Formal Hardwar e Verification with BDDs; An Introduction *

AlanJ Hu
Department of Computer Science
University of British Columbia

Abstract—T hispaper isabrief introduction tothemain par adigms
for usingBDDsin formal hardwareverification. Thepaper addresses
two audiences: for people doing theoretical BDD research, the pa-
per givesaglimpseof the problemsin themain application area, and
for peoplebuilding har dwar e, the paper givesa peek under the hood
of the formal verification technologies that are rapidly gaining in-
dustrial importance. Topicsdescribed include combinational equiv-
alence checking, symbolic simulation, sequential equivalence check-
ing, model checking, and symbolictrajectory evaluation.

I. INTRODUCTION

The current interest in BDDs from the theoretical computer sci-
ence community has largely been motivated by the practica
importance and success of BDDs in formal hardware verifica
tion. Conversaly, the growing industria interest in formal hard-
ware verification has largely been inspired by the effectiveness
of BDD-based techniquesin finding real bugsin practical, large-
scale designs. This paper attempts to address both of these com-
munities: on one hand explaining to people building hardware
what the main BDD-based formal verification techniques are and
what kinds of problemsthey can solve, and on the other hand, ex-
plaining to people doing research on BDDs what the challenges
arein one of the main application aress.

Most of this paper describes the main paradigms for using
BDDs for formal hardware verification. We will briefly survey
the basic agorithms for using BDDs in combinationa equiva-
lence, symbolicsimulation, sequentia equivalence, model check-
ing, and symbolictrgectory evaluation. The remainder of the pa-
per describes someissuesand directionsof current research to ex-
pand the size and complexity of designsthat can be verified.

Before proceeding, | et me address three basic questions: What
isforma verification? Why has there been a surge of interest in
formal hardware verification? And what isaBDD?

A. What Is Formal \erification?

Formal verification means proving that a property holds of a
model of adesign. The bold-faced words are the key idess. The
promise of verification is proving in the sense of mathematical

proof, in contrast to conventional simulation and test, which can
tell usonly that nothing went wrong on the specific caseswetried.
(Of course, exhaustively trying every possibleexecution of asys-
temisavalid proof. We can view formal verification asgivingthe

*This work was supportedin part by aUBC new faculty start-up grant and an
NSERC Research Grant.

effect of exhaustive simulation.) However, specifying the prop-
erty to proveand cresting an accurate model of thedesign are dif-
ficult problems. One can ponder endlessly the philosophical im-
possibility of proving asystem correct: Isthe spec correct? Isthe
model accurate? |sthe verifier correct? Is the computer we used
toruntheverifier correct? Etc. (Cohn[10] givesaninsightful and
readable analysis of the fundamental obstaclesto proving ahard-
ware design correct.) In practice, we can choose the property to
be “conforms exactly to a golden reference model which we as-
sumeiscorrect,” or else we can simply prove easy-to-state prop-
ertiesthat matter to us (e.g., absence of deadlock, interface lines
follow ahandshake protocol, etc.). Ideally, themodd weverifyis
asclosetotheactual hardware aspossible(e.g., acircuit extracted
fromthe VLSI layout), but for complicated designs, an abstracted
model is usualy needed to simplify the verification process.
Although formal verification of all kinds of properties— tim-
ing, performance, reliability, etc. — is conceivable, most for-
mal hardware verification research hasfocused on verifying func-
tional correctness, so we will restrict our attention to that here.

B. Why Formal Hardware \erification?

Peopl e haveresearched formal verification of computer hardware
and softwarefor decades. Traditionally, theemphasishad beenon
approaching the ideal of proving a system correct. The verifica
tion methods (typically a mathematically expressive but compu-
tationally undecidabl e logic with support from a semi-automated
theorem prover) require considerable time and expertiseto verify
even fairly simple systems. Asaresult, practical application has
been limited to afew domains, such as security and safety-critical
systems, where ethical or legal requirements demand the highest
assurance of correctness, regardlessof cost. For norma hardware
design projects, hiring or training formal verification experts, de-
laying a product launch to alow time for formal verification, and
reducing product performance or featuresto simplify formal anal -
ysisare al economically unacceptable.

A major factor in the current industrial interest in formal veri-
fication isadifferent emphasisfor formal verification that explic-
itly recognizes economic demands. (The other main factors are
the new verification techniques that support this emphasis, and
the high design complexity and short design cyclesthat are strain-
ing current validation methods.) Basicaly, bugs cost money —
especidly the hard-to-find bugsthat surface latein the design cy-
cle, that forcean extraspin of silicon, that delay a product launch,
or that require amassive product recall. Any techniquethat finds
thesebugsearlier isenormoudly valuable. So, instead of tryingto
certify correctness, formal verification is used as a powerful de-

@

©

Figure 1: Creating the BDD for (z & y & =)

buggingtool. If thetimeand effort invested informal verification
islessthan thetime and effort saved by uncovering difficult bugs
earlier, then formal verification isawin, regardless of whether or
not we can make any claims about proving the system correct.
This cost-benefit comparison favors formal verification tech-
niguesthat are automatic and easy-to-use, even if they lack theo-
retical expressiveness. Not coincidentaly, this practical, debug-
ging emphasis for formal verification developed in parale with
new formal verification algorithmsthat offer far greater automa-
tion than had previously been possible. These algorithms are the
BDD-based a gorithmsthat we will explorein this paper.

C. What'saBDD?

“BDD” stands for “binary decision diagram.” A BDD isjust a
data structure for representing a Boolean function. Bryant [3] in-
troduced the BDD inits current form, although the genera ideas
have been around for quite some time (e.g., as branching pro-
grams in the theoretical computer science literature). Conceptu-
ally, we can construct the BDD for aBoolean function asfollows.
First, build a decision tree for the desired function, obeying the
restrictionsthat aong any path from root to leaf, no variable ap-
pears more than once, and that a ong every path from root to leaf,
thevariablesaways appear inthe same order (Figure1(a)). Next,
apply the following two reduction rules as much as possible: (1)
merge any duplicate (same label and same children) nodes, and
(2) if both child pointers of a node point to the same child, delete
the node because it is redundant (Figure 1(b)). The resulting di-
rected, acyclic graph is the BDD for the function (Figure 1(c)).
In practice, BDDs are generated and manipulated in the fully re-
duced form, without ever building the decision tree. In atypical

(b)

) @)
MN @4/01\@
(2 (2 o(1 071
& e @ e 2
b AN AN N @,
G, 6D, 6D 6D G G G G

Figure 2: Two Different Variable Ordersfor the Same Function

implementation, all BDDsin use by an application are merged as
much as possible to maximize node sharing, so afunctionisrep-
resented by a pointer toitsroot node. For example, in Figure 1(c),
thefunction (z®y® =) isrepresented by apointer to thetop node,
whereasthefunction (y @ z) isrepresented by just apointer tothe
leftmost node labeled y, rather than by copies of the nodes.’

BDDs have severa useful properties. First, many common
function have small BDDs. For example, generaizing the pat-
ternin Figure 1(c), we see that the BDD for the parity of n vari-
ables requires 2n — 1 nodes, whereas parity requires exponen-
tial size using, for instance, sum-of-products form. In addition,
BDDs are easy to manipulate. Efficient algorithms exist for all
the usual Boolean operations (AND, OR, NOT, etc.) aswell as
other useful operations. Finally, oncewefix theorderinwhichthe
variables appear, aBDD isacanonical representation for aBool-
ean function, i.e., every distinct Boolean function has exactly one
unique BDD representation. Thus, comparing Boolean functions
becomes just a pointer comparison.

Choosingagood variableorder isimportant. For example, sup-
posewewish to buildaBDD for thefunction (z1 @ y1) V (z2 @
y2)V (z3®ys). Figure 2 showstwo BDDsfor thisfunction using
two different variable orders. In general, the choice of variable
order can make the difference between alinear size BDD and an
exponential one.

Bryant [5] providesadetail ed expositionon BDDsand surveys
some applications and variations.

Il. FUNDAMENTAL ALGORITHMS

Let’snow examine the basic algorithmsfor formal hardware ver-
ification using BDDs.

A. Combinational Equivalence

The most obvious application of BDDs is to check the equiva-
lence of two combinational circuits.? For example, we may want
to verify that optimization or logic synthesis was done correctly
by comparing the circuit before and after. The basic algorithmis

In this paper, | will use @ for exclusive-OR, = for equivalence or exclusive-
NOR, A for AND, v for OR, and — for NOT.

2 A combinational circuit is adigital circuit without state-holding elements or
feedback loops, so the output is a function of the current input. A circuit with
state-holding elements is called a sequential circuit.

Figure 3: A Smple Example: Is This XOR?

for each circuit, to build the BDDsfor the outputsin terms of the
primary inputs. Since BDDs are a canonica representation, the
two combinational circuits implement the same function if and
only if they have the same BDD.

For example, let’sconsider verifyingthat thecircuitin Figure 3
implementsexclusive-OR. Firgt, label the primary inputswith the
BDDsforthevariablesy and z. Next, buildtheBDD for each gate
output as afunction of itsinputs— labeling the OR gate with the
BDD for (y V z), the NAND gate with the BDD for =(y A z),
and the AND gate with (y V z) A =(y A z). For the specification
circuit, webuildthe BDD for (y@®z). Sincethesetwo expressions
give the same Boolean function, they have the same BDD, which
verifiesthat the circuit isindeed an exclusive-OR.

In practice, this approach is limited by the size of the BDDs
generated, which ishighly sensitiveto the function being verified
andthevariableorder used. For pathol ogical exampleslikemulti-
pliers, even 16-bitsistoobigto handle. Typically, circuitswithup
to afew hundred primary inputs can often be verified. For larger
circuits, more sophisticated methods are needed.

B. Symbolic Smulation

Symbolic simulation [4] is a combination of the preceding ideas
with conventional logic ssimulation. The advantage of a conven-
tional logic ssimulator is accuracy. Detailed timing models, haz-
ards, and oscillatory behavior can all besimulated. Thedisadvan-
tage of aconventional logic simulator isthat only one simulation
vector can berun a atime. In Figure 3, we would have had to
run four simulations with the inputs equal to 00, 01, 10, and 11
to verify thecircuit. A circuit with 20 inputswould have required
over amillionruns. Symbolic simulation adds two innovationsto
conventional logic simulationthat givethe effect of runninglarge
numbers of simulation vectors simultaneously.

Thefirst innovationisathird logic value X that represents an
unknown value. Thisvaueis propagated through the circuit just
asthe 0 and 1 logic vaues are, athough the X is always treated
conservatively. For example, 0 v X isX, but 1 v X is1,sincel
isacontrolling value for OR. Setting an input to X gives the ef-
fect of simulatingthecircuit for both the case where theinput was
0 and the case where the input was 1, thereby cutting in half the
number of simulation runsrequired. However, the X value loses
information. In Figure 3, setting one or both inputsto X yieldsan
X at the output, a useless result for verification.

The more important innovationisthe introduction of symbolic
values, which avoids the information loss from using X values.
Thebasicideaisto set aninputto asymbolic valuethat can be ei-
ther O or 1, rather than to aconstant like 0, 1, or X. Alternatively,
we can think of the symbolic value as remembering whether we
gned a0 or 1toagiveninput. Returningto Figure 3, suppose
we set primary input y to 1 and primary input z to the symbolic
valuea. The symbolic simulator would then cal cul ate that the OR

=39/

UX|

x1|Q Ply1
clk

x2|Q Ply2
k

C

outl

" out

Figure 4: Comparing Two State Machines

gatewill settleto 1 (since1 OR anythingis1), that theNAND gate
will settle to —a, and that the AND gate will settleto —a. Thus,
we' ve effectively run two simulation vectors (yz equal to 10 and
11) at once, computing the output as a function of the symbolic
values. To implement thisidea, aconventional logic simulator is
modified to use BDDs to represent the values on wires as afunc-
tion of the symbolic values.

In practice, the user must trade off using explicit Osand 1s, the
X value, and symbolicvalues. Settinganinputtoanexplicitvalue
gives conventional logic simulation. Setting an input to X halves
the required number of simulation runs, but losesinformation so
the simulation result might not be useful. Setting an input to a
symbolicvalue halvestherequired number of simulation runsand
does not lose information, but makes the BDDs representing the
values on the wires larger. Too many symbolic vaues will make
these BDDstoo largeto build.

C. Seguential Equivalence

Although symbolic simulation can be applied to sequentid cir-
cuits as well as to combinational circuits, we would often like
to reason about sequential circuits as finite state machines, rather
than asjust abunch of gates. (Thisis anaogousto the difference
between cycle-based and event-driven logic simulation.) A typi-
cal application would be comparing that two state machines have
identical behavior, in order to verify the correctness of logic op-
timization, register retiming, state re-encoding, etc.

The problem of comparing two state machines can be con-
verted into the problem of finding all of the reachable states of a
state machine. Given two state machinesto compare, tietheinput
linestogether, send the outputsto a comparator, and clock thetwo
machines together in lockstep. This combination is just another,
bigger state machine. The original two machines have identical
behavior if and only if the new machine indicates the outputsare
equa for al reachable states. For example, consider the simple
circuitsin Figure 4. We have two small state machines: onewith
input iy, latch zo, and output out, ; the other withinput i, , latches
z1 and z», and output out;. To compare the two machines, we
add the dotted lines, creating a new machine with input ¢, latches
zg, 1, and x4, and output out.

Computing the set of reachable states using BDDs requires
three basic ideas: representing sets of states using BDDs, com-

puting images, and the reachability iteration.

Thefirst ideaisto represent sets of states using BDDs. So far,
we' ve been using BDDsto represent the logi ¢ function computed
by a circuit. Now, we're going to use BDDs in a different man-
ner. Basically, we can think of a BDD as representing a set of
truth assignments: if thefunctionthe BDD representsistruefor a
given truth assignment, that assignment isin the set; if the func-
tionisfase, that assignment is not in the set. For example, if we
consider three Boolean variables z, z1, and x5, the BDD for the
function zg A 1 A —z5 represents the set containing only one
truth assignment {110}; the BDD for z, V z; represents the set
of six truth assignments {100, 101, 110,111,010,011}, and the
BDD for 1 (the Boolean value True) represents the set of all eight
truth assignments. If we associate a Boolean variable with each
latch in acircuit, then these BDDs can be viewed as representing
sets of states of the state machine.

The next concept isimage computation. Basically, if we have
aBDD that represents aset of states of a state machine, theimage
of that BDD isanew BDD that represents the set of al possible
states that the machine could be in exactly one clock tick |ater.
For example, return to the state machine in Figure 4. The BDD
for —zg A z1 A —x4 represents the single state where latches z g,
z1, and z, are outputting 0, 1, and 0. Depending on the value
of theinput, the machine has two possible states at the next clock
tick, sotheimage of thisBDD isthe BDD for (—zg Az A—z2) V
(zg A -1 A 22). The simplest way to compute imagesisas fol-
lows: First, buildaBDD that represents the rel ationship between
the present and next values of the latches. ThisBDD iscalled the
transitionrelation. In our example, it would bethe BDD for (yo =
(.l‘o@i))/\(yl = ("Z/\ll)\/(l/\l‘z))/\(yQ = ("Z/\lz)\/(l/\l‘l))
Next, AND thetransitionrelationwith theBDD whoseimageyou
are computing. Then, existentially quantify out thevariablesfor
the present state and the primary inputs.

Thefinal ideaisaniterationusing imagesto computeall reach-
ablestates. Basically, we start with thereset stateand computethe
imageto get the set of statesreachableinonemoreclock tick, i.e,

Ry := BDD forreset state
Ry := RgVImage(Ry)
Riy1 = R;VImage(R;)

Intuitively, R; isthe set of all statesreachable ini or fewer clock
ticksfromthereset state. Thissequencewill convergeeventually,
when R; 11 = R; (whichiseasy to test, since BDDs are canoni-
ca). In our example, thereset state Ry = —xg A 1 A —zo, after
one iteration R, = ("I‘O ANz A _|;L‘2) \Y (;L‘O Az A .1‘2), and
after two iterations R, = R, SO we' re done.

Aswith combinational verification, thisapproach islimited by
the size of the BDDs generated, which is highly sensitive to the
function being verified and the variable order used. Performance
on any given circuit is extremely hard to predict. Nevertheless,

3 Existential quantification, written 3z. f, givesusafunction that is true when
thereisavalue of = that makes f true. We can compute3z. f = f V f-z, where
fz means f with z setto 1 and f-, means f with = set to 0.

as avery rough rule of thumb, the method described in this sub-
section can usually handle circuitswith up to around one hundred
latches. With more sophisticated enhancements, circuits with a
few hundred latches are routinely verified, and occasionaly prac-
tical circuits with thousands of |atches can be verified.

The origina papers on using BDDs for sequentia verification
(eqg., [11, 28]) are excelent references for the basic agorithms,
including image computation and the reachability iteration.

D. Mode Checking

Instead of just computing reachable states or comparing state ma-
chines, sometimes we' d like to check that a state machine obeys
certain properties, e.g., that aone-hot encoded statemachineisin-
deed one-hot encoded, that the machine is aways resettable, that
every request is eventually acknowledged, etc. Mode checking
letsus verify that a state machine obeysa property we specify us-
ing temporal logic.

Temporal logic isjust a formal way of expressing properties
that change over time. There are many different kinds of tem-
poral logic; for brevity, we will only consider a few examples
taken from one temporal logic— called CTL (Computation Tree
Logic) — which isthe most popular for forma hardware verifi-
cation with model checking. The basic ideais that we start with
ordinary Boolean logic, and then add specia tempora operators
for describing future events. For example, in CTL, the operator
AX means “for al possible input values, in the next clock cy-
cle,...”, the operator EX means “there exists an input such that
in the next clock cycle,...”, the operator AG means “for all pos-
sibleinput values, it will always be truethat,...”, the operator EF
means “there exists a sequence of input values such that eventu-
aly...”, and so forth.* The temporal operatorscan nest, so for ex-
ample, AGEF(reset) says that it is always possibleto find a path
back to reset, and AG(req = AFack) saysthat every request is
alwayseventualy followed by an acknowledgment. Returning to
the simple circuit in Figure 4, let’s consider what CTL formulas
aretrue a thereset state (zgz122 = 010). Theformulaz; isob-
vioudly truein thereset state, but theformulaAXz, isfaseinthe
reset state because it is not the case that =, will betruefor dl in-
put values at the next clock cycle (in particular, if i = 1). On the
other hand, the formula EXxz; istrue in the reset state, because
there existsan input value (: = 0) such that z; will betrueat the
next clock cycle. Similarly, AGz; isfadse, but EGz; istrue (if
the input stays at O forever).

The invention of model checking [12] was atheoretical break-
throughin theuse of temporal logic for forma hardware verifica-
tion. Roughly speaking, the ideaisto systematically explore the
state space of afinitestatemachinein order to check that thegiven
tempora logic formula holds of the machine. Symbolic model
checking [7] means using BDDsinthemodel checking agorithm.
Thea gorithmsused insymbolicmodel checking areageneraliza-
tion of thereachability algorithmin the preceding subsection. For
example, in additionto image, symbolic mode checking uses op-

4Note that although these examplesare phrasedin terms of sequential circuits,
model checking is often used at other levels of abstraction. More generally, AX
would mean “for all possible next events...”, EX would mean “there exists a pos-
sible next event...”, etc.

erators such as preimage, which computes the set of all possible
states the machine could have been in during the preceding clock
cycle. Computing EXz, isjust a single preimage computation,
and computing EFz; isjust like the reachability iteration, except
that we start with 2, and iterate with preimage instead of image.
The other CTL operators are computed similarly.

In practice, model checking has similar limitsto the reachabil-
ity computation — the BDDs become too big. Also, the more
expressive the tempora logic used, and the more complicated
the properties specified, the greater computationa complexity be-
comes. Generaly, oneshould usethesimplest model checker that
can express the desired verification properties.

E. Symbolic Trajectory Evaluation

Symbolic traectory evaluation [25] is an attempt to combine the
efficiency of symbolic ssimulation with a bit of the temporal ex-
pressiveness of model checking. The basic idea is that if we
severely restrict thetemporal logic used for specifying properties,
we can verify the properties using symbolic simulation.

In symbolic trajectory evauation, the property to be checked
iswritten in theform A = C, which means that whenever the
circuit behavior matches the pattern specified by A, it must aso
satisfy the pattern specified by C'. Theformulas A and C arewrit-
ten in a specia form called “trgjectory formulas’. A tragectory
formula only allows specifying the values of circuit nodes for a
bounded number of eventsinto thefuture (in contrast to CTL op-
eratorslike EF that specify behavior arbitrarily far in the future).
Furthermore, trgjectory formulas cannot express negation of atra-
jectory (“Match any patternthat doesn’t look like...”) or the OR of
trajectories (“Match any pattern that looks likethisor that.”). In
practice, the specfication language typically provides many fea
turesto ease writingtraj ectory formulas, but fundamentally, many
propertiesthat could be expressed in, say, CTL, simply cannot be
expressed with trgjectory formulas.

In exchange for this loss of expressiveness, though, comes a
crucia property for efficiency: for any traectory formula, there
isaunigue symbolic simulation vector (assignment of 0s, 1s, Xs,
and symbolic valuesto the circuit inputs) that captures all behav-
iorsthat satisfy thetrajectory formula. Verification, therefore, can
be done with a single run of symbolic simulation — we symbol-
ically simulate the vector for A, and after each simulation event,
we check that the circuit stateis consi stent with the corresponding
part of C'. This algorithmsis usually much faster than the itera-
tionsrequired for reachability and model checking.

In practice, themain obstacleto symbolic trajectory evaluation
is figuring out how to express the desired property using trajec-
tory formulas that can be symbolically simulated efficiently. If
the simul ation vector hastoo many symbolic variables, theBDDs
will become too big, just asin symbolic simulation.

I1l. ENHANCEMENTS AND RESEARCH DIRECTIONS

For space reasons, this paper can only give a brief taste of an ex-
tensive and varied research area. The fundamenta problem with
all of the methods described in the preceding section is that the
BDDs can become too large to build within the limits of avail-
ablememory. Theam of most research, therefore, ishow to make

BDDs smadller. | will briefly describe three general directions
of research: improving BDDs, improving combinational equiv-
alence checking, and improving sequential verification.

A. Better BDDs

The most obvious approach for making BDDs smaller isto try to
find abetter version of BDDs. Numerous researchers have inves-
tigated countless variants on BDDs, generally producing design
trade-offsthat are useful in some cases and useless or even coun-
terproductivein others. For example, zero-suppressed BDDs[20]
haveadightly different reduction rulein order to represent sparse
sets efficiently. Several BDD variants have edge weights and
multipleterminal nodesin order to represent numerical functions.
Many representations are more general than BDDs, and can prov-
ably represent more functions more compactly, but lose canonic-
ity, thereby severely reducing their usefulnessfor formal verifica
tion. Bryant [6] surveys many of these variants.

As we saw in Figure 2, choosing a good variable order can
greatly affect BDD size. Many variable ordering heuristics have
been devel oped for different domains, but much morework needs
to be done. Currently, many people rely on dynamic variable
reordering [23], a technique that periodically searches for better
variable orders by exploiting the fact that small changes in the
variable order are easy to make.

Finally, on amore mundane but very practical level isresearch
aimed at efficient implementation of BDDs. Brace et al.’s pa
per [1] isthe basis of most current implementations. Several pa
pershave addressed making BDDsinteract better with caches and
virtual memory [21, 24, 18] and with parallel machines[27]. Sen-
tovich[26] givesacomparison of severa popular BDD packages.

B. Tricksfor Combinational Equivalence

The key idea behind most research to improve combinational
equivalence checking is to take advantage of structural similari-
tiesbetween the circuits. The circuits being compared in practice
are usually quite similar, since thetypical verification problemis
to check that a small change didn’t break the circuit.

Most approaches follows aframework proposed by Brand [2].
First, smulate the two circuits for a small number of random in-
puts. Pointsin the circuits that behaved identically during simu-
lation are considered to be possibly equivalent. Then, try to prove
that the possibly equivaent points are indeed equivaent, using
any equivalences we' ve proven aready to simplify the task.

Jainet al. [16] survey awidevariety of these agorithms. Here,
let’s consider a simple example of how such an agorithm might
work. Suppose we are comparing two large circuits. In thefirst
step, we run, say, 64 random simulation vectors. Pointsin the
two circuitsthat behaved identically for al 64 simulation vectors
are labeled as possibly equivaent. Next, we look for a possible
equival ence between pointsinthetwo circuitsthat are closeto the
primary inputs. If we can prove these two points equivalent (by
buildingthe BDDs), wethen del etethe portionsof thecircuitsthat
we have proven equivalent and introduce a new primary input at
the equivalent point. If we can repeat this process al the way to
the primary outputs, we have proven the two circuits equivalent,
without ever buildingBDDsfor theentirecircuit (just BDDsfor a

small part at atime). Notethat if thismethod fail sto provethetwo
circuits equivalent, we cannot concludethat they are inequival ent
without further computation, because the new primary inputswe
introduced are not realy primary inputs so we don’t really have
full controllability of them. This problem, called the fal se nega-
tive problem, isaseriousobstaclefor these algorithmsin practice.

C. Tricksfor Sequential Reasoning

The first problem encountered using the basic algorithms for se-
guentia verificationisthat the BDD for thetransitionrelation can
betoo large to build. Notethat we were buildingthe BDD for the
transition relation only as a means to compute images. If wefind
an aternative way to compute images, we avoid thisproblem a-
together. For example, good solutions have been found for syn-
chronous circuits [11, 28], asynchronous circuits [7], and loop-
free sequentia programs[15].

The more serious problemisthat the BDDs representing sets of
states can become too large to build. Some attacks on this prob-
lem are to use multiple small BDDs (instead of one large BDD)
to represent a set of states (e.g., [14, 19]), to perform a modified
reachability iteration (e.g., [7, 8]), or to approximate the set of
states with a smaler BDD (e.g., [22, 17]). Thisisan active re-
search area, and much work remains to be done.

IV. WHERE TO LEARN MORE

For those interested in more details, Gupta [13] has written a
much broader and deeper survey paper, which, although some-
what dated, isstill an excellent source. Morerecently, Clarke and
Kurshan [9] have written a very accessible introductory article
that gives insight into the history and motivation behind formal
hardware verification as well as the methods. The articleaso in-
cludesseveral sidebarsauthored by industrial researchers on prac-
tical experiences using formal hardware verification.

Exploringthe research literatureis more daunting because for-
mal verification research ispublishedin awide variety of venues.
Application and methodology papers tend to appear in confer-
ences related to the specific application area. Research on im-
proving verification algorithms often appear in VLSl CAD con-
ferences and journas. Fundamental theoretical results generaly
appear in the theoretical computer science literature. In the past
severa years, afew publications have emerged that devote sub-
stantial attention to BDD-based formal verification, such as the
conferences Computer-Aided \erification and Formal Methodsin
Computer-Aided Design, and thejournal Formal Methodsin Sys-
tem Design. Severa survey papers and textbooks are due to ap-
pear shortly.

REFERENCES

[1] K.S.Brace R. L. Rudell, and R. E. Bryant, “Efficient Implementation of a
BDD Package,” DAC, 1990, pp. 40-45.

[2] D. Brand, “Verification of Large Synthesized Designs,” ICCAD, 1993,
pp. 534-537.

[3] R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipula-
tion,” IEEE Trans. on Computers, Vol. C-35, No. 8 (Aug. 1986), pp. 677—
691.

[4] R. E. Bryant, “A Methodology for Hardware Verification Based on Logic
Simulation,” J. of the ACM, Vol. 38, No. 2, Apr. 1991, pp. 299-328.

[5] R. E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary De-
cision Diagrams,” ACM Computing Surveys, Vol. 24, No. 3, Sep. 1992,
pp. 293-318.

[6] R.E.Bryant, “Binary Decision Diagramsand Beyond: Enabling Technolo-
giesfor Formal Verification,” ICCAD, 1995, pp. 236-243.

[71 JR. Burch, EM. Clarke, D.E. Long, K.L. McMillan, and D.L. Dill, “Sym-
bolic Model Checking for Sequential Circuit Verification,” |EEE Trans.
on CAD of Integrated Circuits and Systems, Vol. 13, No. 4 (Apr. 1994),
pp. 401-424.

[8] H. Cho, G. D. Hachtel, E. Macii, B. Plessier, and F. Somenzi, “ Algorithms
for Approximate FSM Traversal,” DAC, 1993, pp. 25-30.

[9] E. M. Clarke and R. P. Kurshan, “Computer-Aided Verification,” |EEE
Spectrum, Jun. 1996, pp. 61-67.

[10] A. Cohn, “The Notion of Proof in Hardware Verification,” J. of Automated
Reasoning, Vol. 5, No. 2, 1989, pp. 127-139.

[11] O. Coudert and J. C. Madre, “A Unified Framework for the Formal Verifi-
cation of Sequential Circuits’, ICCAD, 1990, pp. 126-129.

[12] E. M. Clarke, E. A. Emerson, and A.P. Sistla, “Automatic Verification of
Finite State Concurrent Systems Using Temporal Logic Specifications: A
Practical Approach,” Symp. on Princ. of Prog. Lang., 1983, pp. 117-126.

[13] A. Gupta, “Formal Hardware Verification Methods: A Survey,” Formal
Methodsin System Design, Vol. 1, No. 2/3, 1992, pp. 151-238.

[14] A.J. HuandD. L. Dill, “Efficient Verification with BDDs Using Implicitly
Conjoined Invariants,” Computer-Aided \erification: 5th Int’l Conf., 1993,
Springer LNCS 697, pp. 3-14.

[15] A.J.Hu, D. L. Dill, A. J. Drexler, and C. H. Yang, “Higher-Level Specifi-
cation and Verification with BDDs,” Computer-Aided \krification: 4th Int’|
Wkshp, 1992, Springer LNCS 663.

[16] J.Jain, A.Narayan, M. Fujita, and A. Sangiovanni-Vincentelli,“ Formal Ver-
ification of Combinational Circuits,” VLS Design, 1997.

[17] W. Lee, A. Pardo, J.-Y. Jang, G. Hachtel, and F. Somenzi, “ Tearing Based
Automatic Abstraction for CTL Model Checking,” ICCAD, 1996, pp. 76—
81.

[18] S. Manne, D. Grunwald, and F. Somenzi, “Remembrance of Things Past:
Locality and Memory in BDDs,” DAC, 1997, pp. 196-201.

[19] K.L.McMillan,“A Conjunctively Decomposed Boolean Representationfor
Symbolic Model Checking,” Computer-Aided \erification: 8th Int’'| Conf.,
1996, Springer LNCS 1102, pp. 13-25.

[20] S-i. Minato, “Zero-Suppressed BDDs for Set Manipulation in Combinato-
rial Problems,” DAC, 1993, pp. 272-277.

[21] H. Ochi, K. Yasuoka, and S. Yajima, “Breadth-First Manipulation of Very
Large Binary-Decision Diagrams,” ICCAD, 1993, pp. 48-55.

[22] K. Ravi and F. Somenzi, “High-Density Reachability Analysis,” ICCAD,
1995, pp. 154-158.

[23] R. Rudell, “Dynamic Variable Ordering for Ordered Binary Decision Dia-
grams,” ICCAD, 1993, pp. 42—47.

[24] J. V. Sanghavi, R. K. Ranjan, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “High Performance BDD Package By Exploiting Memory Hi-
erarchy,” DAC, 1996, pp. 635-640.

[25] C.-J. H. Seger and R. E. Bryant, “Formal Verification by Symbolic Evalua-
tion of Partially-Ordered Trajectories,” Formal Methodsin System Design,
Vol. 6, 1995, pp. 147-189.

[26] E. M. Sentovich, “A Brief Study of BDD Package Performance,” Formal
Methodsin CAD: 1st Int'l Conf., 1996, Springer LNCS 1166, pp. 389-403.

[27] T. Stornetta and F. Brewer, “Implementation of an Efficient Parallel BDD
Package,” DAC, 1996, pp. 641-644.

[28] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “Implicit State Enumeration of Finite State Machines using
BDD’s’ ICCAD, 1990, pp. 130-133.

DAC isthe Design Automation Conference. ICCAD is the International Confer-
ence on Computer-Aided Design.

