FIPS 197, November 2001.
http://csrc.nist.gov/CryptoToolkit/aes/

Stephen Northcutt. Network Intrusion Detection - An Analyst’s
Handbook. New Raiders, June 1999.

Joel Ouaknine. Discrete Analysis of Continuous Behaviour in Real-
Time Concurrent Systems. Ph.D. Thesis, Oxford University, 2001.

Jaehong Park Security Architectures for Controlled Digital Infor-
mation Dissemination. In Proceedings of 16th Annual Computer
Security Applications Conference (ACSAC’00), New Orleans, 11-
15 Dec 2000. http://computer.org/Proceedings/acsac/0859/
08590224abs .htm

Vern Paxton. BRO: A System for Detecting Network Intruders in
Real-Time. Computer Networks, 31:2435-2463, 1999.

Siani Pearson Trusted Computing Platforms: Tcpa Technology in
Context Prentice Hall, Aug 2002. ISBN: 0130092207.

Andreas Pfitzmann. Unheilvolle Allianz: Hollywood und Microsoft,
Interview mit dem Dresdener Informatikprofessor und Kryptoex-
perten Andreas Pfitzmann. In C’t, 2002.

Michael Plura. Der versiegelte PC, Was steckt hinter TCPA und
Palladium?. In C’t, 2002.

Michael Plura. Der PC mit den zwei Gesichtern, TCPA und Palladium
- Schreckgespenster oder Papiertiger?. In C’t, 2002.

BIBLIOGRAPHY 218

[PNOS]

[PR83]

[Pri03]

[RAO0]

[Rah91]

[Ran01]

[RBYY]

[MBO1]

[RBO1]

[RSBCO9]

[RDO03]

[RDS99]

Thomas H. Ptacek and Timothy N. Newsham. Insertion, Evasion,
and Denial of Service: Eluding Network Intrusion Detection. Secure
Networks, 1998.

J. Postel and J. Reynolds. RFC 854 - Telnet Protocol Specification.
May 1983. http://www.faqs.org/rfcs/rfc854.html

Anne Price. New Trusted Computing Group Formed to Advance the
Adoption of open Standards for Trusted Computing Technologies.
Portland Oregon, April 2003.

R. Ritchey and P. Ammann. Using Model Checking to Analyze Net-
work Vulnerabilities. [IEEE Oakland Symposium on Security and Pri-
vacy, pages 156 — 165, May 2000.

D. G. Rahejy. Assurance Technologies: Principles and Prac-
tices. Engineering and Technology Management Series. McGraw-Hill,
McGraw-Hill, New York, 1991.

Marcus J. Ranaum. Coverage in Intrusion Detection Systems. 2001.
http://www.itsecurity.com/papers/nfrl.htm

A.W. Roscoe and P.J. Broadfoot. Proving Security Protocols with
Model Checkers by Data Independence Techniques. Journal of Com-
puter Security: Special Issue CSFW12, 7 (2,3):147-190, Jul 1999.

Peter Mell and Rebecca Bace. Intrusion Detection Systems. In NIST
Special Publication on Intrusion Detection Systems, 2001.

Slim Rekhis and Noureddine Boudriga. Formal Verification of Intru-
sion Detection Systems Using TLA+. In Proceedings of WITS, 2004.

Denise M. Rousseau, S. Sitkin, R.S. Burt and C. Cammerer. Not So
Different After All: A Cross Disciplinary View of Trust. In Academy
of Management Review, Volume 23, Pages 1-12, 1998.

Bill Rosenblatt and Gail Dykstra. Integrating Content Management
with DRM: Imperatives and Opportunities for Digital Content Life-
cycles. November 14, 2003. http://www.drmwatch.com/resources/
whitepapers/article.php/11655_3112011_1

Brian Witten Eric Miller Robert Durst, Terrence Champion and Luigi
Spagnuolo. Testing and Evaluating Computer Intrusion Detection
Systems. In Communications of the ACM Vol. 42 no. 7, pages 5361,
1999.

BIBLIOGRAPHY 219

[RFP02]

[RL02]

[RLO3]

[RLO4]

[Rob]

[Ros98]

[Ros98b|

[RP94]
[RS02]

[RSG*01]

[RZT95]

[SBS9Y]

[SCH95]

[Sch97]

Rain Forrest Puppy. Whisker. 2002. http://www.wiretrip.net/
rfp/bins/whisker/v2.0/whisker-pr2.0.tar.gz

Gordon Rohrmair and Gavin Lowe. Using CSP to Detect Insertion
and Evasion Possibilities within the Intrusion Detection Area. In
Proceedings of BCS Workshop on Formal Aspects of Security, 2002.

Gordon Rohrmair and Gavin Lowe. Using Data-Independence in the
Analysis of Intrusion Detection Systems. In Proceedings of the Work-
shop on Issues in the Theory of Security (WITS '03), 2003.

Gordon Thomas Rohrmair and Gavin Lowe. Using Data-
Independence in the Analysis of Intrusion Detection Systems. In
Theoretical Computer Science, 2004.

Nina Amla Robert. Autoabs: Syntax-Directed Program Abstraction.
citeseer.ist.psu.edu/608703.html.

A.W. Roscoe. Proving Security Protocols with Model Checkers by
Data Independence Techniques. Proceedings, 1998 IEEE Computer
Security Foundations Workshop, 1998.

A. W. Roscoe. The Theory and Practice of Concurrency. Prentice
Hall, 1998. ISBN: 0-13-674409-5.

J. Reynolds and J. Postel. RFC 1700, Assigned Numbers. Oct 1994.

C.R. Ramakrishan and R. Sekar. Model-based Analysis of Configu-
ration Vulnerabilities. Journal of Computer Security, 10(1, 2), 2002.

Peter Ryan, Steve Schneider, Michael Goldsmith, Gavin Lowe, and
A.W. Roscoe. Modelling and Analysis of Security Protocols. Addison-
Wesley, 2001. ISBN: 0 201 67471 8.

D. Reed, G. Ziemba, and P. Traina. RFC 1858: Security considera-
tions for IP Fragment Filtering, 1995.

R. Sekar, T. Bowen, and M. Segal. On preventing Intrusions by Pro-
cess Behavior Monitoring. In USENIX Intrusion Detection Workshop,
1999.

S. Staniford-Chen and L. T. Heberlein. Holding Intruders Accountable
on the Internet. Proc. IEEE Symposium on Security and Privacy,
Oakland, CA, pages pp. 39-49, May 1995.

Steve Schneider. Timewise Refinement for Communicating Processes.
Science of Computer Programming, 1997. citeseer.ist.psu.edu/
schneider97timewise.html.

BIBLIOGRAPHY 220

[Sch99]

[Sch00a]

[Sec]

[SNOS]

[SNOJ
[SRI01]

[SUO1]

[Sun96]

[SymO1]

[Sys98]

[Sys99]

[Sys00]

Bruce Schneier. Modeling Security Threats. In Dr. Dobb’s Journal,
1999.

S. A. Schneider. Concurrent and Real-Time Systems: The CSP Ap-
proach. John Wiley, New York, 2000.

Network Flight Recorder Security. 5 Choke Cherry Road Suite 200
Rockville MD 20850-4004. http://www.nfr.com/.

Secure Networks Inc.. Ballista. http://www.infoworld.com/
cgi-bin/displayTC.pl?/reviews/980413ballista.htm

SNORT. http://www.snort.org/.

SRI. Event Monitoring Enabling Responses to Anomalous Live
Disturbances (EMERALD). Oct 2001. http://www.sdl.sri.com/
projects/nides/

SRI. Next-Generation Intrusion Detection Expert System. 2002.
http://www.sdl.sri.com/projects/nides/

R. Sekar and P. Uppuluri. Synthesizing fast Intrusion Preven-
tion/Detection Systems from High-Level Specifications. Master’s the-
sis, State University of New York at Stony Brook, NY 11794.

R. Sekar and P. Uppuluri. State, Experience with Specification-Based
Intrusion Detection. Raid conference 2001, 2001. NY 11794.

Aurobindo Sundaram. An Introduction to Intrusion Detection. 1996.
http://www.acm.org/crossroads/xrds2-4/intrus.html

Symantec. Hacktivism: Activism Gone High Tech. ARTICLE ID:
711, 2001. http://enterprisesecurity.symantec.com/article.
cfm?articleid=711\&EID=0.

Internet Security Systems. Network- vs. Host-based intrusion
detection. Technical report. http://www.iss.net/support/
documentation/whitepapers/index.php. Oct 02 1998.

Internet Security Systems. Intrusion Detection Systems - Whitepa-
per. http://www.iss.net/support/documentation/whitepapers/
index.php. 1999.

Internet Security Systems. Evaluating an Intrusion Detection Solution
- A Strategy for a successful IDS Evaluation. http://www.iss.net/
support/documentation/whitepapers/index.php. Aug 22 2000.

BIBLIOGRAPHY 221

[Sys00b] Internet Security Systems. Intrusion Detection for the Millennium.
In Technology Brief, 2000.

[Tan01] Matthew Tanase. The Future of IDS. http://www.securityfocus.
com. Dec 4 2001.

[TCGO05] Trusted Computing Group. Trusted Computing Group Homepage.
https://www.trustedcomputinggroup.org/home

[TCPAOO] Trusted Computing Platform Association. Building A Foundation
of Trust in the PC. TCPA Whitepaper, Jan 2000. https://www.
trustedcomputinggroup.org/home

[TCPAOOb] Trusted Computing Platform Association. TCPA Security and In-
ternet Business: Vital Issues for IT. TCPA Whitepaper, Aug 2000.
https://www.trustedcomputinggroup.org/home

[TCPA02] Trusted Computing Group. TCG Main Specification Version
1.1b. TCPA Specification 1.1, Feb 2002. https://www.
trustedcomputinggroup.org/home

[TCPAO03] Trusted Computing Group. Design Principles. TCG TPM Specifica-
tion Version 1.2, Oct 2003. https://www.trustedcomputinggroup.
org/home

[TCPAO3b] Trusted Computing Group. Trusted Platform Module Protection
Profile. TCG TPM Specification Version 1.1, Jul 2002. https://

www . trustedcomputinggroup.org/home

[TCPAO3c] Trusted Computing Group. Structures of the TPM. TCG
TPM Specification Version 1.2, Oct 2003. https://www.
trustedcomputinggroup.org/home

[TCPA03d] Trusted Computing Group. TPM Commands. TCG TPM Specifica-
tion Version 1.2, Oct 2003. https://www.trustedcomputinggroup.
org/home

[TCPAO3e] Trusted Computing Platform Association. TCG Software Stack Spec-
ification Version 1.1. TCPA Specification 1.1, Aug 2003. https:
//www.trustedcomputinggroup.org/home

[TCPAO03f] Trusted Computing Platform Association. TCG Software Stack Spec-
ification Header File. TCPA Specification 1.1, Sep 2003. https:
//www.trustedcomputinggroup.org/home

BIBLIOGRAPHY 222

[TCPAO03g| Trusted Computing Platform Association. TCG PC Specific Imple-

[TCPAO4]

mentation Specification Version 1.1. TCPA Specification 1.1 RC3,
Aug 2003. https://www.trustedcomputinggroup.org/home

Trusted Computing Group. TCG Specification Architecture
Overview. TCG TPM Specification Version 1.2, Apr 2004. https:
//www.trustedcomputinggroup.org/home

[TCPAO04b] Trusted Computing Group. TCG Glossary. TCG TPM Specification

[TZ04]

[Ut96]

[Ver01]

[WIPO04]

[Yer96]

[ZP]

Version 1.2, Jul 2004. https://www.trustedcomputinggroup.org/
home

TrustZone. TrustZone Technology Overview. Jul 2004. http://www.
arm.com/products/CPUs/arch-trustzone.html

Bill Uttenweiler. Hackers Attack USAF Computers. July 1996.
Aerospace Corporation Vandenberg AFB, CA.

Veridisc. Fairplay White-Paper. 2001. http://64.244.235.240/
news/whitepaper/docs/veridisc_white_paper.pdf

WIPO. MEDIUM-TERM PLAN FOR WIPO PROGRAM ACTIVI-
TIES - VISION AND STRATEGIC DIRECTION OF WIPO. 2004.
http://www.wipo.int/about-wipo/en/dgo/pub487.htm

F. Yergeau. RFC 2044 UTF-8, a Transformation Format of Unicode
and ISO 10646. Oct 1996.

Yin Zhang and Vern Paxson. Detecting Stepping Stones. Master’s
thesis, Department of Computer Science Cornell University Ithaca,
NY 14853. http://www.icir.org/vern/papers/stepping/index.
html.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

