
DAA 2020-21 1. Program cost and asymptotic notation – 1 / 33

Design and Analysis of Algorithms

Part 1

Program Cost and Asymptotic Notation

Elias Koutsoupias

with thanks to Giulio Chiribella

Hilary Term 2021



Fast computers vs efficient algorithms [CLRS 1]

DAA 2020-21 1. Program cost and asymptotic notation – 2 / 33

Many recent innovations rely on

� fast computers

� efficient algorithms.

Which is more important?



The importance of efficient algorithms

DAA 2020-21 1. Program cost and asymptotic notation – 3 / 33

The cost of an algorithm can be quantified by the number of steps T (n) in

which the algorithm solves a problem of size n.

Imagine that a certain problem can be solved by four different algorithms,

with T (n) = n, n2, n3, and 2n, respectively.

Question: what is the maximum problem size that the algorithm can solve

in a given time?

Assume that a computer is capable of 1010 steps per second.

Cost T (n) Maximum problem size solvable in

(Complexity) 1 second 1 hour 1 year

n 1010 3.6× 1013 3× 1017

n2 105 6× 106 5× 108

n3 2154 33000 680000
2n 33 45 58



Faster computers vs more efficient algorithms

DAA 2020-21 1. Program cost and asymptotic notation – 4 / 33

Suppose a faster computer is capable of 1016 steps per second.

Cost T (n) Max. size before Max. size now

n s1 106 × s1
n2 s2 1000× s2
n3 s3 100× s3
2n s4 s4 + 20

A 106× increase in speed results in only a factor-of-100 improvement if

cost is n3, and only an additive increase of 20 if cost is 2n.

Conclusions As computer speeds increase ...

1. ... it is algorithmic efficiency that really determines the increase in

problem size that can be achieved.

2. ... so does the size of problems we wish to solve.

Thus, designing efficient algorithms becomes even more important!



From Algorism to Algorithms

DAA 2020-21 1. Program cost and asymptotic notation – 5 / 33

Invented in India around AD 600, the decimal system was a revolution in

quantitative reasoning. Arabic mathematicians helped develop arithmetic

methods using the Indian decimals.

A 9th-century Arabic textbook by the Persian Al Khwarizmi was the key

to the spread of the Indian-Arabic decimal arithmetic. He gave methods

for basic arithmetic (adding, multiplying and dividing numbers), even the

calculation of square roots and digits of π.

Derived from ‘Al Khwarizmi’, algorism means rules for performing

arithmetic computations using the Indian-Arabic decimal system.

The word “algorism” devolved into algorithm, with a generalisation of the

meaning to

Algorithm: a finite set of well-defined instructions for accomplishing

some task.



Evaluating algorithms

DAA 2020-21 1. Program cost and asymptotic notation – 6 / 33

Two questions we ask about an algorithm

1. Is it correct?

2. Is it efficient?

Correctness is of utmost importance.

It is easy to design a highly efficient but incorrect algorithm.

Efficiency with respect to:

� Running time

� Space (amount of memory used)

� Network traffic

� Other features (e.g. number of times secondary storage is accessed)

Proving correctness and analysing the efficiency of programs are difficult

problems, in general. Take for example the Collatz program: starting from a

positive integer x repeat “if x is even then x = x/2, else x = (3x+ 1)/2” until

x = 1. We don’t know how many steps this program takes.



Measuring running time

DAA 2020-21 1. Program cost and asymptotic notation – 7 / 33

On an actual computer, the running time of a program depends on many

factors:

1. The running time of the algorithm.

2. The input of the program.

3. The quality of the implementation

(e.g. quality of the code generated by the compiler).

4. The machine running the program.

We are concerned with 1.



Sorting [CLRS 2.1]

DAA 2020-21 1. Program cost and asymptotic notation – 8 / 33

The Sorting Problem

Input: A sequence of n integers a1, · · · , an.

Output: A permutation aσ(1), · · · , aσ(n) of the input such that

aσ(1) ≤ aσ(2) ≤ · · · ≤ aσ(n).

The sequences are typically stored in arrays.



Insertion sort: Informal description

DAA 2020-21 1. Program cost and asymptotic notation – 9 / 33

� The input is an integer array A[1 . . n],
with A[1] = a1, A[2] = a2, . . . , A[n] = an.

� The algorithm consists of n− 1 iterations.

At the j-th iteration,

the first j + 1 entries of the array A[1 . . n] are arranged in sorted order.

To do this, the entry A[j + 1] is compared with the entry A[i], i ≤ j,

starting from i = j.

– If A[i] > A[j+1], the value A[i] is moved from the i-th position to

the (i+ 1)-th position, and the counter i is decremented to i− 1.

– If A[i] ≤ A[j + 1], the value A[j + 1] is put into the (i+ 1)-th
position of the array and the iteration terminates.



Example

DAA 2020-21 1. Program cost and asymptotic notation – 10 / 33

j
1 2 3 4 5 6

5 2 4 6 1 3

j
1 2 3 4 5 6

2 4 5 6 1 3

j
1 2 3 4 5 6

2 5 4 6 1 3

j
1 2 3 4 5 6

1 2 4 5 6 3

j
1 2 3 4 5 6

2 4 5 6 1 3

j
1 2 3 4 5 6 7

1 2 3 4 5 6

Observation. At the start of the j-th iteration, the subarray A[1 . . j]
consists of the elements originally in A[1 . . j] but in sorted order.



Pseudocode (CRLS-style)

DAA 2020-21 1. Program cost and asymptotic notation – 11 / 33

INSERTION-SORT(A)

Input: An integer array A
Output: Array A sorted in non-decreasing order

1 for j = 1 to A.length − 1
2 key = A[j + 1]
3 // Insert A[j + 1] into the sorted sequence A[1 . . j].
4 i = j
5 while i > 0 and A[i] > key

6 A[i+ 1] = A[i] // moves the value A[i] one place to the right

7 i = i− 1
8 A[i+ 1] = key



Characteristics of the CLRS pseudocode

DAA 2020-21 1. Program cost and asymptotic notation – 12 / 33

� Similar to Pascal, C and Java.

� Pseudocode is for communicating algorithms to humans:

many programming issues (e.g. data abstraction, modularity, error

handling, etc.) are ignored.

� English statements are sometimes used.

� “// ” indicates that the reminder of the line is a comment.

(In 2nd edition “✄” is used.)

� Variables are local to the block, unless otherwise specified.

� Block structure is indicated by indentation.

� Assignment “x = y” makes x reference the same object as y.

(In 2nd edition “←” is used.)

� Boolean operators “and” and “or” are “short-circuiting”.



Loop-invariant approach to correctness proof

DAA 2020-21 1. Program cost and asymptotic notation – 13 / 33

Three key components of a loop-invariant argument:

1. Initialization: Prove that invariant (I) holds prior to first iteration.

2. Maintenance: Prove that if (I) holds just before an iteration, then it

holds just before the next iteration.

3. Termination: Prove that when the loop terminates, the invariant (I),

and the reason that the loop terminates, imply the correctness of the

loop-construct.

The approach is reminiscent of mathematical induction:

1. Initialization corresponds to establishing the base case.

2. Maintenance corresponds to establishing the inductive case.

3. The difference is that we expect to exit the loop,

whereas mathematical induction establishes a result for all natural

numbers.



Correctness of INSERTION-SORT

DAA 2020-21 1. Program cost and asymptotic notation – 14 / 33

Invariant of outer loop: At the start of the j-th iteration, the subarray

A[1 . . j] consists of the elements originally in A[1 . . j] but in sorted order.



Correctness of INSERTION-SORT

DAA 2020-21 1. Program cost and asymptotic notation – 14 / 33

Invariant of outer loop: At the start of the j-th iteration, the subarray

A[1 . . j] consists of the elements originally in A[1 . . j] but in sorted order.

Initialization. When j = 1, the subarray A[1 . . j] is a singleton and

trivially sorted.

Termination. The outer for loop terminates when j = n := A.length.

With j = n, the invariant reads: A[1 . . n] consists of the elements

originally in A[1 . . n] but in sorted order.



Correctness of INSERTION-SORT

DAA 2020-21 1. Program cost and asymptotic notation – 14 / 33

Invariant of outer loop: At the start of the j-th iteration, the subarray

A[1 . . j] consists of the elements originally in A[1 . . j] but in sorted order.

Initialization. When j = 1, the subarray A[1 . . j] is a singleton and

trivially sorted.

Termination. The outer for loop terminates when j = n := A.length.

With j = n, the invariant reads: A[1 . . n] consists of the elements

originally in A[1 . . n] but in sorted order.

Maintenance. Suppose input is sequence a1, · · · , an.

We need to prove the following:

If at the start of the j-th iteration A[1 . . j] consists of a1, · · · , aj in sorted

order, then at the start of the (j + 1)-th iteration A[1 . . j + 1] consists of

a1, · · · , aj+1 in sorted order.

The proof requires us to examine the behaviour of the inner while loop,

under the promise that the subarray A[1 . . j] consists of a1, · · · , aj in

sorted order.



Correctness of INSERTION-SORT, continued

DAA 2020-21 1. Program cost and asymptotic notation – 15 / 33

The inner while loop has the following property:

Property of the while loop: if A[1 . . j] consists of a1, · · · , aj in sorted

order, then, at termination of the while loop, the sequence

A[1 . . i] key A[i+2 . . j+1] consists of a1, · · · , aj+1 in sorted order.

This property implies the maintenance of the loop invariant of the for

loop, because the array A[1 . . j + 1] after the j-th iteration of the for loop

is exactly the sequence A[1 . . i] key A[i+2 . . j+1].



Correctness of INSERTION-SORT, continued

DAA 2020-21 1. Program cost and asymptotic notation – 15 / 33

The inner while loop has the following property:

Property of the while loop: if A[1 . . j] consists of a1, · · · , aj in sorted

order, then, at termination of the while loop, the sequence

A[1 . . i] key A[i+2 . . j+1] consists of a1, · · · , aj+1 in sorted order.

This property implies the maintenance of the loop invariant of the for

loop, because the array A[1 . . j + 1] after the j-th iteration of the for loop

is exactly the sequence A[1 . . i] key A[i+2 . . j+1].

Hence, it only remains to prove the validity of the above property.

The proof, provided in the next slide, uses a loop invariant for the while

loop.



Correctness of INSERTION-SORT, concluded

DAA 2020-21 1. Program cost and asymptotic notation – 16 / 33

Invariant of while loop:

(I1) A[1 . . i]A[i+2 . . j+1] is a1, · · · aj in sorted order

(I2) all elements in A[i+2 . . j+1] are strictly greater than key .

Initialization. For i = j, (I1) is true because A[1, . . j] was promised to be

a1, · · · , aj in sorted order, and (I2) is trivially true because the array

A[j + 2 . . j + 1] is empty.

Termination. Termination occurs if either i = 0 or A[i] ≤ key . In both

cases, (I1) and (I2) guarantee that the sequence A[1 . . i] key A[i+2 . . j+1]
contains the same elements as a1, · · · aj+1 in sorted order.

Maintenance. For a given i, the body of the loop is executed only if

A[i] > key . In that case, A[i+ 1] gets the value A[i]. After this change,

the sequence A[1 . . i− 1]A[i+1 . . j + 1] is a1, · · · aj in sorted order, and

all elements in A[i+1 . . j+1] are strictly greater than key .

Hence, (I1) and (I2) still hold when i is decremented to i− 1.



Running time analysis [CLRS 2.2]

DAA 2020-21 1. Program cost and asymptotic notation – 17 / 33

Running time is

∑

all statements

(cost of statement) · (number of time statement executed)

CLRS assume the following model: for a given pseudocode

� Line i takes constant time ci.

� When a for or while loop exits normally,

the test is executed one more time than the loop body.

This model is well justified when each line of the pseudocode contains:

� a constant number of basic arithmetic operations

(add, subtract, multiply, divide, remainder, floor, ceiling)

� a constant number of data movement instructions (load, store, copy)

� a constant number of control instructions

(conditional and unconditional branch, subroutine call and return)



The running time of INSERTION-SORT

DAA 2020-21 1. Program cost and asymptotic notation – 18 / 33

Recall the pseudocode:

1 for j = 1 to A.length − 1
2 key = A[j + 1]
3 // Insert A[j + 1] into the sorted sequence A[1 . . j].
4 i = j

5 while i > 0 and A[i] > key

6 A[i + 1] = A[i]
7 i = i − 1
8 A[i + 1] = key

Setting n := A.length, the running time is

T (n) = c1n+ c2(n− 1) + c3(n− 1) + c4(n− 1) + c5
∑n−1

j=1 tj

+c6
∑n−1

j=1 (tj − 1) + c7
∑n−1

j=1 (tj − 1) + c8(n− 1) ,

where tj is the number of times the test of the while loop is executed for a

given value of j (note that tj may also depend on the input).



Worst-case analysis

DAA 2020-21 1. Program cost and asymptotic notation – 19 / 33

� The input array contains distinct elements in reverse sorted order

i.e. is strictly decreasing.

� Why? Because we have to compare key = aj+1 with every element to

left of the (j+1)-th element, and so, compare with j elements in total.

� Thus tj = j + 1. We have
∑n−1

j=1 tj =
∑n−1

j=1 (j + 1) = n(n+1)
2
− 1, and

so,

T (n) = c1n+ c2(n− 1) + c4(n− 1) + c5(
n(n+1)

2
− 1)

+c6(
n(n−1)

2
) + c7

n(n−1)
2

+ c8(n− 1)

= an2 + bn+ c

for appropriate a, b and c.

Hence T (n) is a quadratic function of n.



Best-case analysis

DAA 2020-21 1. Program cost and asymptotic notation – 20 / 33

� The array is already sorted.

� Always find A[i] ≤ key upon the first iteration of the while loop

(when i = j).

� Thus tj = 1.

T (n) = c1n+ c2(n− 1) + c4(n− 1) + c5(n− 1) + c8(n− 1)

= (c1 + c2 + c4 + c5 + c8)n− (c2 + c4 + c5 + c8)

I.e. T (n) is a linear function of n.



Average-case analysis (informal)

DAA 2020-21 1. Program cost and asymptotic notation – 21 / 33

� Randomly choose n numbers as input.

� On average, the key in A[j] is less than half the elements in A[1 . . j]
and greater than the other half, and so, on average the while loop has

to look halfway through the sorted subarray A[1 . . j] to decide where

to drop the key.

� Hence tj = j/2.

� Although average-case running time is approximately half that of the

worst-case, it is still quadratic.

Moral. Average-case complexity can be asymptotically as bad as the

worst-case.

Average-case analysis is not straightforward:

� What is meant by “average input” depends on the application.

� The mathematics can be difficult.



Features of insertion sort: a summary

DAA 2020-21 1. Program cost and asymptotic notation – 22 / 33

� Worst-case quadratic time.

� Linear-time on already sorted (or nearly sorted) inputs.

� Stable: Relative order of elements with equal keys is maintained.

� In-place: Only a constant amount of extra memory space (other than

that which holds the input) is required, regardless of the size of the

input.

� Online: it can sort a list as it is received.



The Big-O notation [CLRS 3]

DAA 2020-21 1. Program cost and asymptotic notation – 23 / 33

Let f, g : N −→ R
+ be functions. Define the set

O(g(n)) := { f : N −→ R
+ : ∃n0 ∈ N

+ . ∃c ∈ R
+ . ∀n .

n ≥ n0 → f(n) ≤ c · g(n) }

In words, f ∈ O(g) if there exist a positive integer n0 and a positive real c
such that f(n) ≤ c · g(n) for all n ≥ n0.

Informally O(g) is the set of functions that are bounded above by g,

ignoring constant factors, and ignoring a finite number of exceptions.

If f ∈ O(g), then we say that “g is an asymptotic upper bound for f”



Examples

DAA 2020-21 1. Program cost and asymptotic notation – 24 / 33

O(g(n)) := { f : N −→ R
+ : ∃n0 ∈ N

+ . ∃c ∈ R
+ . ∀n .

n ≥ n0 → f(n) ≤ c · g(n) }

1. 398 ∈ O(1) [regarding 398 and 1 as (constant) functions of n].

Take n0 = 1 and c = 398.

2. 5n2 + 9 ∈ O(n2).
Take n0 = 3 and c = 6. Then for for all n ≥ n0, we have 9 ≤ n2, and

so 5n2 + 9 ≤ 5n2 + n2 = 6n2 = cn2.

3. Take g(n) = n2 and f(n) = 7n2 + 3n+ 11. Then f ∈ O(g).

4. Some more functions in O(n2):
1000n2, n, n1.9999, n2/ lg lg lg n and 6.



Properties of Big-O

DAA 2020-21 1. Program cost and asymptotic notation – 25 / 33

Lemma 1. Let f, g, h : N −→ R
+. Then:

1. For every constant c > 0, if f ∈ O(g) then c f ∈ O(g).

2. For every constant c > 0, if f ∈ O(g) then f ∈ O(c g).

3. If f1 ∈ O(g1) and f2 ∈ O(g2) then f1 + f2 ∈ O(g1 + g2).

4. If f1 ∈ O(g1) and f2 ∈ O(g2) then f1 + f2 ∈ O(max(g1, g2)).

5. If f1 ∈ O(g1) and f2 ∈ O(g2) then f1 · f2 ∈ O(g1 · g2).
6. If f ∈ O(g) and g ∈ O(h) then f ∈ O(h).

7. Every polynomial of degree l ≥ 0 is in O(nl).

8. For any c > 0 in R, we have lg(nc) ∈ O(lg(n)).

9. For every constant c, d > 0, we have lgc(n) ∈ O(nd).

10. For every constant c > 0 and d > 1, we have nc ∈ O(dn).

11. For every constant 0 ≤ c ≤ d, we have nc ∈ O(nd).



Example

DAA 2020-21 1. Program cost and asymptotic notation – 26 / 33

Example. Show that

57n3 + 4n2 · lg5(n) + 17n+ 498 ∈ O(n3)

by appealing to Lemma 1.

lg5(n) ∈ O(n) ∵ 9

4n2 · lg5(n) ∈ O(4n3) ∵ 5

57n3 + 4n2 · lg5(n) + 17n+ 498 ∈ O(57n3 + 4n3 + 17n+ 498) ∵ 3

57n3 + 4n3 + 17n+ 498 ∈ O(n3) ∵ 7

57n3 + 4n2 · lg5(n) + 17n+ 498 ∈ O(n3) ∵ 6



A shorthand for Big-O

DAA 2020-21 1. Program cost and asymptotic notation – 27 / 33

Instead of writing f ∈ O(g) we often write

f(n) = O(g(n))

(read “f is Big-O of g”).



A shorthand for Big-O

DAA 2020-21 1. Program cost and asymptotic notation – 27 / 33

Instead of writing f ∈ O(g) we often write

f(n) = O(g(n))

(read “f is Big-O of g”).

It is also convenient to write

f1(n) = f2(n) +O(g(n))

meaning that

f1(n) = f2(n) + h(n) ,

where h(n) is a generic function in O(g(n)).



Pitfalls of the shorthand

DAA 2020-21 1. Program cost and asymptotic notation – 28 / 33

When writing

f(n) = O(g(n))

we must bear in mind that it is a shorthand for f(n) ∈ O(g(n)).

Here “=” is not an equality between two objects.

In particular, it does not have the transitive property:

f(n) = O(g(n)) and h(n) = O(g(n)) does not imply f(n) = h(n)!

Two elements of the same set are not necessarily the same element!

Example

� n = O(n3) and n2 = O(n3) but n 6= n2.



So why use the shorthand?

DAA 2020-21 1. Program cost and asymptotic notation – 29 / 33

� It is convenient to write equations like f(n) = g(n) +O(nd), or

f(n) = g(n) (1 +O(1/n))

� The Big-O shorthand is a very common mathematical notation,

in use since more than 100 years ago.

� We already abuse the “=” symbol in computer science:

think of the pseudocode instruction i = i− 1.



Big-Ω

DAA 2020-21 1. Program cost and asymptotic notation – 30 / 33

The Big-O notation is useful for upper bounds. There is an analogous

notation for lower bounds, called the Big-Omega. We write

f(n) = Ω(g(n))

to mean “there exist a positive integer n0 and a positive real c such that for

all n ≥ n0, we have f(n) ≥ cg(n).”

If f ∈ Ω(g), then we say that “g is an asymptotic lower bound for f”.

Example

1. nn = Ω(n!)

2. 2n = Ω(n10).

Exercise

Prove that f(n) = Ω(g(n)) iff g(n) = O(f(n)).



Big-Θ

DAA 2020-21 1. Program cost and asymptotic notation – 31 / 33

When the function g(n) is both an asymptotic upper bound and an

asymptotic lower bound for f(n), we say that “g is an asymptotic tight

bound for f”, and we write

f(n) = Θ(g(n)) .

Equivalently, f = Θ(g) means that there exist positive reals c1 and c2 and

a positive integer n0 such that for all n ≥ n0, we have

c1g(n) ≤ f(n) ≤ c2g(n).

We can think of f and g as having the “same order of magnitude”.



Examples

DAA 2020-21 1. Program cost and asymptotic notation – 32 / 33

1. 5n3 + 88n = Θ(n3)

2. 2 + sin(lg n) = Θ(1)

3. n! = Θ(nn+1/2e−n).
Consequence of Stirling’s Approximation.

4. For all a, b > 1, loga n = Θ(logb n).
Consequence of the relation logb a = logc a

logc b
.

From now on, we will be “neutral” and write Θ(log n),
without specifying the base of the logarithm.



Examples

DAA 2020-21 1. Program cost and asymptotic notation – 32 / 33

1. 5n3 + 88n = Θ(n3)

2. 2 + sin(lg n) = Θ(1)

3. n! = Θ(nn+1/2e−n).
Consequence of Stirling’s Approximation.

4. For all a, b > 1, loga n = Θ(logb n).
Consequence of the relation logb a = logc a

logc b
.

From now on, we will be “neutral” and write Θ(log n),
without specifying the base of the logarithm.

Question. OK, we have seen that loga n is a Big-Theta of logb n.

But is 2loga n a Big-Theta of 2logb n?



Examples

DAA 2020-21 1. Program cost and asymptotic notation – 32 / 33

1. 5n3 + 88n = Θ(n3)

2. 2 + sin(lg n) = Θ(1)

3. n! = Θ(nn+1/2e−n).
Consequence of Stirling’s Approximation.

4. For all a, b > 1, loga n = Θ(logb n).
Consequence of the relation logb a = logc a

logc b
.

From now on, we will be “neutral” and write Θ(log n),
without specifying the base of the logarithm.

Question. OK, we have seen that loga n is a Big-Theta of logb n.

But is 2loga n a Big-Theta of 2logb n?

No! Recall that alogb c = clogb a for all a, b, c > 0.
Using this relation, we have 2loga n = nloga 2 and 2logb n = nlogb 2.

If a 6= b, we have two different powers of n, but nc = Θ(nd) only if c = d.



Revision

DAA 2020-21 1. Program cost and asymptotic notation – 33 / 33

Logarithms.

log2 n is sometimes written lg n, and loge n is sometimes written lnn.

Recall the following useful facts. Let a, b, c > 0.

a = blogb a

logb a = logc a
logc b

logb a = 1
loga b

alogb c = clogb a

A form of Stirling’s approximation.

n! =
√
2πn

(n

e

)n
(

1 + Θ

(

1

n

))


	Fast computers vs efficient algorithms [CLRS 1]
	The importance of efficient algorithms
	Faster computers vs more efficient algorithms 
	From Algorism to Algorithms
	Evaluating algorithms
	Measuring running time
	Sorting [CLRS 2.1]
	Insertion sort: Informal description
	Example
	Pseudocode (CRLS-style)
	Characteristics of the CLRS pseudocode
	Loop-invariant approach to correctness proof
	Correctness of Insertion-Sort
	Correctness of Insertion-Sort, continued
	Correctness of Insertion-Sort, continued
	Running time analysis [CLRS 2.2]
	The running time of Insertion-Sort
	Worst-case analysis 
	Best-case analysis
	Average-case analysis (informal)
	Features of insertion sort: a summary
	The Big-O notation [CLRS 3]
	Examples
	Properties of Big-O
	Example
	A shorthand for Big-O
	Pitfalls of the shorthand
	So why use the shorthand?
	Big-Omega
	Big-Theta
	Examples
	Revision

