
DAA 2021-22 4. Dynamic Programming – 1 / 33

Design and Analysis of Algorithms

Part 4

Dynamic Programming

Elias Koutsoupias

with thanks to Giulio Chiribella

Hilary Term 2022

Dynamic programming

DAA 2021-22 4. Dynamic Programming – 2 / 33

Dynamic programming is a general powerful optimisation technique.

The term “dynamic programming” was coined by Bellman in the 1950s.

At that time, “programming” meant “planning, optimising”.

The paradigm of dynamic programming:

� Define a sequence of subproblems, with the following properties:

1. the subproblems are ordered from the smallest to the largest

2. the largest problem is the problem we want to solve

3. the optimal solution of a subproblem can be constructed from the

optimal solutions of smaller subproblems

(this property is called Optimal Substructure)

� Solve the subproblems from the smallest to the largest.

When a subproblem is solved, store its solution,

so that it can be used to solve larger subproblems.

The change-making problem [DPV, Exercise 6.17]

DAA 2021-22 4. Dynamic Programming – 3 / 33

Change-Making Problem

Input: Positive integers 1 = x1 < x2 < · · · < xn and v

Task: Given an unlimited supply of coins of denominations x1, . . . , xn,

find the minimum number of coins needed to sum up to v.

Key question of dynamic programming: What are the subproblems?

For 0 ≤ u ≤ v, compute the minimum number of coins needed to make

value u, denoted as C[u]

For u = v, C[u] is the solution of the original problem.

Optimal substructure: for u ≥ 1, one has

C[u] = 1 + min{C[u− xi] : 1 ≤ i ≤ n ∧ u ≥ xi } .

C[u] can be computed from the values of C[u′] with u′ < u.

Pseudocode for the Change-Making Problem

DAA 2021-22 4. Dynamic Programming – 4 / 33

CHANGE-MAKING(x1, . . . , xn; v)

Input: Positive integers 1 = x1 < x2 < · · · < xn and v
Output: Minimum number of coins needed to sum up to v

1 C[0] = 0
2 for u = 1 to v
3 C[u] = 1 + min{C[u− xi] : 1 ≤ i ≤ n ∧ u ≥ xi }
4 return C[v]

Running time analysis

The array C[1 . . v] has length v, and each entry takes O(n) time to

compute. Hence running time is O(nv).

Knapsack problem [DPV 6.4]

DAA 2021-22 4. Dynamic Programming – 5 / 33

A burglar finds much more loot than he had expected:

� His knapsack holds a total weight of at most W kg (W ∈ N).

� There are n items to pick from, of weight w1, · · · , wn ∈ N, and value

v1, · · · , vn ∈ N respectively.

Problem: find the most valuable combination of items he can fit into his

knapsack, without exceeding its capacity.

Example Take W = 10 and

Item Weight (kg) Value (£)

1 6 30
2 3 14
3 4 16
4 2 9

Two versions of the problem:

1. Only one of each item available: items 1 and 3 (total: £46)

2. Unlimited quantities of each: 1 of item 1 and 2 of item 4 (total: £48)

Knapsack with repetition

DAA 2021-22 4. Dynamic Programming – 6 / 33

(Unlimited quantities of each item)

Key question of dynamic programming: What are the subproblems?

Define

K[w] = maximum value achievable with a knapsack of capacity w

Optimal substructure: if the optimal solution to K[w] includes item i,
then removing this item leaves an optimal solution to K[w − wi].

Since we don’t know which item i is in the optimal solution,

we must try all possibilities:

K[w] = max{K[w − wi] + vi : i ∈ {1 . . n}, wi ≤ w }

Knapsack with repetition, cont’d

DAA 2021-22 4. Dynamic Programming – 7 / 33

Hence we get the following simple and elegant algorithm:

1 K[0] = 0
2 for w = 1 to W
3 K[w] = max{K[w − wi] + vi : i ∈ {1 , . . . , n}, wi ≤ w }.

4 return K[W].

Remark: line 3 calls for an algorithm for computing the maximum of n
elements. It implicitly contains a for loop, with counter i going from 1 to

n.

Running time

� The algorithm fills a one-dimensional table of length W + 1.

� Each entry of the table takes O(n) to compute.

� Hence total running time is O(nW).

Knapsack without repetition

DAA 2021-22 4. Dynamic Programming – 8 / 33

Suppose that only one of each item is available.

Now, the earlier idea does not work:

knowing the value of K[w − wi] does not help,

because we don’t know whether or not item i has already been used.

To refine our approach, we add a second parameter, 0 ≤ j ≤ n.

Subproblems: Compute

K[w, j] =

{

maximum value achieveable with a knapsack of

capacity w, choosing from items 1, · · · , j

Our sequence of subproblems has two indices, w and j.

The last element of the sequence is K[W,n], the answer to the problem.

Optimal substructure: If we remove item j we should have an optimal

solution for j− 1. We only need to find out whether item j is useful or not:

K[w, j] = max{K[w − wj, j − 1] + vj , K[w, j − 1] }

Knapsack without repetition, cont’d

DAA 2021-22 4. Dynamic Programming – 9 / 33

Thus we have

1 for j = 0 to n

2 K[0, j] = 0
3 for w = 0 to W

4 K[w, 0] = 0
5 for j = 1 to n

6 for w = 1 to W

7 if wj > w

8 K[w, j] = K[w, j − 1]
9 else K[w, j] = max{K[w − wj , j − 1] + vj ,K[w, j − 1] }

10 return K[W,n].

The algorithm fills out a two-dimensional table,

with W + 1 rows and n+ 1 columns.

Each table entry takes constant time, so the running time is O(nW).

Longest increasing subsequences [DPV 6.2]

DAA 2021-22 4. Dynamic Programming – 10 / 33

Let S = (a1, · · · , an) be a sequence of numbers.

A subsequence of S is a sequence of the form T = (ai1 , ai2 , · · · , aik)
where 1 ≤ i1 < i2 < · · · < ik ≤ n.

An increasing subsequence is one in which

ai1 < ai2 < · · · < aik .

The Longest Increasing Subsequence (LIS) Problem

Input: A sequence of numbers S = (a1, · · · , an).
Task: Find a longest increasing subsequence of S

Example. The longest increasing subsequences of

(5, 2, 8, 6, 3, 6, 1, 9, 7)

are (2, 3, 6, 9) and (2, 3, 6, 7).

Dynamic programming approach

DAA 2021-22 4. Dynamic Programming – 11 / 33

Subproblems: For 1 ≤ j ≤ n, find a longest subsequence among the

increasing subsequences ending at j .

Optimal substructure: suppose that a longest increasing subsequence

contains ai, namely T = (ai1, . . . , ai, . . . , aj).
Then, (ai1 , . . . , ai) must be a longest subsequence among the increasing

subsequences ending at i.
Here, i could be any index such that i < j and ai < aj .

Computing the length: define

L[j] = length of longest increasing subsequence ending at j.

To compute L[j], we need the values of L(i) for i < j:

L[j] = 1 + max{L(i) : 1 ≤ i < j, ai < aj }.

Dynamic programming approach (cont’d)

DAA 2021-22 4. Dynamic Programming – 12 / 33

Constructing a longest increasing subsequence: how to recover the

longest subsequence itself?

� While computing L[j], write down the position P [j] of the

penultimate entry of the longest increasing subsequence ending at j.

� The optimal subsequence can be reconstructed from these

backpointers.

Example: S = (5, 2, 8, 6, 3, 6, 1, 9, 7)
j = 1 T1 = (5) P [1] = NIL

j = 2 T2 = (2) P [2] = NIL

j = 3 T3 = (5, 8) P [3] = 1
j = 4 T4 = (5, 6) P [4] = 1
j = 5 T5 = (2, 3) P [5] = 2
j = 6 T6 = (2,3, 6) P [6] = 5
j = 7 T7 = (1) P [7] = NIL

j = 8 T8 = (2, 3,6, 9) P [8] = 6
j = 9 T9 = (2, 3,6, 7) P [9] = 6

Pseudocode for Longest Increasing Subsequence Problem

DAA 2021-22 4. Dynamic Programming – 13 / 33

LONGEST-INCREASING-SUBSEQUENCE(A)

Input: An integer array A.

Output: An array B containing a longest increasing subsequence of A.

1 L[1] = 1; P [1] = NIL

2 k = 1 // longest incr. subseq. found so far ends at k
3 for j = 2 to n // determines where longest incr. subseq. ends

4 L[j] = 1; P [j] = NIL

5 for i = 1 to j − 1 // finds longest incr. subseq. ending at j
6 if A[i] < A[j] ∧ L[i] ≥ L[j]
7 L[j] = 1 + L[i]; P [j] = i
8 if L[j] > L[k]
9 k = j

10 Create new array B of length L[k]
11 for j = L[k] downto 1 // writes the longest incr. subseq. into B
12 B[j] = A[k]; k = P [k]

Loop invariants

DAA 2021-22 4. Dynamic Programming – 14 / 33

Loop invariant of the for loop at lines 3-9:

(I1) For every t ≤ j − 1, L[t] is the length of a longest increasing

subsequence ending in t.
(I2) P [t] is the position of the penultimate entry in such subsequence.

(I3) k is the position of the last entry in a longest increasing subsequence

contained in the subarray A[1 . . j − 1].

Loop invariant of the for loop at lines 5-7:

(I1) L[j] is the length of a longest increasing subsequence of the form

(ai1 , . . . , aim , aj) with im < i.
(I2) P [j] is the position of the penultimate entry in such subsequence.

Loop invariant of the for loop at lines 11-12:

(I1) B[j + 1 . . L[k]] is an increasing subsequence of A.

(I2) A[k] < B[j + 1].
(I3) B[j + 1] = A[p] for some p > k.

Exercise: prove initialisation, termination, and maintenance.

Analysis

DAA 2021-22 4. Dynamic Programming – 15 / 33

Runtime

LONGEST-INCREASING-SUBSEQUENCE(A) runs in O(n2) due to the

nested for loops in lines 3–9.

Example

Running the algorithm on A = [5, 2, 8, 6, 3, 6, 1, 9, 7] produces the

following values:

i 1 2 3 4 5 6 7 8 9

A 5 2 8 6 3 6 1 9 7
L 1 1 2 2 2 3 1 4 4
P NIL NIL 1 1 2 5 NIL 6 6

B 2 3 6 9

Dynamic Programming vs Divide-and-Conquer

DAA 2021-22 4. Dynamic Programming – 16 / 33

� DP is an optimization technique and is applicable only to problems

with optimal substructure.

D&C is not normally used to solve optimization problems.

� Both DP and D&C split the problem into parts, find solutions to the

parts, and combine them into a solution of the larger problem.

– In D&C, the subproblems are significantly smaller than the

original problem (e.g. half of the size, as in MERGE-SORT) and

“do not overlap” (i.e. they do not share sub-subproblems).

– In DP, the subproblems are not significantly smaller and are

overlapping.

� In D&C, the dependency of the subproblems can be represented by a

tree. In DP, it can be represented by a directed path from the smallest

to the largest problem (or, more accurately, by a directed acyclic

graph, as we will see later in the course).

The edit distance [DPV 6.3]

DAA 2021-22 4. Dynamic Programming – 17 / 33

How does a spell checker determine words that are close by?

Idea: find how many edits are needed to transform one word into another.

An edit is an insertion, or deletion, or character substitution.

Example: SNOWY and SUNNY

SNOWY
ins−→ SUNOWY

sub−→ SUNNWY
del−→ SUNNY

The edit distance between two words is the minimum number of edits

needed to transform one word into the other.

Alignments

DAA 2021-22 4. Dynamic Programming – 18 / 33

An alignment of two words is an arrangement of their letters on two lines,

with the letters of one word on one line and the letters of the other word on

the other line, possibly including blank characters ✷.

Examples:

✷ S N O W ✷ Y

S U N ✷ ✷ N Y
5 mismatched columns

S ✷ N O W Y

S U N N ✷ Y
3 mismatched columns

Observation: every alignment identifies a sequence of edits that

transforms one word into the other.

The number of edits is equal to the number of mismatched columns.

Hence,

edit distance = minimum number of mismatched columns, with the

minimisation running over all possible alignments.

The Edit Distance Problem

DAA 2021-22 4. Dynamic Programming – 19 / 33

Edit Distance Problem

Input: Two strings (i.e. character arrays) x[1 . .m] and y[1 . . n]

Task: Compute the edit distance between them.

What is a good subproblem?

� For 1 ≤ i ≤ m and 1 ≤ j ≤ n,

find the edit distance between the prefixes x[1 . . i] and y[1 . . j],
denoted as E[i, j].

� Our task is to compute E[m,n].

Edit Distance Problem

DAA 2021-22 4. Dynamic Programming – 20 / 33

E[i, j] := edit distance between the prefixes x[1 . . i] and y[1 . . j].

Express E[i, j] in terms of appropriate subproblems

The respective rightmost columns in an alignment of x[1 . . i] and y[1 . . j]
must be one of three cases:

Case 1

x[i]
✷

or

Case 2

✷

y[j]
or

Case 3

x[i]
y[j]

� Case 1. Cost = 1, and it remains to align x[1 . . i− 1] with y[1 . . j].

� Case 2. Cost = 1, and it remains to align x[1 . . i] with y[1 . . j − 1].

� Case 3. Cost = 1 if (x[i] 6= y[j]) and 0 otherwise, and it remains to

align x[1 . . i− 1] with y[1 . . j − 1].

Writing δ(i, j) := 1 if x[i] 6= y[j] and 0 otherwise, we have:

E[i, j] = min{E[i− 1, j] + 1, E[i, j − 1] + 1, E[i− 1, j − 1] + δ(i, j) }

Computing E[i, j]

DAA 2021-22 4. Dynamic Programming – 21 / 33

The answers to all subproblems E[i, j], with 0 ≤ i ≤ m and 0 ≤ j ≤ n,

form a two-dimensional array.

Computing E[i, j] for 0 ≤ i ≤ m, 0 ≤ j ≤ n

� Initialization. Set E[0, 0] := 0.

For 1 ≤ i ≤ m, set E[i, 0] := i.
For 1 ≤ j ≤ n, set E[0, j] := j.

� For 1 ≤ i ≤ m and 1 ≤ j ≤ n, we can fill in the array E[i, j] row by

row, from top to bottom, moving from left to right across each row,

using the relation

E[i, j] = min{E[i− 1, j] + 1, E[i, j − 1] + 1, E[i− 1, j − 1] + δ(i, j) }

Running time: O(mn)

Exercise (easy) Present the dynamic-programming algorithm to compute

E[m,n] in pseudo-code.

Example revisited

DAA 2021-22 4. Dynamic Programming – 22 / 33

Find the edit distance between “SUNNY” and “SNOWY”.

Using recurrence

E[i, j] = min{E[i− 1, j] + 1, E[i, j − 1] + 1, E[i− 1, j − 1] + δ(i, j) }

we have:

S N O W Y

E[i, j] 0 1 2 3 4 5

0 0 1 2 3 4 5

S 1 1 0 1 2 3 4

U 2 2 1 1 2 3 4

N 3 3 2 1 2 3 4

N 4 4 3 2 2 3 4

Y 5 5 4 3 3 3 3

The answer is E[5, 5] = 3.

Longest simple paths: where things go wrong [CLRS 15.3]

DAA 2021-22 4. Dynamic Programming – 23 / 33

A path in a graph is said to be simple if it does not visit the same vertex

twice.

Longest Simple Path Problem

Input: A weighted directed graph G = (V,E)
and two vertices a, c ∈ V .

Task: Find l[a, c] := length of the longest simple path from a to c.

Suppose we know that the longest simple path from a to c passes through

b. Then, we may be tempted to consider l[a, b] and l[b, c] as subproblems.

Unfortunately, in general we have

l[a, c] 6= l[a, b] + l[b, c].

This is because the longest simple path from a to b may have a vertex in

common with the longest simple path from b to c. Hence, we cannot use

these two paths to construct the longest simple path from a to c.

Failure of optimal substructure

DAA 2021-22 4. Dynamic Programming – 24 / 33

Example:

d
1

��

2

��
a

3

//

2

11

b
1

//

2

\\

c

We have l[a, c] = 6, l[a, b] = 4 and l[b, c] = 3

The Longest Simple Path Problem does not have optimal substructure:

the solution to the problem is not a composite of solutions to the

subproblems.

We also say that the solution is not compositional.

Lesson of the example: DP is not applicable to every optimization

problem. For DP to be applicable, the problem must have optimal

substructure.

Travelling salesman problem [DPV 6.6]

DAA 2021-22 4. Dynamic Programming – 25 / 33

� Starting from his hometown, a salesman will conduct a journey in

which each target city is visited exactly once before he returns home.

� Given the pairwise distance between cities, what is the best order in

which to visit them, so as to minimize overall distance travelled?

Model the problem as a complete (undirected) graph with vertex-set

{ 1, · · · , n } and edge lengths given as a matrix D = (dij).

Task: Find a tour that starts and ends at 1, includes all other vertices

exactly once, and has minimum total length.

Example

A
2

4

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲

2

1

❃❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
B

3

��
��
��
��
��
��
��

2

3

❖❖
❖❖

❖❖
❖❖

❖❖
❖

E
2

❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣

4♦♦
♦♦
♦♦
♦♦
♦♦
♦

C
2

D

What is the optimal tour from A?

TSP is hard to solve [DPV, page 235]

DAA 2021-22 4. Dynamic Programming – 26 / 33

Theorem 1. The Travelling Salesman Problem is NP-hard.

Message: TSP is solvable in polynomial time iff P = NP, which is

unlikely.

An (important) digression A Millennium Prize Problem: Is P = NP?
www.claymath.org/millennium-problems/p-vs-np-problem

www.cs.toronto.edu/˜sacook/homepage “The P versus NP Problem”

Brute force method for TSP:

Evaluate every possible route, and return the best one.

Cost: Since there are (n− 1)! possible routes and computing the length of

each route costs Ω(n) time, the running time of this strategy is Ω(n!).

Dynamic programming yields a much faster solution, though not a

polynomial one.

www.claymath.org/millennium-problems/p-vs-np-problem
www.cs.toronto.edu/~sacook/homepage

Dynamic programming approach

DAA 2021-22 4. Dynamic Programming – 27 / 33

Subproblems: For every subset S ⊆ { 1, · · · , n } containing 1, and for

every element j ∈ S , j 6= 1, find the shortest path that starts from 1, ends

in j, and passes only once through all the other nodes in S.

Define C[S, j] to be the length of such path.

� The subproblems form a sequence ordered by the size of S and by the

value of j (e.g. in lexicographic order).

� When |S| = n, we have the shortest path from 1 to j passing through

all the other nodes.

� After all the subproblems with |S| = n are solved,

the solution of the original TPS problem is obtained by

1. adding the node 1 in the end of the shortest path from 1 to j, so

that it becomes a cycle

2. finding the shortest cycle.

Explicitly, the length of the shortest cycle is

Lmin = min{C[{ 1, · · · , n }, j] + dj1 : 1 < j ≤ n } .

Dynamic programming approach (cont’d)

DAA 2021-22 4. Dynamic Programming – 28 / 33

Optimal Substructure: for 1 < j ≤ n,

C[S, j] = min{C[S \ { j }, i] + dij : i ∈ S \ {1, j} }

(base case: C[{ 1 }, 1] = 0)

Running time:

� There are 2n subsets of { 1, . . . , n }
� For each subset, there are at most O(n) values for j.

Hence, the array C[S, j] contains O(n 2n) entries.

� Computing one entry of the array C[S, j] takes at most time O(n)

In total, the running time is O(n2 2n).
Much better than the Ω(n!) time of the brute force solution!

cf. Stirling’s formula: n! =
√
2πn

(

n
e

)n [

1 + Θ
(

1

n

)]

Addendum: back to the Longest Increasing Subsequence

DAA 2021-22 4. Dynamic Programming – 29 / 33

We have seen a dynamic programming algorithm that finds a longest

increasing subsequence (LIS) of an array A[1, . . . , n] in time O(n2).

Can we do better?

Yes! In the following we will see an ingenious algorithm that achieves

running time O(n log r), where r is the length of the LIS.

The idea

DAA 2021-22 4. Dynamic Programming – 30 / 33

For a fixed j ∈ {1, . . . , n}, let

� r be the length of the LIS in A[1, . . . , j]

� K[1, . . . , r] be the array where K[i] is the position of the smallest last

element of an increasing subsequence of length i in A[1, . . . , j]

� P [j] be the index of the penultimate element in an increasing

subsequence ending at j and having maximal length

Example:

A[1] = 4 , A[2] = 8 , A[3] = 2 , A[4] = 1 , A[5] = 9
For j = 5 we have r = 3 , P [5] = 2, and K[1] = 4 , K[2] = 2 , K[3] = 5.

Fact: for j = n, the length r, the value K[r], and the array P [1, . . . , n] are

enough to reconstruct the LIS: K[r] is the position of the last element of

the LIS, P [K[r]] is the position of the second to last, P [P [K[r]]] is the

position of the third to last, and so on.

Computing r, K[1, . . . , r] and P [j]

DAA 2021-22 4. Dynamic Programming – 31 / 33

Observe that, for every j, one has A[K[1]] < A[K[2]] < · · · < A[K[r]].

Algorithm for computing r, K[1, . . . , r] and P [1, . . . , n]

� Start from j = 1. Set r = 1, K[1] = 1, P [1] = NIL, and K[0] = NIL

� for j = 2 to n , do the following:

1. if A[j] > A[K[r]],
update r to r + 1,

set K[r] = j and P [j] = K[r − 1]

2. else

use binary search to find the smallest index i ∈ {1, . . . , r} such

that A[j] ≤ A[K[i]].
Update K[i] to j.

Set P [j] = K[i− 1].

Analysis: The for loop runs for O(n) times, and each execution takes at

most time O(log r), the time of binary search. Total time: O(n log r).

Constructing the Longest Increasing Subsequence

DAA 2021-22 4. Dynamic Programming – 32 / 33

Given the length r, the value K[r], and the array P [1, . . . , n], one can

construct the LIS with the following algorithm:

PRINT-LIS(A,P, r,K)

Input: Integer arrays A and P , integer r, and integer array K.

Output: An array B containing a longest increasing subsequence of A.

1 k = K[r]
2 for j = r downto 1
3 B[j] = A[k]; k = P [k]

Note that printing the LIS takes only O(r) time.

In total, the time required to find the LIS is O(n log r).

Putting everything together

DAA 2021-22 4. Dynamic Programming – 33 / 33

LONGEST-INCREASING-SUBSEQUENCE-BS(A)

Input: An integer array A.

Output: An array B containing a longest increasing subsequence of A.

1 r = 1; K[1] = 1; P [1] = NIL; K[0] = NIL

2 for j = 2 to n
3 i0 = 1; i1 = r + 1
4 while i0 < i1
5 im = ⌊(i0 + i1)/2⌋
6 if A[j] ≤ A[K[im]]
7 i1 = im
8 else i0 = im + 1
9 if i0 > r

10 r = r + 1
11 K[i0] = j; P [j] = K[i0 − 1]

12 Create new array B of length r
13 k = K[r]
14 for j = r downto 1
15 B[j] = A[k]; k = P [k]

	Dynamic programming
	The change-making problem [DPV, Exercise 6.17]
	Pseudocode for the Change-Making Problem
	Knapsack problem [DPV 6.4]
	Knapsack with repetition
	Knapsack with repetition, cont'd
	Knapsack without repetition
	Knapsack without repetition, cont'd
	Longest increasing subsequences [DPV 6.2]
	Dynamic programming approach
	Dynamic programming approach (cont'd)
	Pseudocode for Longest Increasing Subsequence Problem
	Loop invariants
	Analysis
	Dynamic Programming vs Divide-and-Conquer
	The edit distance [DPV 6.3]
	Alignments
	The Edit Distance Problem
	Edit Distance Problem
	Computing E[i, j]
	Example revisited
	Longest simple paths: where things go wrong [CLRS 15.3]
	Failure of optimal substructure
	Travelling salesman problem [DPV 6.6]
	TSP is hard to solve [DPV, page 235]
	Dynamic programming approach
	Dynamic programming approach (cont'd)
	Addendum: back to the Longest Increasing Subsequence
	The idea
	Computing r, K[1,…, r] and P[j]
	Constructing the Longest Increasing Subsequence
	Putting everything together

