
Deconstructing general references via game semantics

Andrzej S. Murawski1 and Nikos Tzevelekos2!

1 University of Warwick
2 Queen Mary, University of London

Abstract. We investigate the game semantics of general references through the
fully abstract game model of Abramsky, Honda and McCusker (AHM), which
demonstrated that the visibility condition in games corresponds to the extra ex-
pressivity afforded by higher-order references with respect to integer references.
First, we prove a stronger version of the visible factorisation result from AHM, by
decomposing any strategy into a visible one and a single strategy corresponding
to a reference cell of type unit → unit (AHM accounted only for finite strategies
and its result involved unboundedly many cells).
We show that the strengthened version of the theorem implies universality of
the model and, consequently, we can rely upon it to provide semantic proofs of
program transformation results. In particular, one can prove that any program
with general references is equivalent to a purely functional program augmented
with a single unit → unit reference cell and a single integer cell. We also propose
a syntactic method of achieving such a transformation.
Finally, we provide a type-theoretic characterisation of terms in which the use
of general references can be simulated with an integer reference cell or through
purely functional computation, without any changes to the underlying types.

1 Introduction

In computer science, references are a programming idiom that allows the programmer
to manipulate objects in computer memory. The referenced content can be accessed
(dereferenced) or overwritten (updated). The most common sort of reference is that to a
ground-type value, such as an integer. However, most modern programming languages
allowmore complicated values to be referenced. For example, the languageML features
general references, where memory locations can contain values of any type, in partic-
ular of function type. Higher-order references are a very expressive construct. Among
others, they can be used to simulate recursion, objects [5] and aspects [10]. In this pa-
per we investigate higher-order references taking inspiration from their game-semantic
model [1]. In particular, we shall provide both semantic and syntactic accounts of how
they can be decomposed, which highlight the fact that their full expressive power is al-
ready present in their simplest instance, references of type ref(unit → unit). Although
in general the inclusion of higher-order references strictly increases expressivity, we
also consider the question whether there are circumstances, delineated by types, where
there is no such increase. Finally, we shall also answer the question when references
! Supported by a Royal Academy of Engineering research fellowship.

in general, integer-valued and higher-order ones, can be replaced altogether by purely
functional computation over the same types.

Game semantics [2, 7] is a semantic theory that interprets computation as an ex-
change of moves between two players: O (environment) and P (program). In the Hyland-
Ong style of playing [7], moves are equipped with pointers to moves made earlier in the
game, giving rise to plays like the one shown below.

o1 p1 o2 p2 o3 p4

Existing literature on modelling integer [3] and higher-order references [1] showed that
the expressive gap between the two paradigms can be captured by a property called
visibility, which restricts the range of targets (earlier moves) for pointers: moves by
P can only point at moves from a restricted fragment of the history, called the view.
For example, the last move in the play above violates visibility, because before it is
played, the view is o1 p1 o3. Intuitively, the visibility constraint captures the intuition
that, without higher-order references, the set of values available to a program is limited
to the lexical environment (as captured by the notion of view). In particular, function
values that are available at one point, cannot be taken for granted later during the course
of computation. In contrast, in presence of higher-order references, such values can be
recorded and reused at will. Hence, the visibility condition needs to be relaxed for
modelling higher-order references.

A fully abstract game model of an ML-like language with references was presented
in [1] and founded on plays that need not obey the visibility condition. As part of the full
abstraction argument, the authors showed how to decompose every finite strategy into
a finite strategy satisfying visibility and several strategies corresponding to reference
cells of type unit → unit (Proposition 5 in [1]).

As our first contribution, we sharpen the result to arbitrary strategies as well as
showing that one strategy corresponding to a (unit → unit)-valued memory cell is
sufficient (Theorem 13). This brings two benefits. On the theoretical side, one can
show universality: any recursively presentable strategy corresponds to a program with
higher-order references. On a more practical note, the refined factorisation result can
be applied to denotations of arbitrary programs to yield a powerful expressivity result:
any program with higher-order references is equivalent to one of the shape letu =
ref(λxunit.Ωunit) inM , where the ref-constructor in M is restricted to integers (Theo-
rem 17).

Our first proof of the result is purely semantic and relies on recursion theory. Conse-
quently, it does not offer much insight into how to transform the use of higher-order ref-
erences into uses of a (unit → unit)-reference cell. Motivated by this, we try to identify
semantics-preserving program transformations that will allow us to reprove the same
result through syntactic means. The key element of our approach is the bad-variable
constructor mkvar, which enables one to create terms of reference types with non-
standard behaviour. Although the translation introduces extra occurrences of mkvar,
we show how to eliminate them under certain conditions, namely, when the types as-
sociated with its free variables and the type of the term do not contain reference types.
Note that this allows for arbitrarily complex private uses of general references inside
terms as long as the references are not communicated through the program’s type in-

2

Γ " () : unit
i ∈ Z

Γ " i : int
(x : θ) ∈ Γ
Γ " x : θ

Γ " M1 : int Γ " M2 : int
Γ " M1 ⊕M2 : int

Γ " M : int Γ " N0 : θ Γ " N1 : θ
Γ " ifM thenN1 elseN0 : θ

Γ " M : θ
Γ " ref(M) : ref(θ)

Γ " M : ref(θ)
Γ " !M : θ

Γ " M : ref(θ) Γ " N : θ
Γ " M :=N : unit

Γ " M : unit → θ Γ " N : θ → unit

Γ " mkvar(M,N) : ref(θ)

Γ, x : θ " M : θ′

Γ " λx
θ
.M : θ → θ

′

Γ " M : θ → θ
′

Γ " N : θ
Γ " MN : θ′

Γ " M : (θ → θ
′) → (θ → θ

′)
Γ " Y(M) : θ → θ

′

Fig. 1. Typing judgments of L.

terface. From this perspective, mkvar emerges as a useful intermediate construct for
program transformation. Altogether our transformations yield an alternative syntactic
proof of Theorem 17.

In the remainder of the paper, we give a type-theoretic characterization of terms in
which the use of arbitrary references can be faithfully simulated using integer storage
alone. Here is a representative selection of types in typing judgments that turn out to
guarantee this property.

· · · , int → · · · → int, · · · " M : int,
· · · , (int → · · · → int) → int, · · · " M : int → · · · → int

By highlighting the shape of types in the context, we mean to say that all free identi-
fiers should have types of that form or simpler ones. These are the typing judgments
over which there is no distinction in expressive power between integer and higher-order
references.

Finally, we show that, as long as terms of the form

· · · , x : Θ1, · · · " M : β

are considered, where β ::= unit | int and Θ1 ::= β | ref(β) | β → Θ1, the use of
higher-order references can be replaced with purely functional computation. That is to
say, references do not contribute any expressive power. The last two results are obtained
in a semantic way, by referring to game models and associated compositionality and
universality results.

2 Syntax of the language

We shall rely on the programming languageLwith general references introduced in [1].
Its types θ are generated from unit and int using the → and ref type constructors, as
shown below.

θ ::= unit | int | ref(θ) | θ → θ

3

The typing rules are reproduced in Figure 1, where ⊕ is meant to cover standard arith-
metic operations. The operational semantics of the language relies on a countable set L
of typed locations. The values of the language are then the locations themselves, (), i,
λ-abstractions andmkvar(V1, V2), where V1, V2 must be values. The big-step reduction
judgments have the form s,M ⇓ s′, V , where s, s′ are stores (partial functions from L
to the set of values) and V is a value. Most reduction rules take the form

M1 ⇓ V1 M2 ⇓ V2 · · · Mn ⇓ Vn

M ⇓ V

which is meant to abbreviate

s1,M1 ⇓ s2, V1 s2,M2 ⇓ s3, V2 · · · sn,Mn ⇓ sn+1, Vn

s1,M1 ⇓ sn+1, V
.

In particular, this means that the ordering of the hypotheses is significant.

V is a value
s, V ⇓ s, V

M ⇓ 0 N0 ⇓ V
ifM thenN1 elseN0 ⇓ V

i %= 0 M ⇓ i N1 ⇓ V
ifM thenN1 elseN0 ⇓ V

M1 ⇓ i1 M2 ⇓ i2
M1 ⊕M2 ⇓ i1 ⊕ i2

M ⇓ λx.M ′ N ⇓ V ′ M ′[V ′/x] ⇓ V
MN ⇓ V

s,M ⇓ s′, & s′(&) = V
s, !M ⇓ s′, V

s,M ⇓ s′, & s′, N ⇓ s′′, V
s,M :=N ⇓ s′′(& &→ V), ()

M ⇓ mkvar(V1, V2) V1() ⇓ V
!M ⇓ V

M ⇓ mkvar(V1, V2) N ⇓ V V2 V ⇓ ()
M :=N ⇓ ()

M ⇓ V1 N ⇓ V2
mkvar(M,N) ⇓ mkvar(V1, V2)

s,M ⇓ s′, V & %∈ dom(s′)
s, ref(M) ⇓ s′ ∪ (& &→ V), &

M ⇓ λx.M ′ N ⇓ V ′ M ′[V ′/x] ⇓ V
MN ⇓ V

M ⇓ V
fix(M) ⇓ λxθ .(V (fix(V)))x

Given a closed term " M : θ we writeM ⇓ if there exist s′, V such that ∅,M ⇓ s′, V .

Definition 1. We shall say that two terms Γ " M1 : θ and Γ " M2 : θ are contextually
equivalent (written Γ " M1

∼= M2) if, for any context C[−] such that C[M1], C[M2]
are closed, we have C[M1] ⇓ if and only if C[M2] ⇓.

Remark 2. L features the “bad-reference” constructormkvar in the style of Reynolds [9].
This makes it possible to construct objects of reference types from arbitrary read and
write methods. In general this strengthens the discriminating power of contexts, as terms
of ref-type can exhibit non-standard behaviour. However, it can be shown that when
there are no ref-types in Γ or θ, this extension is inconsequential. At the technical level,
this is due to the fact that the corresponding definability argument [1] need not rely on
ref then.

Remark 3. L does not feature reference-equality testing as a primitive, as in general it
would not make sense in a setting with bad references. Still, it is possible to construct

4

a term that can tell two different locations apart by writing different values to them and
testing their content. This is of course conditional on the existence of such values and
our ability to distinguish them. In our setting, this method will be applicable to all types
ref(θ) except when θ ≡ unit.

Remark 4. In earlier work, we considered a language called RefML [8] with general
references and equality testing for locations, in which bad references could not be cre-
ated. The above comments imply that the respective notions of contextual equivalence
induced by L and RefML coincide on mkvar-free L-terms Γ " M : θ such that there
are no ref-types in Γ or θ. Similarly, one can also say that they converge for RefML-
terms Γ " M : θ such that Γ, θ do not contain ref-types andM does not use equality
testing for references of type ref(unit).

We will now define a number of auxiliary terms that will turn out useful in subsequent
arguments. As usual, letx = M inN stands for (λx.N)M . If x does not occur in N ,
we may also write M ;N . We also rely on abbreviated notation for nested let’s, e.g.
letx, y = Mx,My inN stands for letx = Mx in let y = My inN . We shall write
Ωθ for the divergent term Y(λfunit→θ.f) (). Also, for any type θ, we define a term
" newθ : ref(θ), which creates a suitably initialised reference cell.

newunit ≡ ref(()) newref(θ) ≡ ref(mkvar(λxunit.Ωθ,λx
θ.Ωunit))

newint ≡ ref(0) newθ→θ′ ≡ ref(λxθ .Ωθ′)

3 Game model

The following arguments are couched in the game model of general references due to
Abramsky, Honda andMcCusker [1]. We use a more direct, yet equivalent, presentation
due to Honda and Yoshida [6].

Definition 5. An arena A = (MA, IA,"A,λA) is given by

– a setMA of moves, and a subset IA ⊆ MA of initial moves,
– a justification relation "A⊆ MA × (MA \ IA), and
– a labelling function λA : MA → {O,P}× {Q,A}

such that λA(IA) = {PA}. Additionally, wheneverm′ "A m, we have (π1λA)(m) %=
(π1λA)(m′), and (π2λA)(m′) = A implies (π2λA)(m) = Q.

The role of λA is to label moves as Opponent or Proponent moves and as Questions or
Answers. We typically write them as m,n, . . . , or o, p, q, a, qP , qO, . . . when we want
to be specific about their kind. The simplest arena is 0 = (∅, ∅, ∅, ∅). Other “flat” arenas
are 1 andZ, defined byM1 = I1 = {)},MZ = IZ = Z. The two standard constructions
on arenas are presented below, where ĪA stands forMA \IA, the domain restriction of a
function is denoted by !, the OP -complement of λA is written as λ̄A, and iA, iB range
over initial moves in the respective arenas.

– MA⇒B = {)}/IA/IA/MB , IA⇒B = {)}, λA⇒B = [(), PA), (iA, OQ), λ̄A !

IA,λB], "A⇒B= {(), iA), (iA, iB)} ∪ "A ∪ "B .

5

– MA⊗B = (IA×IB)/IA/IB , IA⊗B = IA×IB , λA⊗B = [((iA, iB), PA),λA !

IA,λB ! IB], "A⊗B= {((iA, iB),m) | iA "A m ∨ iB "B m} ∪ ("A! IA
2
) ∪

("B! IB
2
).

Types of L can now be interpreted with arenas in the following way.

!unit" = 1 !ref(θ)" = (1 ⇒ !θ") ⊗ (!θ" ⇒ 1)
!int" = Z !θ1 → θ2" = !θ1" ⇒ !θ2"

Example 6. !ref(int)" and !ref(unit → unit)" have the following respective shapes.

◦
!!

! ""
"

read write(i)

i ok

◦
##
$$

$

read write
%%

%

) ok qw

qr aw

ar

Although arenas model types, the actual games will be played in prearenas, which
are defined in the same way as arenas with the exception that initial moves must be
O-questions. Given arenas A and B, we can construct the prearena A → B by set-
ting: MA→B = MA / MB , IA→B = IA , λA→B = [(iA, OQ) ∪ (λ̄A ! IA) , λB]
and "A→B= {(iA, iB)}∪ "A ∪ "B . A justified sequence in a prearena A is a finite
sequence s of moves of A satisfying the following condition: the first move must be
initial, but all other movesm must be equipped with a pointer to an earlier occurrence
of a movem′ such thatm′ "A m. We then say thatm′ justifiesm. Ifm is an answer, we
also say that m answers m′. Given a justified sequence, the last unanswered question
will be called pending.

Definition 7. A play in A is a justified sequence satisfying alternation (players take
turns) and well-bracketing (whenever a player plays an answer, it must answer the
current pending question). A strategy in a prearena A is a subset σ of even-length
plays in A that is closed under the operation of taking even-length prefixes and satisfies
determinacy: if sp1, sp2 ∈ σ then sp1 = sp2.

Example 8. cellint : 1 → !ref(int)" answers the initial question with ◦. Whenever O
plays write(i), it responds with ok. After O plays read, it responds with an integer value
present in the latestwrite(i)move by O or, if none has been played, with 0. This strategy
will model " ref(0) : ref(int).

cellunit→unit : 1 → !ref(unit → unit)" answers the initial question with ◦, responds
to write and read with ok and ∗ respectively. If O plays qr justified by an occurrence of
), P plays qw justified by the last occurrence of ok that precedes the relevant occurrence
of). If none such exists, P has no response. Similarly, if O plays aw, P will respond
with ar. This strategy will interpret " ref(λxunit.Ωunit) : ref(unit → unit).

Strategies compose [6], yielding a category of games where objects are arenas and mor-
phisms between objects A and B are strategies in A → B. Let Γ = {x1 : θ1, · · · , xn :

6

θn}. We shall write !Γ " θ" for the prearena !θ1"⊗ · · ·⊗ !θn" → !θ" (if n = 0 we take
the left-hand side to be 1). The gamemodel proposed in [1] interprets a term Γ " M : θ
by a strategy in !Γ " θ".

We now introduce another condition on plays, known to characterize denotations of
terms with ground-type storage only.

Definition 9 (Visibility). The view of a play is inductively defined by:

view (ε) = ε view (m) = m view (s1 ms2 n) = view (s1)m n .

A play s satisfies the visibility condition if, for all even-length prefixes s′m of s, the
justifier of m occurs in view (s′). A strategy is called visible if it contains only visible
plays.

It can be shown that in plays the above condition is never violated by answers, because
the pending question is always present in the view.

Proposition 10 ([3]). Let Γ " M : θ be a term in which applications of the ref(−)-
constructor are restricted to terms of type unit and int. Then !Γ " M : θ" satisfies the
visibility condition.

4 Factorisation

We shall next write !A for the strategy in A → 1 that responds to the initial move on the
left with the unique move on the right. Given strategies σi : 1 → Ai that all respond
to the initial question, we write 〈σ1, · · · ,σn 〉 for the strategy in 1 →

⊗n
i=1 Ai that

responds to the initial move with the tuple containing the individual responses of the n
strategies and otherwise behaves like σi, depending on the component Ai in which O
chooses to play.

Let us recall the factorisation result from [1].

Theorem 11 ([1]). Let σ : A1 → A2 be a finite strategy and A = !ref(unit → unit)".
There exists a natural number n and a visible strategy σ : (

⊗n
i=1 A)⊗A1 → A2 such

that 〈 τ, · · · , τ, idA1
〉;σ = σ, where τ =!A1

; cellunit→unit.

Note that in the result above n may depend on σ. In fact, the proof shows that n can be
taken to be (roughly) the length of the longest play in σ.

Remark 12. Violations of visibility describe computational scenarios in which a pro-
gram attempts to refer to a value that was previously encountered during computation,
yet which is not in current scope. The argument from [1] proposes to repair such vi-
olations by using free (higher-order) reference variables. Intuitively, they provide an
opportunity to record the values currently available to the program. A later attempt to
access the reference makes it possible to use the required value. In contrast, our argu-
ment will take advantage of a single reference cell. We shall also record the scope at
each step, but before doing so we will embed the previous value into the current scope,
thus allowing backtracking. In this way, the sought value can be found by backtracking
to the desired computational step.

7

Theorem 13 (Visible Factorisation). Let σ : A1 → A2 be a strategy and A =
!ref(unit → unit)". There exists a visible strategy σ : A⊗A1 → A2 such that 〈 τ, idA1

〉;σ =
σ, where τ =!A1

; cellunit→unit. If σ is recursively presentable, so is σ.

Proof. We shall define σ to be the least strategy containing the plays from {s | s ∈ σ},
where s will be defined below by induction on the length of a play. Roughly, s will
consist of s augmented with moves from A.
– In particular, immediately after each O-move of s we shall insert the sequence

read) write ok and, if the move is an answer, it will be followed by a sequence consist-
ing of answers aw, ar. Intuitively, each sequence read) write ok corresponds to reading
the current value of the reference (the one modelled in A) and updating it with a new
value.
– For P-questions, we shall insert read) followed by a sequence consisting of ques-

tions qr, qw in front of the P-question. The last qw will point at the value stored in the
reference immediately after the justifier of q was played. P-answers will simply be
copied without any extra moves.
We give a precise definition below. The targets of pointers from read,), write, ok are
obvious so, when discussing pointers, we shall focus on those from qr, qw, ar, aw.

– s qO = s qO read) write ok (if |s| > 0); and qO = qO write ok
– s qP = s read) qr (qw qr)k qw qP

We take k to be the number of O-moves occurring after the justifier o of qP in
s. Let us list them (in order of occurrence) as ok, · · · , o1. Then the ith qw and qr
in (qw qr)k are meant to be justified by respectively write and) from the read)
write ok segment introduced immediately after oi. The last qw is justified by write
from the read) write ok segment added after o.
Note that the resultant sequence will satisfy P-visibility, even if qP may not have.
Additionally, the extra O-moves), ok, qw are consistent with the behaviour of the
cellunit→unit strategy.

· · · o r) wok · · · ok r)w ok · · · o1 r)w ok r) qr qw qr · · · qw qr qw qP

– s aO = s aO read) write ok (aw ar)k+1

Suppose aO answers qP in s. Then we take k to be the same as in the clause for
qP , i.e. k is the number of O-moves separating qP ’s justifier and qP . The sequence
(aw ar)k+1 simply answers all the questions qw, qr that were introduced for qP .
Because the pending question of s stays the same as that in s, this will yield a valid
play. Note also that the O-moves ar (in response to aw) are consistent with the
cellunit→unit strategy.

· · · r) qr (qw qr)
k qw qP · · · aO (aw ar)

k+1

8

– s aP = s aP
As we have already mentioned, the construction of s from s preserves the pending
question. Hence, the above clause leads to a play.

Consequently,σ is visible and, because the inserted moves are consistent with cellunit→unit,
we have 〈 !A1

; cellunit→unit, idA1
〉;σ = σ. That σ is recursively presentable follows

from our description above. 78

In order to apply the Theoremwe need two more results. The first of them is classic and
concerns decomposing visible strategies into innocent ones. Innocence [7] is a condition
even stricter than visibility: responses of innocent strategies are uniquely determined by
views.

Theorem 14 (Innocent Factorisation [4]). Let σ : A1 → A2 be a visible strategy
and A = !ref(int)". There exists an innocent strategy σ̂ : A ⊗ A1 → A2 such that
〈 !A1

; cellint, idA1
〉; σ̂ = σ.

Note that this result already applies to arbitrary strategies rather than just finite ones.
Also, the construction of σ̂ is effective and shows that σ̂ is recursively presentable if σ
is.

Finally, we prove a universality result for recursively presentable innocent strate-
gies. Universality results were not necessary in research on full abstraction, because
their weaker variants phrased for finite (or finitely generated) strategies sufficed to cap-
ture possible separating contexts. Hence, after the initial ones for PCF [2, 7], they all but
disappeared from subsequent papers. For program transformations, though, we need to
be able to express arbitrary recursive strategies, hence the need for universality. Note
that there is a huge difference between finite and recursive strategies. For instance, the
strategy corresponding to λxint.x is not finite.

Theorem 15 (Innocent Universality). Let σ : !Γ " θ" be a recursively presentable
innocent strategy. There exists a ref-free term Γ " M : θ such that !Γ " M : θ" = σ. If
Γ and θ do not contain occurrences of ref-types, thenM can be taken to bemkvar-free.

By appealing to Theorems 13, 14 and 15 one can deduce Universality.

Theorem 16 (Universality). Let σ : !Γ " θ" be a recursively presentable strategy.
Then there exists Γ " M : θ such that !Γ " M : θ" = σ.

In fact, in the above statementM can be taken to be of the form

let f, x = newunit→unit, newint inM
′,

whereM ′ is ref-free. Because the game semantics of a term is recursively presentable,
we can conclude the following result.

Theorem 17 (Transformation).LetΓ " M : θ. There exists a term Γ, f : ref(unit → unit), x :
ref(int) " M ′ : θ satisfying the following conditions.

– Γ " M ∼= let f, x = newunit→unit, newint inM ′.
– M ′ is ref-free.

9

– If there are no occurrences of ref in Γ, θ, thenM ′ is mkvar-free.

Thus, general references in L can be simulated by two memory cells that store values
of type unit → unit and int respectively. Our proof was semantic, but the passage from
M toM ′ can be made effective. However, due to reliance on the universality result, we
would need to pass through enumerations of partial recursive functions. This is hardly
a reasonable way of transforming programs! Next we shall identify several syntactic
decomposition principles for general references, which will yield an alternative proof
of the Theorem.

5 Syntactic transformation

Note that ref(M) is equivalent to letx = newθ in (x :=M ;x) for a suitable θ. Conse-
quently, w.l.o.g. we can assume that the only occurrences of ref(· · ·) inside terms are
those associated with newθ . Similarly, we assume that terms do not contain fixed-point
subterms, as these can be simulated using higher-order reference cells [1].

Next we show newθ can be decomposed using instances of new at simpler types.
Ultimately, this will allow us to replace any occurrences of ref(M) with newunit→unit

and newint. The mkvar constructor is central to the transformations.

Lemma 18 (Decomposition of ref(θ1 → θ2)). For all θ1, θ2, " newθ1→θ2
∼= let f, x1, x2 =

newunit→unit, newθ1 , newθ2 inmkvar(Mr,Mw), where

Mr ≡ λyunit.leth =!f inλzθ1. (x1 := z; h(); !x2),
Mw ≡ λgθ1→θ2. f := (λzunit. x2 := g(!x1)).

We can show the equivalence formally by comparing strategies corresponding to each
term. Intuitively, the equivalence is valid because on assignmentMw indirectly records
the assigned value g in f . On dereferencing, Mr ensures that the latest value of f
is accessed and the corresponding value g applied to the right argument through the
internal references x1 and x2.

Lemma 19 (Decomposition of ref(ref(θ))). For any θ, " newref(θ)
∼= let r, w =

newunit→θ, newθ→unit inmkvar(Mr,Mw) for all θ, where

Mr ≡ λzunit.mkvar(!r, !w),
Mw ≡ λgref(θ). (r := (λzunit. !g); w := (λzθ. g := z)).

Here, instead of storing a reference of type θ, we store the associated read and write
methods, of types unit → θ and θ → unit respectively, which is what references r and
w are used for.

Lemma 20. " newunit
∼= mkvar(λxunit. (),λxunit. ()).

The Lemma is easy to verify by reference to the game model. It illustrates the rather
strange status of type ref(unit) in L, in particular the fact that it is not possible to
compare reference names (of type ref(unit)) in the language.

The last three Lemmas imply the following corollary.

10

Corollary 21. For any Γ " M : θ there exists Γ " M ′′ : θ such that Γ " M ∼= M ′′ : θ
and occurrences of the ref constructor inM ′′ are restricted to terms of the form newunit→unit

or newint.

In the result above, newunit→unit and newint are allowed to occur multiple times. In what
follows we shall show that one occurrence of each suffices.

Lemma 22. There exist ref-free termsM,N such that

" λxunit. newunit→unit
∼= let f, x = newint→unit, newint inM : unit → ref(unit → unit),

" λxunit. newint
∼= letx = newint inN : unit → ref(int).

Proof. We can encode an unbounded number of references of type ref(unit → unit)
with a reference f of type ref(int → unit) by giving to each (unit → unit)-valued ref-
erence a unique integer identifier i, and encoding the value of the ith such reference
as λvunit. (!f)i. We use the internal variable x to count the number of generated refer-
ences, so as to assign them unique identifiers. Thus,M can be taken to be λzunit.let i =
!x in (x := !x + 1);mkvar(Mr,Mw), where Mr ≡ λuunit.leth =!f inλvunit. h i and
Mw ≡ λgunit→unit. let g′ =!f in f := (λyint. if y = i then g() else g′y).

For the second part, assume a standard encoding G(−) : Z∗ → Z of lists of
integers into integers such that G(ε) = 0. Clearly, one can construct closed PCF terms
len : int → int, add : int → int → int, proj : int → int → int and upd : int → int →
int → int such that, for all s ∈ Z∗ and i, j ∈ Z:

len G(s) ⇓ |s| , addG(s) i ⇓ G(si) , proj G(s) j ⇓ sj , updG(s) j i ⇓ G(s[j &→ i]) ,

where |s| is the length of s, sj is the jth element of s, and s[j &→ i] is the list s with its
jth element changed to i. We can then keep track of an unbounded number of integer-
valued references by takingN to be

λzunit. x := add (!x) 0; let j=len(!x) in mkvar(λzunit. proj (!x) j,λiint. x := upd (!x) j i).

78

Now we are ready to give a new proof of Theorem 17. For a start, we tackle the first
two claims therein.

Proof. Given Γ " M : θ, from Corollary 21 we can obtain an equivalent termM ′′, in
which occurrences of ref are restricted to newunit→unit and newint. Observe thatM ′′ is
thus equivalent to leth = λxunit.newunit→unit inM1, whereM1 ≡ M ′′[h()/newunit→unit]
and the only occurrences of ref in M1 are those of newint. Applying Lemmata 22, 20
and 18,M ′′ is further equivalent to let f = newunit→unit inM2, where the only occur-
rences of ref inM2 are those of newint. Finally, noting thatM2 is equivalent to leth′ =
λxunit.newint inM3, where M3 is ref-free, and invoking Lemma 18 we can conclude
thatM2 is equivalent to letx = newint inM4, whereM4 is ref-free. Now we can take
M ′ (from the statement of the Theorem) to be let f, x = newunit→unit, newint inM4. 78

Note that the decompositions presented in this Section relied on the availability of
mkvar and the termM ′ from the above proof will in general contain many occurrences

11

of mkvar. We devote the remainder of this Section to showing that when Γ and θ are
ref-free, all the occurrences of mkvar can actually be eliminated. To that end, we shall
rely on a notion of canonical form, defined below.

C ::= () | xint | mkvar(λuunit.C,λvθ .C) | λxθ.C | if C thenC elseC |
let y = i inC | let y = C⊕ C inC | let y =!x inC | let y = (x :=C) inC |
let y = xC inC | let y = ref(C) inC

The canonical forms enjoy the following property.
Lemma 23. For any Γ " M : θ without fixed points, there exists a term CM in canon-
ical form such that Γ " M ∼= CM : θ. Moreover, CM can be effectively found and the
conversion does not add any occurrences of ref .
It turns out that canonical subterms of canonical terms have types drawn from a rather
restricted set. We make this statement precise below.
Definition 24. Given a type θ, the sets PST(θ) (of positive subtypes of θ) and NST(θ)
(of negative subtypes of θ) are defined respectively as follows. Let us write ST(θ) for
PST(θ) ∪ NST(θ).

PST(unit) = {unit} PST(ref(θ)) = ST(θ) ∪ {ref(θ)}
PST(int) = {int} PST(θ1 → θ2) = NST(θ1) ∪ PST(θ2) ∪ {θ1 → θ2}

NST(unit) = ∅ NST(ref(θ)) = ST(θ)
NST(int) = ∅ NST(θ1 → θ2) = PST(θ1) ∪ NST(θ2)

Given a canonical form C such that Γ " C : θ, let RT(C) stand for the set of types θ′
such that C contains an occurrence of ref(C′), where C′ of type θ′. It turns out that the
types in RT(C) together with types present in the original typing judgment determine
types of canonical subterms, as made precise below.
Lemma 25. Suppose Γ " C : θ. Let

L = (
⋃

(x:θx)∈Γ PST(θx)) ∪ NST(θ) ∪ (
⋃

θr∈RT(C) ST(ref(θr))) ∪ {unit, int},
R = (

⋃
(x:θx)∈Γ NST(θx)) ∪ PST(θ) ∪ (

⋃
θr∈RT(C) ST(θr)) ∪ {unit, int}.

Then, for any subterm C′ of C which is also in canonical form, we have Γ ′ " C′ : θ′,
where cod(Γ ′) ⊆ L and θ′ ∈ R.

Corollary 26. Suppose Γ " C : θ, RT(C) = {int, unit → unit} and Γ, θ are ref-free.
Then C does not contain any occurrences of mkvar.

Proof. Because RT(C) = {int, unit → unit}, by Lemma 25,C can only containmkvar
if (

⋃
(x:θx)∈Γ NST(θx)) ∪ PST(θ) contains a ref-type. Since Γ and θ are ref-free this

cannot be the case. 78

This completes a syntactic proof of Theorem 17.
Remark 27. Note that Lemma 22 may reintroduce fixed points into the language, be-
cause it relies on numerical operations defined in PCF. We can still reduce terms con-
taining such definitions to canonical form by assuming that the required operations are
primitive (represented by⊕). If this is not desirable then, after the elimination ofmkvar
under the above assumption, we can put back the PCF definitions without jeopardizing
the result (mkvar is not available in PCF).

12

6 When integer references suffice

Next we shall examine the conditions under which references of type unit → unit
can also be eliminated, i.e. all uses of general references can be replaced with a sin-
gle integer-valued memory cell. In technical terms, this requires us to characterize the
arenas where plays are guaranteed to satisfy visibility.

Definition 28. Let A be an arena and m1,m2 ∈ MA. We shall say that m1 and m2

are equireachable if there are paths ms1m1 and ms2m2 in the graph (MA,"A) such
thatm is initial and, if s1 and s2 both start with an answer, say a1 and a2 respectively,
then a1 = a2.

Remark 29. For arenas which are denotations of types, as is the case in Lemma 32, the
notion of equireachability trivialises somewhat. In particular, any non-initial O-moves
m1 and m2 are equireachable. We introduced a more general definition above so as to
be able to state Lemma 31.

Definition 30. An arena A is called visible if there are no equireachable non-initial
movesm,m′ ∈ MA such thatm is an O-question andm′ enables a P-question.

Lemma 31. Let A be an arena such that each question enables an answer. All plays of
A satisfy the visibility condition if and only if A is visible.

Proof. Let s be a play of A that violates the visibility condition. Suppose further that s
ends in the P-move p2, which breaks visibility for the first time and let o1 be its justifier.
Then, since s breaks visibility at p2, it must look like:

m · · · p1 · · · o1 · · · o2 · · · p2

for some initial move m, where o2 appears in the view right before p2 and where p2
is a question. Observe also that, since p2 violates visibility, its justifier o1 cannot be
initial. If o2 is a question we are done: A is not visible because of (m,m′) = (o2, o1).
So, suppose that o2 is an answer. Then, p1 is a question and the move o′2 immediately
following it in s is also a question (otherwise it would answer p1). Moreover o′2 is not
initial. Consequently,A is not visible due to (m,m′) = (o′2, o1).

Conversely, suppose that A is not visible and let the latter be witnessed by paths
ms1p1o2 andms2o1p2 in (MA,"A). We form a play s as follows.
– If s2 does not start with an answer, we set

s = ms1 p1 o2 s2 o1 p2 o2 p2 .

– If s1p1, s2 both start with an answer, say s1p1 = as′1 and s2 = as′2, we set

s = mas′1 s
′
2 o1 p2 o2 p2

where the leftmost pointer points to the last move of s′1.
– If s2 starts with an answer but s1 does not, we set

s = ms1 p1 s
′
1 s2 o1 p2 o2 p2

where s′1 is a sequence of moves answering all open questions of s1p1.

13

Now observe that, in each case, the play s breaks visibility at move p2. 78

As a next step we would like to understand what typing judgments give rise to visi-
ble arenas. Our answer will be phrased in terms of syntactic shape. For simplicity, we
shall now restrict our discussion to types generated from unit (Remark 33 explores the
consequences of the results for the full type system). The following two lemmas cap-
ture scenarios relevant to verifying visibility for arenas. We write Θ1 for the collection
of first-order types, generated by the grammar Θ1 ::= unit | unit → Θ1. Similarly,
Θ1 → unit stands for {θ1 → unit | θ1 ∈ Θ1}.

Lemma 32. Let A = !θ1, · · · , θk " θ", where θ1, · · · , θk, θ are generated from unit.

– All O-questions in A are initial iff θi ∈ Θ1 for all 1 ≤ i ≤ k and θ = unit.
– A does not contain a P-question enabled by a non-initial O-move iff θi ∈ {unit} ∪
(Θ1 → unit) for 1 ≤ i ≤ k and θ ∈ Θ1.

Consequently, A is visible if and only if one of the conditions above is satisfied.

Remark 33. To see whether any occurrences of ref-types generate visible arenas, recall
that !ref(θ)" = !θ → unit" × !unit → θ". Consequently, for the purpose of deter-
mining visiblity ref(unit) can be viewed as unit → unit. Thus, ref(unit) can be used
whenever unit → unit is allowed. Note also that it is immaterial whether we con-
sider unit or int. The observations yield the following typing constraints for visible
arenas: (θi ::= β | ref(β) |Θ1 → β and θ ::= Θ1) or (θi ::= Θ1 and θ ::= β), where
β ::= unit | int and Θ1 ::= β | ref(β) |β → Θ1. Analogously, ref(β → β) should be
viewed as a combination of (β → β) → β and β → β → β. The results above do not
give us much room for using this type: it cannot occur on the right but, if θ ≡ β we can
have θi ≡ ref(β → β).

Thanks to Theorems 14 and 15 we can derive:

Theorem 34. Let Γ " θ be such that !Γ " θ" is visible. For any Γ " M : θ, there
exists Γ, y : ref(int) " M ′ : θ such that the following conditions are satisfied.

– Γ " M ∼= let y = ref(0) inM ′.
– M ′ is ref-free.
– If Γ " θ does not contain occurrences of ref, thenM ′ is mkvar-free.

Next we give several examples of terms in which uses of ref(unit → unit) are defi-
nitely not eliminable. This is because the terms generate plays that violate the visibility
condition, to be contrasted with Proposition 10.

Example 35. The first example is simply " newunit→unit : ref(unit → unit). Its seman-
tics contains the play

) ◦ write ok read) qr qw .

14

Other examples are obtained by extending the shape of types from Lemma 32 in various
ways.

" letx, y = newunit→unit, newint in
λfunit→unit. (if (!y = 0) then (y := 1;x := f) else ()); (!x)() : (unit → unit) → unit

g : ((unit → unit) → unit) → unit " letx, y = newunit→unit, newint in
g(λfunit→unit. (if (!y = 0) then (y := 1;x := f) else ()); (!x)()) : unit

g : unit → unit → unit " letx, y = newunit→unit, newint in
λuunit.(if (!y = 0) then (y := 1;x := g()) else ()); (!x)() : unit → unit

g : (unit → unit) → unit → unit "
letx = newunit→unit in (x := g(λzunit.(!x)())); (!x)() : unit

7 When all references are dispensible

Finally, at some types memory allocation turns out dispensible, i.e. there exist purely
functional terms with equivalent observable behaviour. In game-semantic terms, these
are types where all strategies are necessarily innocent [7].

Definition 36. Let A be an arena such that any question enables an answer3. A is
called innocent if all O-questions are initial.

Remark 37. Let us observe that !θ1, · · · , θk " θ" is an innocent arena if and only if
θi ::= Θ1 and θ ::= β.

Lemma 38. Let A be an arena such that any question enables an answer. Every strat-
egy σ : A is innocent if and only if A is innocent.

Proof. SupposeA is not innocent, i.e. there exists a non-initial O-question qO. Let s be
the chain of enablers leading from some initial move to qO and let aP be an answer to
qO . Then the strategy onA consisting of prefixes of saP is not innocent, because it will
not contain saP qOaP . Thus, not all strategies in A are innocent.

Now assume that A is innocent. Consequently, all non-initial O-moves are an-
swers. Thus, each odd-length play s in A must have the shape q(qa)∗. Consequently,
view (s) = s and each strategy on A is thus innocent. 78

The following result then follows from Theorem 15.

Theorem 39. Suppose Γ " M : θ is such that !Γ " M : θ" is innocent. Then there
exists Γ " M ′ : θ satisfying all the conditions below.

– Γ " M ∼= M ′.
– M ′ is ref-free.
– If there are no occurrences of ref-types in Γ " θ, thenM ′ is mkvar-free.
3 All arenas corresponding to types are of this kind.

15

Example 40. Here are two examples of terms not covered by Theorem 39, i.e. terms
that do not have purely functional counterparts, because the corresponding strategies
are not innocent.

" let y = newint inλzunit.if (!y = 0) then y := 1 elseΩ : unit → unit

g : (unit → unit) → unit " let y = newint in
g(λzunit.if (!y = 0) then y := 1 elseΩ) : unit

8 Conclusion
We showed that general references in L can be simulated with two reference cells, of
types ref(unit → unit) and ref(int) respectively. This was first demonstrated through
a game-semantic argument and subsequently complemented by a syntactic recipe for
program transformation. The latter was facilitated by the presence of the mkvar con-
structor. However, the results apply equally well to themkvar-free framework, provided
no reference types occur in the type of the term or those of its free identifiers (arbitrary
internal uses are still allowed). Then the auxiliary occurrences ofmkvar can actually be
eliminated, so, in this context, mkvar can be viewed as a useful temporary addition to
the language.

In the future, we would like to conduct a similar study using the nominal game
model of [8]. In the nominal setting, decomposition results such as Lemmata 18 and 19
cannot be expected to hold. Another surprising challenge is that the obvious adaptation
of the visibility condition fails to be preserved by composition.

References
1. S. Abramsky, K. Honda, and G. McCusker. Fully abstract game semantics for general refer-
ences. In Proceedings of LICS, pages 334–344. Computer Society Press, 1998.

2. S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Information and
Computation, 163:409–470, 2000.

3. S. Abramsky and G. McCusker. Call-by-value games. In Proceedings of CSL, volume 1414
of Lecture Notes in Computer Science, pages 1–17. Springer-Verlag, 1997.

4. S. Abramsky and G. McCusker. Linearity, sharing and state: a fully abstract game semantics
for Idealized Algol with active expressions. In P. W. O’Hearn and R. D. Tennent, editors,
Algol-like languages, pages 297–329. Birkhaüser, 1997.

5. K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encodings. Inf. Comput.,
155(1-2):108–133, 1999.

6. K. Honda and N. Yoshida. Game-theoretic analysis of call-by-value computation. Theoreti-
cal Computer Science, 221(1–2):393–456, 1999.

7. J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for PCF: I. Models, observables and
the full abstraction problem, II. Dialogue games and innocent strategies, III. A fully abstract
and universal game model. Information and Computation, 163(2):285–408, 2000.

8. A. S. Murawski and N. Tzevelekos. Game semantics for good general references. In Pro-
ceedings of LICS, pages 75–84. IEEE Computer Society Press, 2011.

9. J. C. Reynolds. The essence of Algol. In J. W. de Bakker and J.C. van Vliet, editors,
Algorithmic Languages, pages 345–372. North Holland, 1981.

10. S. B. Sanjabi and C.-H. L. Ong. Fully abstract semantics of additive aspects by translation.
In Proceedings of AOSD, pages 135–148. ACM, 2007.

16

