
DAA 2020-21 5. Graph Decomposition – 1 / 33

Design and Analysis of Algorithms

Part 5

Graph Decomposition

Elias Koutsoupias

with thanks to Giulio Chiribella

Hilary Term 2021

Why graphs? [DPV 3.1]

DAA 2020-21 5. Graph Decomposition – 2 / 33

Graphs are one of the most fundamental notions in CS:

Many CS problems have an underlying graph structure.

Example: Colouring a map

Problem: what is the minimum number of colours needed so that

neighbouring countries have different colours?

Graph formulation:

� One vertex for each country.

� Two vertices are linked by an edge if they represent neighbouring

countries.

The original problem can be reduced to a graph problem, known as the

Graph Colouring Problem:

find the minimum number of colours needed to colour the vertices of the

graphs so that no edge has endpoints of the same colour.

Basic definitions: directed graphs, paths, cycles

DAA 2020-21 5. Graph Decomposition – 3 / 33

A directed graph (V,E) consists of a set V of nodes (or vertices) and a set

E ⊆ V × V of edges, each edge e being an ordered pair (u, v) of nodes; u

is the source of e, and v is the target of e; we say that e is incident on u

and v. In this case, we also say that u and v are adjacent.

A path of length k from a vertex u to a vertex u′ is a sequence

〈 v0, v1, · · · , vk 〉 of vertices such that u = v0, u′ = vk, and each

(vi, vi+1) ∈ E. If there is a path from u to u′, then u′ is reachable from u.

A path 〈 v0, v1, · · · , vk 〉 forms a cycle if v0 = vk and the path contains at

least one edge. A self-loop is a cycle of length 1. The cycle is simple if, in

addition, v1, · · · , vk are distinct.

An acyclic directed graph (dag) is a directed graph with no cycles.

A graph (V,E) is undirected if E is symmetric i.e. (u, v) ∈ E iff

(v, u) ∈ E.

Two representations of graphs [DPV 3.1.1, CLRS 22.1]

DAA 2020-21 5. Graph Decomposition – 4 / 33

A graph G = (V,E) with V = { v0, · · · , vn−1 } can be represented by the

following data structures, adjacency matrix and adjacency lists.

Adjacency matrix

n× n array whose (i, j)-th entry is

aij =

{

1 if (vi, vj) ∈ E

0 otherwise

� Presence of an edge can be checked in constant time.

� Data structure has size O(|V |2).

� For an undirected graph, the matrix is symmetric.

Example: adjacency matrix

DAA 2020-21 5. Graph Decomposition – 5 / 33

76540123B

��

76540123Aoo

��

// 76540123C

��76540123E //

��❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅

66

76540123F

__❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅

��

76540123D

��

__❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅

76540123G 76540123Hoo

A B C D E F G H

A 0 1 1 0 0 1 0 0
B 0 0 0 0 1 0 0 0
C 0 0 0 1 0 0 0 0
D 1 0 0 0 0 0 0 1
E 0 0 0 0 0 1 1 1
F 0 1 0 0 0 0 1 0
G 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 1 0

Two representations of graphs, cont’d

DAA 2020-21 5. Graph Decomposition – 6 / 33

Adjacency lists

It consists of |V | linked lists, one per vertex. The list for vertex u holds the

names of vertices to which u has an outgoing edge.

� Presence of an edge is not checkable in constant time.

� Data structure has size O(|V |+ |E|).

� For an undirected graph, u is in v’s adjacency list iff v is in u’s.

Two representations of graphs, cont’d

DAA 2020-21 5. Graph Decomposition – 6 / 33

Adjacency lists

It consists of |V | linked lists, one per vertex. The list for vertex u holds the

names of vertices to which u has an outgoing edge.

� Presence of an edge is not checkable in constant time.

� Data structure has size O(|V |+ |E|).

� For an undirected graph, u is in v’s adjacency list iff v is in u’s.

Question

Which would you use to represent the World Wide Web (there is an edge

between two sites if they there is a link from one to the other)?

Example: adjacency lists

DAA 2020-21 5. Graph Decomposition – 7 / 33

76540123B

��

76540123Aoo

��

// 76540123C

��76540123E //

��❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅

66

76540123F

__❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅

��

76540123D

��

__❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅

76540123G 76540123Hoo

V ertices Adj. Lists

A [B,C, F]
B [E]
C [D]
D [A,H]
E [F,G,H]
F [B,G]
G []
H [G]

Depth-first search (DFS) [DPV 3.2.1]

DAA 2020-21 5. Graph Decomposition – 8 / 33

DFS is a versatile linear-time algorithm that answers the basic question:

What parts of the graph are reachable from a given vertex?

It works for both directed and undirected graphs.

Motivation: Exploring a maze

All one needs to explore a maze are:

1. a piece of chalk (to prevent looping), and

2. a ball of string (to enable return to passages encountered before but

not yet explored).

We use the same basic idea in depth-first search of a graph.

Overview

DAA 2020-21 5. Graph Decomposition – 9 / 33

Idea

As soon as a new vertex is discovered, explore from it.

As DFS progresses, every vertex is assigned a colour:

� WHITE = not discovered yet

� GREY = discovered, but its adjacency list has not been fully explored

yet

� BLACK = finished (i.e. all the vertices in its adjacency list have been

explored).

The Algorithm [CLRS 22.3]

DAA 2020-21 5. Graph Decomposition – 10 / 33

DFS takes a graph G = (V,E), directed or undirected, and, for each

vertex v ∈ V , returns a backpointer π[v] (the “predecessor of v”)

and two timestamps,

� discovery time d[v]

� finishing time f [v]

DFS(V,E)

Input: Graph G = (V,E), directed or undirected

Output: Timestamps d[v] and f [v], and predecessor π[v] for each vertex v

1 for u ∈ V

2 colour [u] = WHITE π[u] = NIL

3 time = 0
4 for u ∈ V

5 if colour [u] = WHITE

6 DFS-VISIT(u)

Algorithm: DFS-Visit

DAA 2020-21 5. Graph Decomposition – 11 / 33

DFS-VISIT(u) assigns timestamps d[v] and f [v] to all vertices reachable

from u (including u itself), and a predecessor π[v] to all vertices v 6= u.

DFS-VISIT(u)

1 time = time + 1 // vertex u has been discovered

2 d[u] = time // record discovery time

3 colour [u] = GREY // mark vertex u visited

4 for v ∈ Adj [u] // explore from v and come back once finished

5 if colour [v] = WHITE

6 π[v] = u

7 DFS-VISIT(v)
8 time = time + 1 // vertex u has been finished

9 f [u] = time // record finishing time

10 colour [u] = BLACK // mark vertex u finished

Remark: For all u ∈ V , one has 1 ≤ d[u] < f [u] ≤ 2 |V |.

Example

DAA 2020-21 5. Graph Decomposition – 12 / 33

76540123A

~~⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥

��✵✵✵✵✵✵✵✵✵✵✵✵✵✵✵✵✵✵✵✵
// 76540123E

��

 ❇❇❇❇❇❇❇❇❇❇❇❇ 76540123Goo

~~⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤

��

76540123B

 ❆❆❆❆❆❆❆❆❆❆❆❆

((PPPPPPPPPPPPPPPPPPPPP 76540123F

~~⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤

76540123C

OO

76540123Doo 76540123Hoo

Adj. Lists

A [B,D,E]
B [C,D]
C [A]
D [C]
E [D,F]
F [D]
G [E,F,H]
H [D]

A B C D E F G H

d[·] 1 2 3 5 8 9 13 14
f [·] 12 7 4 6 11 10 16 15
π[·] NIL A B B A E NIL G

Remark: note that d, f , and π generally depend on the order in which the

vertices of the graph are visited (alphabetic order in the above example),

and on the order of the vertices in the adjacency lists.

Analysis of DFS running time

DAA 2020-21 5. Graph Decomposition – 13 / 33

The loops on lines 1-2 and lines 4-6 of DFS take time Θ(|V |),
excluding the time to execute the calls to DFS-VISIT.

Fact 1: DFS-VISIT is called once and only once for each v ∈ V ,

since it is invoked only on white vertices, and, when it runs on a white

vertex it immediately paints it grey.

Fact 2: when DFS-VISIT runs on a vertex v ∈ V , it takes time

Θ(|Adj (v)|).

Since
∑

v∈V |Adj (v)| = |E|, this yields T = Θ(|V |+ |E|).

The DFS forest

DAA 2020-21 5. Graph Decomposition – 14 / 33

Define the set of edges Eπ := {(π[u], u) : u ∈ V , π[u] 6= NIL}
and the graph Gπ := (V,Eπ).

The graph Gπ is called the depth-first search (DFS) forest*.

The DFS is consists of one or more DFS trees*.

Each tree is composed of edges (u, v) such that, when (u, v) is explored, u

is grey and v is white.

We say that u is a descendant of v just if it is so in the DFS forest Gπ

(not just in the original graph G).

Remark: the DFS forest depends on the order in which the vertices are

listed.

* with a small abuse of notation:

normally, “forests” and “trees” are undirected graphs.

The Parenthesis Theorem [CLRS Theorem 22.7, p. 606]

DAA 2020-21 5. Graph Decomposition – 15 / 33

Discovery and finishing times have a bracketing property:

Theorem 1 (Parenthesis Theorem). For all u, v, exactly one of the

following holds:

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u], and neither

of u and v is a descendant of the other.

2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u.

3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v.

Using shorthand:
d[u] f [u] d[v] f [v]
(u u) (v v)

the Theorem says:

� (u u) (v v) and (u (v v) u) are possible

� but (u (v u) v) cannot happen

Characterizations of descendancy in the DFS forest

DAA 2020-21 5. Graph Decomposition – 16 / 33

Corollary 1. Vertex v is a descendant of vertex u iff

d[u] < d[v] < f [v] < f [u].

Proof. Immediate from Parenthesis Theorem.

Theorem 2 (White Path). Vertex v is a descendant of vertex u iff, at the

time d[u] that the search discovers u, there exists a path from u to v

consisting entirely of white vertices.

Proof. The “only if” part is immediate. The “if” part is by induction on the

length of the path. If the path has length 1, v is in Adj[u] and will become

a descendant of u. Now, suppose the White Path Theorem holds for paths

of length l, and let (u, u1, . . . , ul, v) be a white path of length l + 1. By

induction, ul is a descendant of u and therefore d[ul] < f [u]. When ul is

discovered, either v is white (in which case v will be a descendant of ul,

and therefore of u), or it is not (in which case d[u] < d[v] < d[ul] < f [u],
and the Parenthesis Theorem implies that v is a descendant of u).

Classification of edges

DAA 2020-21 5. Graph Decomposition – 17 / 33

� Tree edges (u, v) are edges of the DFS forest.

If (u, v) is a tree edge, then v is white when (u, v) is explored.

� Back edges (u, v) lead from a node to an ancestor in the DFS tree.

If (u, v) is a back edge, then v is grey when (u, v) is explored.

� Forward edges lead from a node u to a non-child descendant in the

DFS tree.

If (u, v) is a forward edge, then v is black when (u, v) is explored.

� Cross edges lead neither to a descendant nor an ancestor.

Cross edges can link vertices in the same tree, or in different trees.

If (u, v) is a cross edge, then v is black when (u, v) is explored.

Summary:
Discovery and finishing times Type of edge (u, v)

d[u] < d[v] < f [v]< f [u] tree or forward

d[v] < d[u] < f [u] < f [v] back

d[v] < f [v] < d[u] < f [u] cross

d[u] < f [u] < d[v] < f [v] cannot happen

Example revisited

DAA 2020-21 5. Graph Decomposition – 18 / 33

76540123A

T

}}③③③③③③③③③③③③③③

F

��

T // 76540123E

C

��

T

""❉❉❉❉❉❉❉❉❉❉❉❉❉❉ 76540123G
Coo

C

||
T

��

76540123B

T

!!❉❉❉❉❉❉❉❉❉❉❉❉❉❉

T

((◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗ 76540123F

C

}}76540123C

B

OO

76540123D
C

oo 76540123H
C

oo

Edge labels: T = tree edge, B = back, C = cross, F = forward.

A B C D E F G H

d[·] 1 2 3 5 8 9 13 14
f [·] 12 7 4 6 11 10 16 15

Detecting cycles [CLRS 22.4, Lemma 22.11]

DAA 2020-21 5. Graph Decomposition – 19 / 33

We can detect the presence of cycles in linear time using DFS.

Lemma 1 (Characterization). A directed graph has a cycle iff its DFS

reveals a back edge.

Proof

“⇐”: If (u, v) is a back edge, then there is a cycle consisting of this edge

with the path from v to u in the DFS tree.

“⇒”: Suppose 〈 v0, · · · , vk, v0 〉 is a cycle. Let vi be the first node to be

discovered (the node with the lowest d-number).

Since all other nodes in the cycle are reachable from vi, they are

descendants of it in the DFS tree.

Hence (vi−1, vi) (vi−1 is vk if i = 0) is by definition a back edge.

DAGs and schedules

DAA 2020-21 5. Graph Decomposition – 20 / 33

A directed acyclic graph (DAG) can be used to represent the dependences

among a set of events.

Examples:

� completing jobs: represent jobs as vertices, and draw a edge from A

to B if job A must be completed before job B can start.

� solving subproblems: represent subproblems as vertices, and draw an

arrow from subproblem A to subproblem B if the solution of

subproblem B requires the solution of subproblem A

(cf. dynamic programming).

In these examples, it is important to have a “schedule” that tells us in

which order we should perform the jobs (or solve the subproblems).

Such a “schedule” is called a “topological sort”.

Topological sort [CLRS 22.4]

DAA 2020-21 5. Graph Decomposition – 21 / 33

A topological sort of a DAG G = (V,E) is a total ordering of vertices,

< ⊆ V × V , such that if (u, v) ∈ E then u < v.

TOPOLOGICAL-SORT(V,E)

Input: A DAG (V,E)
Output: Elements of V sorted in topological order.

1 Call DFS(V,E) to compute finishing times f [v] for all v ∈ V .

2 Output vertices in order of decreasing finishing times.

Remark 1: the algorithm defines u < v iff f [u] > f [v]
Remark 2.: We can just output vertices as they finish, with the

understanding that we want the reverse of the list; or put them in front of a

linked list as they are finished. When done the list contains vertices in

topologically sorted order.

Running time: Θ(|V |+ |E|).

Correctness

DAA 2020-21 5. Graph Decomposition – 22 / 33

Correctness of the algorithm TOPOLOGICAL-SORT amounts to:

Proposition 1 (Correctness). In a DAG, if (u, v) ∈ E then f [u] > f [v].

Proof. When (u, v) is explored, u is grey. Consider the colours of v.

� v is white. Then v is a descendant of u.

By the Paranthesis Theorem, d[u] < d[v] < f [v] < f [u].

� v is black. Then the visit of v is already finished.

Since the visit of u has not finished yet, f [v] < f [u].

� v is grey. This case cannot occur. If v were grey, then u would be a

descendant of v.

Hence, (u, v) would be a back edge, in contradiction with the fact that

the graph is acyclic, and therefore it does not have back edges

(cf. Lemma 1).

Connected components of an undirected graph

DAA 2020-21 5. Graph Decomposition – 23 / 33

When DFS is run on an undirected graph, the DFS trees identify the connected

component of the graph.

/.-,()*+A 76540123B 76540123C

❅❅❅❅❅❅❅❅❅❅❅❅❅ 76540123D

76540123E

❅❅❅❅❅❅❅❅❅❅❅❅❅ 76540123F 76540123G 76540123H

⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦

/.-,()*+I /.-,()*+J 76540123K /.-,()*+L

A B C D E F G H I J K L

d[·] 1 2 11 12 4 23 14 13 5 6 15 18
f [·] 10 3 22 21 9 24 17 20 8 7 16 19

DFS forest for an undirected graph

DAA 2020-21 5. Graph Decomposition – 24 / 33

Connected components:

76540123A

③③③③③③③③

❉❉❉❉❉❉❉❉ 76540123C
✉

⑦
✠

✒

✙
✥

✪

❆
✻

✯
✤

✔
✠

⑥

76540123F

76540123B 76540123E
⑥

✠
✔✤
✯

✻
❆

76540123D

/.-,()*+I 76540123H

②②②②②②②②

❉❉❉❉❉❉❉❉
✛

✖
✑

☛
☎

④
✉

/.-,()*+J 76540123G 76540123L

76540123K

A B C D E F G H I J K L

d[·] 1 2 11 12 4 23 14 13 5 6 15 18
f [·] 10 3 22 21 9 24 17 20 8 7 16 19

Strongly connected components [CLRS 22.5]

DAA 2020-21 5. Graph Decomposition – 25 / 33

� Connectivity in undirected graphs is straightforward: the connected

components can be enumerated by DFS

(see Exercise 22.3-12 at p. 612 of [CLRS]).

� Connectivity for directed graphs is more subtle. The right way to

define connectivity for directed graphs is:

Two vertices u and v are strongly connected if there is a path from u

to v and a path from v to u.

Take a directed graph G = (V,E). A strongly connected component

(SCC) of G is a maximal set of vertices C ⊆ V such that for all u, v ∈ C,

there is a path from u to v and there is a path from v to u.

Problem: how to identify the SCCs?

Ingredient 1: structure of the SCCs

DAA 2020-21 5. Graph Decomposition – 26 / 33

Lemma 2. Let C and C ′ be distinct SCCs in G, let u, v ∈ C and

u′, v′ ∈ C ′, and suppose there is a path from u to u′ in G. Then there

cannot also be a path from v′ to v in G.

Proof. For every x ∈ C and y ∈ C ′, there exists a path from x to y,

passing through u and u’.

If there existed a path from v′ to v, then there would be a path from y to x,

passing through v′ to v′. Then, C and C ′ would be the same SCC, in

contradiction with the hypothesis that C and C ′ are distinct SCCs.

Parenthesis: the SCC graph

DAA 2020-21 5. Graph Decomposition – 27 / 33

The SCC graph of G = (V,E) is the graph GSCC = (V SCC , ESCC) where

� V SCC has one vertex vC for each SCC C in G

� (vC , vC′) ∈ ESCC if there is an edge between the corresponding SCCs

in G (i.e. there exists (u, u′) ∈ E such that u ∈ C and u′ ∈ C ′).

Fact: GSCC is a DAG (by Lemma 2).

Ingredient 2: the finishing times

DAA 2020-21 5. Graph Decomposition – 28 / 33

We extend the notation for d[·] and f [·] to sets of vertices U ⊆ V .

� d[U] : = min{ d[u] : u ∈ U } i.e. earliest discovery time among U

� f [U] : = max{ f [u] : u ∈ U } i.e. latest finishing time among U .

We say that there is an edge from C to C ′ if there exists an edge (u, u′)
with u ∈ C and u′ ∈ C ′.

Lemma 3. Let C and C ′ be distinct SCCs in G = (V,E).
If there is an edge from C to C ′, then f [C] > f [C ′].

Proof: same argument used in the proof of Proposition 1.

Equivalent formulation of Lemma 3: if C 6= C ′ and f [C] < f [C ′], then

there cannot be an edge from C to C ′.

Ingredient 3: the transpose of a graph

DAA 2020-21 5. Graph Decomposition – 29 / 33

Let G be a directed graph. The transpose of G is GT = (V,ET) where

ET = { (u, v) : (v, u) ∈ E }

We can create GT in Θ(|V |+ |E|) time using adjacency lists.

Fact. G and GT have the same SCCs.

Obvious (but important) observation:

Let C and C ′ be distinct SCCs in G.

If f [C] > f [C ′], then

� in G there cannot be an edge from C ′ to C.

� in GT there cannot be an edge from C to C ′.

This means that, if we run DFS on GT starting from SCC with the largest

finishing time, we will not find edges to any other SCC.

The algorithm SCC(G)

DAA 2020-21 5. Graph Decomposition – 30 / 33

SCC(G)

Input: A directed graph G.

Output: Elements of each SCCs of G output in turn.

1 Call DFS(G) to compute finishing times f [u] for all u.

2 Compute GT .

3 Call DFS(GT), visiting the vertices

in order of decreasing f [u] (as computed by the call to DFS in line 1).

4 Output the vertices in each tree of the DFS forest

formed in second DFS as a separate SCC.

Time: Θ(|V |+ |E|)

Correctness

DAA 2020-21 5. Graph Decomposition – 31 / 33

In the following, f [C] denotes the finishing time of C relative to the first

DFS.

Let u be the vertex with maximum finishing time.

By definition, u belongs to the SCC C with maximum f [C].

� Starting from u, the 2nd DFS visits all vertices in C.

� Since f [C] > f [C ′] for all C ′ 6= C,

there are no edges from C to C ′ in GT .

Hence, the DFS tree rooted at u contains exactly the vertices of C.

Correctness

DAA 2020-21 5. Graph Decomposition – 31 / 33

In the following, f [C] denotes the finishing time of C relative to the first

DFS.

Let u be the vertex with maximum finishing time.

By definition, u belongs to the SCC C with maximum f [C].

� Starting from u, the 2nd DFS visits all vertices in C.

� Since f [C] > f [C ′] for all C ′ 6= C,

there are no edges from C to C ′ in GT .

Hence, the DFS tree rooted at u contains exactly the vertices of C.

The next root chosen in the 2nd DFS call is in the SCC C ′ such that f [C ′]
is maximum in all SCCs less C. The 2nd DFS visits all vertices in C ′.

C ′ cannot have edges to other SCCs, except for C.

But C but C has been already visited.

Hence, the only tree edges (in the 2nd DFS call) will be to vertices in C ′.

This process continues until all SCCs have been identified.

Example: SCC

DAA 2020-21 5. Graph Decomposition – 32 / 33

Let G be the following graph

A B C D E

F G H I J

The first DFS produces the following discovery/finishing times:

A : 1/20 B : 2/17 C : 3/14 D : 4/13 E : 5/8

F : 18/19 G : 15/16 H : 9/10 I : 11/12 J : 6/7

Therefore, A,F,B,G,C,D, I,H,E, J is the order for the outer loop in

the second DFS.

Example: SCC (cont’d)

DAA 2020-21 5. Graph Decomposition – 33 / 33

Using the order A,F,B,G,C,D, I,H,E, J for the outer loop, the second

DFS produces:

A : 1/8 B : 3/4 C : 9/14 D : 11/12 E : 17/20

F : 5/6 G : 2/7 H : 10/13 I : 15/16 J : 18/19

SCC produces the SCCs as {A,G,B, F }, {C,H,D }, { I } and {E, J }.

Finally the SCC graph GSCC looks like:

{A,B, F,G } {C,D,H } {E, J }

{ I }

	Why graphs? [DPV 3.1]
	Basic definitions: directed graphs, paths, cycles
	Two representations of graphs [DPV 3.1.1, CLRS 22.1]
	Example: adjacency matrix
	Two representations of graphs, cont'd
	Example: adjacency lists
	Depth-first search (DFS) [DPV 3.2.1]
	Overview
	The Algorithm [CLRS 22.3]
	Algorithm: DFS-Visit
	Example
	Analysis of DFS running time
	The DFS forest
	The Parenthesis Theorem [CLRS Theorem 22.7, p. 606]
	Characterizations of descendancy in the DFS forest
	Classification of edges
	Example revisited
	Detecting cycles [CLRS 22.4, Lemma 22.11]
	DAGs and schedules
	Topological sort [CLRS 22.4]
	Correctness
	Connected components of an undirected graph
	DFS forest for an undirected graph
	Strongly connected components [CLRS 22.5]
	Ingredient 1: structure of the SCCs
	Parenthesis: the SCC graph
	Ingredient 2: the finishing times
	Ingredient 3: the transpose of a graph
	The algorithm SCC(G)
	Correctness
	Example: SCC
	Example: SCC (cont'd)

