
Formal Hardware Verification with BDDs: An Introduction
�

Alan J. Hu
Department of Computer Science
University of British Columbia

Abstract—Thispaper is a brief introduction to the main paradigms
for using BDDs in formal hardware verification. The paperaddresses
two audiences: for people doing theoretical BDD research, the pa-
per gives a glimpse of the problems in the main application area, and
for people building hardware, the paper gives a peek under the hood
of the formal verification technologies that are rapidly gaining in-
dustrial importance. Topics described include combinational equiv-
alence checking, symbolic simulation, sequential equivalence check-
ing, model checking, and symbolic trajectory evaluation.

I. INTRODUCTION

The current interest in BDDs from the theoretical computer sci-
ence community has largely been motivated by the practical
importance and success of BDDs in formal hardware verifica-
tion. Conversely, the growing industrial interest in formal hard-
ware verification has largely been inspired by the effectiveness
of BDD-based techniques in finding real bugs in practical, large-
scale designs. This paper attempts to address both of these com-
munities: on one hand explaining to people building hardware
what the main BDD-based formal verification techniques are and
what kinds of problems they can solve, and on the other hand, ex-
plaining to people doing research on BDDs what the challenges
are in one of the main application areas.

Most of this paper describes the main paradigms for using
BDDs for formal hardware verification. We will briefly survey
the basic algorithms for using BDDs in combinational equiva-
lence, symbolic simulation, sequential equivalence, model check-
ing, and symbolic trajectory evaluation. The remainder of the pa-
per describes some issues and directions of current research to ex-
pand the size and complexity of designs that can be verified.

Before proceeding, let me address three basic questions: What
is formal verification? Why has there been a surge of interest in
formal hardware verification? And what is a BDD?

A. What Is Formal Verification?

Formal verification means proving that a property holds of a
model of a design. The bold-faced words are the key ideas. The
promise of verification is proving in the sense of mathematical
proof, in contrast to conventional simulation and test, which can
tell us only that nothing went wrong on the specific cases we tried.
(Of course, exhaustively trying every possible execution of a sys-
tem is a valid proof. We can view formal verification as giving the

�

This work was supported in part by a UBC new faculty start-up grant and an
NSERC Research Grant.

effect of exhaustive simulation.) However, specifying the prop-
erty to prove and creating an accurate model of the design are dif-
ficult problems. One can ponder endlessly the philosophical im-
possibilityof proving a system correct: Is the spec correct? Is the
model accurate? Is the verifier correct? Is the computer we used
to run the verifier correct? Etc. (Cohn [10] gives an insightful and
readable analysis of the fundamental obstacles to proving a hard-
ware design correct.) In practice, we can choose the property to
be “conforms exactly to a golden reference model which we as-
sume is correct,” or else we can simply prove easy-to-state prop-
erties that matter to us (e.g., absence of deadlock, interface lines
follow a handshake protocol, etc.). Ideally, the model we verify is
as close to the actual hardware as possible (e.g., a circuit extracted
from the VLSI layout), but for complicated designs, an abstracted
model is usually needed to simplify the verification process.

Although formal verification of all kinds of properties — tim-
ing, performance, reliability, etc. — is conceivable, most for-
mal hardware verification research has focused on verifying func-
tional correctness, so we will restrict our attention to that here.

B. Why Formal Hardware Verification?

People have researched formal verification of computer hardware
and software for decades. Traditionally, the emphasis had been on
approaching the ideal of proving a system correct. The verifica-
tion methods (typically a mathematically expressive but compu-
tationally undecidable logic with support from a semi-automated
theorem prover) require considerable time and expertise to verify
even fairly simple systems. As a result, practical application has
been limited to a few domains, such as security and safety-critical
systems, where ethical or legal requirements demand the highest
assurance of correctness, regardless of cost. For normal hardware
design projects, hiring or training formal verification experts, de-
laying a product launch to allow time for formal verification, and
reducing product performance or features to simplify formal anal-
ysis are all economically unacceptable.

A major factor in the current industrial interest in formal veri-
fication is a different emphasis for formal verification that explic-
itly recognizes economic demands. (The other main factors are
the new verification techniques that support this emphasis, and
the high design complexity and short design cycles that are strain-
ing current validation methods.) Basically, bugs cost money —
especially the hard-to-find bugs that surface late in the design cy-
cle, that force an extra spin of silicon, that delay a product launch,
or that require a massive product recall. Any technique that finds
these bugs earlier is enormously valuable. So, instead of trying to
certify correctness, formal verification is used as a powerful de-

1 1 1

x

z

y

z z z

y

10 0 0 0

0 1

0 1 0 1

0 1 0 1 0 1 0 1

x
0 1

xxx
0 1 0

1

x

10

y

z

y

z

0 1

0 1 1 0

0 1 1 0

x
0 1

x

(a)

(b)

(c)

becomes

becomes

Figure 1: Creating the BDD for
�����������
	

bugging tool. If the time and effort invested in formal verification
is less than the time and effort saved by uncovering difficult bugs
earlier, then formal verification is a win, regardless of whether or
not we can make any claims about proving the system correct.

This cost-benefit comparison favors formal verification tech-
niques that are automatic and easy-to-use, even if they lack theo-
retical expressiveness. Not coincidentally, this practical, debug-
ging emphasis for formal verification developed in parallel with
new formal verification algorithms that offer far greater automa-
tion than had previously been possible. These algorithms are the
BDD-based algorithms that we will explore in this paper.

C. What’s a BDD?

“BDD” stands for “binary decision diagram.” A BDD is just a
data structure for representing a Boolean function. Bryant [3] in-
troduced the BDD in its current form, although the general ideas
have been around for quite some time (e.g., as branching pro-
grams in the theoretical computer science literature). Conceptu-
ally, we can construct the BDD for a Boolean function as follows.
First, build a decision tree for the desired function, obeying the
restrictions that along any path from root to leaf, no variable ap-
pears more than once, and that along every path from root to leaf,
the variables always appear in the same order (Figure 1(a)). Next,
apply the following two reduction rules as much as possible: (1)
merge any duplicate (same label and same children) nodes, and
(2) if both child pointers of a node point to the same child, delete
the node because it is redundant (Figure 1(b)). The resulting di-
rected, acyclic graph is the BDD for the function (Figure 1(c)).
In practice, BDDs are generated and manipulated in the fully re-
duced form, without ever building the decision tree. In a typical

x1

x2 x2

x3 x3 x3 x3

y1 y1 y1 y1 y1 y1 y1 y1

y2 y2 y2 y2

0 0 0 0

y3 y3

0 0

0 1

0

0 1

0 1 0 1

0 1 0 1 0 1 0 1

1 1 1 11 1 1 1 0 0 0 0

1 11 1 0 0

1 0 1

x1

y1y1

x2

y2y2

x3

y3y3

0 1

0 1

0 1

0 1

0

0

0 1

1

1

1 0

1 0

1 0

(b)(a)

Figure 2: Two Different Variable Orders for the Same Function

implementation, all BDDs in use by an application are merged as
much as possible to maximize node sharing, so a function is rep-
resented by a pointer to its root node. For example, in Figure 1(c),
the function �
����������� is represented by a pointer to the top node,
whereas the function �
������� is represented by just a pointer to the
leftmost node labeled � , rather than by copies of the nodes. �

BDDs have several useful properties. First, many common
function have small BDDs. For example, generalizing the pat-
tern in Figure 1(c), we see that the BDD for the parity of � vari-
ables requires ������� nodes, whereas parity requires exponen-
tial size using, for instance, sum-of-products form. In addition,
BDDs are easy to manipulate. Efficient algorithms exist for all
the usual Boolean operations (AND, OR, NOT, etc.) as well as
other useful operations. Finally, once we fix the order in which the
variables appear, a BDD is a canonical representation for a Bool-
ean function, i.e., every distinct Boolean function has exactly one
unique BDD representation. Thus, comparing Boolean functions
becomes just a pointer comparison.

Choosinga good variable order is important. For example, sup-
pose we wish to build a BDD for the function � � � �!� � ��"#� �%$&�
�'$
�'"�� �)(%���*(�� . Figure 2 shows two BDDs for this function using
two different variable orders. In general, the choice of variable
order can make the difference between a linear size BDD and an
exponential one.

Bryant [5] provides a detailed exposition on BDDs and surveys
some applications and variations.

II. FUNDAMENTAL ALGORITHMS

Let’s now examine the basic algorithms for formal hardware ver-
ification using BDDs.

A. Combinational Equivalence

The most obvious application of BDDs is to check the equiva-
lence of two combinational circuits. $ For example, we may want
to verify that optimization or logic synthesis was done correctly
by comparing the circuit before and after. The basic algorithm is

+
In this paper, I will use

�
for exclusive-OR, , for equivalence or exclusive-

NOR, - for AND, . for OR, and / for NOT.0
A combinational circuit is a digital circuit without state-holding elements or

feedback loops, so the output is a function of the current input. A circuit with
state-holding elements is called a sequential circuit.

y
z

Figure 3: A Simple Example: Is This XOR?

for each circuit, to build the BDDs for the outputs in terms of the
primary inputs. Since BDDs are a canonical representation, the
two combinational circuits implement the same function if and
only if they have the same BDD.

For example, let’s consider verifying that the circuit in Figure 3
implements exclusive-OR. First, label the primary inputs with the
BDDs for the variables � and � . Next, build the BDD for each gate
output as a function of its inputs — labeling the OR gate with the
BDD for � � " ��� , the NAND gate with the BDD for � �
� � ��� ,
and the AND gate with �
� "���� � � � � � ��� . For the specification
circuit, we build the BDD for � �)����� . Since these two expressions
give the same Boolean function, they have the same BDD, which
verifies that the circuit is indeed an exclusive-OR.

In practice, this approach is limited by the size of the BDDs
generated, which is highly sensitive to the function being verified
and the variable order used. For pathological examples like multi-
pliers, even 16-bits is too big to handle. Typically, circuits with up
to a few hundred primary inputs can often be verified. For larger
circuits, more sophisticated methods are needed.

B. Symbolic Simulation

Symbolic simulation [4] is a combination of the preceding ideas
with conventional logic simulation. The advantage of a conven-
tional logic simulator is accuracy. Detailed timing models, haz-
ards, and oscillatory behavior can all be simulated. The disadvan-
tage of a conventional logic simulator is that only one simulation
vector can be run at a time. In Figure 3, we would have had to
run four simulations with the inputs equal to 00, 01, 10, and 11
to verify the circuit. A circuit with 20 inputs would have required
over a million runs. Symbolic simulation adds two innovations to
conventional logic simulation that give the effect of running large
numbers of simulation vectors simultaneously.

The first innovation is a third logic value X that represents an
unknown value. This value is propagated through the circuit just
as the 0 and 1 logic values are, although the X is always treated
conservatively. For example, � " X is X, but � " X is 1, since 1
is a controlling value for OR. Setting an input to X gives the ef-
fect of simulating the circuit for both the case where the input was
0 and the case where the input was 1, thereby cutting in half the
number of simulation runs required. However, the X value loses
information. In Figure 3, setting one or both inputs to X yields an
X at the output, a useless result for verification.

The more important innovation is the introduction of symbolic
values, which avoids the information loss from using X values.
The basic idea is to set an input to a symbolic value that can be ei-
ther 0 or 1, rather than to a constant like 0, 1, or X. Alternatively,
we can think of the symbolic value as remembering whether we
assigned a 0 or 1 to a given input. Returning to Figure 3, suppose
we set primary input � to 1 and primary input � to the symbolic
value � . The symbolic simulator would then calculate that the OR

0

1
mux

0

1
mux

clk

Q D

clk

Q D

clk

Q D

i0

i1

y0
y1

x0
x1

x2 y2out0 out1

i

out

Figure 4: Comparing Two State Machines

gate will settle to 1 (since 1 OR anything is 1), that the NAND gate
will settle to � � , and that the AND gate will settle to � � . Thus,
we’ve effectively run two simulation vectors (��� equal to 10 and
11) at once, computing the output as a function of the symbolic
values. To implement this idea, a conventional logic simulator is
modified to use BDDs to represent the values on wires as a func-
tion of the symbolic values.

In practice, the user must trade off using explicit 0s and 1s, the
X value, and symbolic values. Settingan input to an explicit value
gives conventional logic simulation. Setting an input to X halves
the required number of simulation runs, but loses information so
the simulation result might not be useful. Setting an input to a
symbolic value halves the required number of simulation runs and
does not lose information, but makes the BDDs representing the
values on the wires larger. Too many symbolic values will make
these BDDs too large to build.

C. Sequential Equivalence

Although symbolic simulation can be applied to sequential cir-
cuits as well as to combinational circuits, we would often like
to reason about sequential circuits as finite state machines, rather
than as just a bunch of gates. (This is analogous to the difference
between cycle-based and event-driven logic simulation.) A typi-
cal application would be comparing that two state machines have
identical behavior, in order to verify the correctness of logic op-
timization, register retiming, state re-encoding, etc.

The problem of comparing two state machines can be con-
verted into the problem of finding all of the reachable states of a
state machine. Given two state machines to compare, tie the input
lines together, send the outputs to a comparator, and clock the two
machines together in lockstep. This combination is just another,
bigger state machine. The original two machines have identical
behavior if and only if the new machine indicates the outputs are
equal for all reachable states. For example, consider the simple
circuits in Figure 4. We have two small state machines: one with
input ��� , latch ��� , and output out � ; the other with input � � , latches
� � and � $, and output out � . To compare the two machines, we
add the dotted lines, creating a new machine with input � , latches
� � , � � , and ��$, and output out.

Computing the set of reachable states using BDDs requires
three basic ideas: representing sets of states using BDDs, com-

puting images, and the reachability iteration.
The first idea is to represent sets of states using BDDs. So far,

we’ve been using BDDs to represent the logic function computed
by a circuit. Now, we’re going to use BDDs in a different man-
ner. Basically, we can think of a BDD as representing a set of
truth assignments: if the function the BDD represents is true for a
given truth assignment, that assignment is in the set; if the func-
tion is false, that assignment is not in the set. For example, if we
consider three Boolean variables � � , � � , and � $, the BDD for the
function ��� � � �

� � � $ represents the set containing only one
truth assignment

� ��� ��� ; the BDD for � � " � � represents the set
of six truth assignments

� � � ���*� � ���*��� ���
���'��� � � ��� �)����� , and the
BDD for 1 (the Boolean value True) represents the set of all eight
truth assignments. If we associate a Boolean variable with each
latch in a circuit, then these BDDs can be viewed as representing
sets of states of the state machine.

The next concept is image computation. Basically, if we have
a BDD that represents a set of states of a state machine, the image
of that BDD is a new BDD that represents the set of all possible
states that the machine could be in exactly one clock tick later.
For example, return to the state machine in Figure 4. The BDD
for � � � � � �

� � ��$ represents the single state where latches � � ,
� � , and ��$ are outputting 0, 1, and 0. Depending on the value
of the input, the machine has two possible states at the next clock
tick, so the image of this BDD is the BDD for � � � � � � �

� � � $ �'"
�
��� � � � �

� � $ � . The simplest way to compute images is as fol-
lows: First, build a BDD that represents the relationship between
the present and next values of the latches. This BDD is called the
transition relation. In our example, it would be the BDD for �
� �	�
�
� � � � � � � � � � � � � � � � � � " � � � ��$*� � � � �'$ � � � � � �%$
� " � � � � � � ��

Next, AND the transition relation with the BDD whose image you
are computing. Then, existentially quantify (out the variables for
the present state and the primary inputs.

The final idea is an iteration using images to compute all reach-
able states. Basically, we start with the reset state and compute the
image to get the set of states reachable in one more clock tick, i.e.,

� ��
�� BDD for reset state�
�
�� � � " Image � � � �

...�����
�
�� ��� " Image � ��� �

Intuitively,
���

is the set of all states reachable in � or fewer clock
ticks from the reset state. This sequence will converge eventually,
when

�����
� �

���
(which is easy to test, since BDDs are canoni-

cal). In our example, the reset state
� � � � � � � � �

� � � $, after
one iteration

�
� � � � � � � � �

� � �%$
� "!� � � � � � �
� ��$*� , and

after two iterations
� $ � �

� , so we’re done.
As with combinational verification, this approach is limited by

the size of the BDDs generated, which is highly sensitive to the
function being verified and the variable order used. Performance
on any given circuit is extremely hard to predict. Nevertheless,

�
Existential quantification, written � ��� � , gives us a function that is true when

there is a value of
�

that makes
�

true. We can compute � ��� ������� . �! "� , where���
means

�
with

�
set to 1 and

�! "�
means

�
with

�
set to 0.

as a very rough rule of thumb, the method described in this sub-
section can usually handle circuits with up to around one hundred
latches. With more sophisticated enhancements, circuits with a
few hundred latches are routinely verified, and occasionally prac-
tical circuits with thousands of latches can be verified.

The original papers on using BDDs for sequential verification
(e.g., [11, 28]) are excellent references for the basic algorithms,
including image computation and the reachability iteration.

D. Model Checking

Instead of just computing reachable states or comparing state ma-
chines, sometimes we’d like to check that a state machine obeys
certain properties, e.g., that a one-hot encoded state machine is in-
deed one-hot encoded, that the machine is always resettable, that
every request is eventually acknowledged, etc. Model checking
lets us verify that a state machine obeys a property we specify us-
ing temporal logic.

Temporal logic is just a formal way of expressing properties
that change over time. There are many different kinds of tem-
poral logic; for brevity, we will only consider a few examples
taken from one temporal logic — called CTL (Computation Tree
Logic) — which is the most popular for formal hardware verifi-
cation with model checking. The basic idea is that we start with
ordinary Boolean logic, and then add special temporal operators
for describing future events. For example, in CTL, the operator
AX means “for all possible input values, in the next clock cy-
cle,...”, the operator EX means “there exists an input such that
in the next clock cycle,...”, the operator AG means “for all pos-
sible input values, it will always be true that,...”, the operator EF
means “there exists a sequence of input values such that eventu-
ally...”, and so forth. # The temporal operators can nest, so for ex-
ample, AGEF(reset) says that it is always possible to find a path
back to reset, and AG � req $ AFack � says that every request is
always eventually followed by an acknowledgment. Returning to
the simple circuit in Figure 4, let’s consider what CTL formulas
are true at the reset state (� � � � �%$ � �)� �). The formula � � is ob-
viously true in the reset state, but the formula AX � � is false in the
reset state because it is not the case that � � will be true for all in-
put values at the next clock cycle (in particular, if � � �). On the
other hand, the formula EX � � is true in the reset state, because
there exists an input value (� � �) such that � � will be true at the
next clock cycle. Similarly, AG � � is false, but EG � � is true (if
the input stays at 0 forever).

The invention of model checking [12] was a theoretical break-
through in the use of temporal logic for formal hardware verifica-
tion. Roughly speaking, the idea is to systematically explore the
state space of a finite state machine in order to check that the given
temporal logic formula holds of the machine. Symbolic model
checking [7] means using BDDs in the model checking algorithm.
The algorithms used in symbolic model checking are a generaliza-
tion of the reachability algorithm in the preceding subsection. For
example, in addition to image, symbolic model checking uses op-

%
Note that although these examples are phrased in terms of sequential circuits,

model checking is often used at other levels of abstraction. More generally, AX
would mean “for all possible next events...”, EX would mean “there exists a pos-
sible next event...”, etc.

erators such as preimage, which computes the set of all possible
states the machine could have been in during the preceding clock
cycle. Computing EX � � is just a single preimage computation,
and computing EF � � is just like the reachability iteration, except
that we start with � � and iterate with preimage instead of image.
The other CTL operators are computed similarly.

In practice, model checking has similar limits to the reachabil-
ity computation — the BDDs become too big. Also, the more
expressive the temporal logic used, and the more complicated
the properties specified, the greater computational complexity be-
comes. Generally, one should use the simplest model checker that
can express the desired verification properties.

E. Symbolic Trajectory Evaluation

Symbolic trajectory evaluation [25] is an attempt to combine the
efficiency of symbolic simulation with a bit of the temporal ex-
pressiveness of model checking. The basic idea is that if we
severely restrict the temporal logic used for specifying properties,
we can verify the properties using symbolic simulation.

In symbolic trajectory evaluation, the property to be checked
is written in the form � $�� , which means that whenever the
circuit behavior matches the pattern specified by � , it must also
satisfy the pattern specified by � . The formulas � and � are writ-
ten in a special form called “trajectory formulas”. A trajectory
formula only allows specifying the values of circuit nodes for a
bounded number of events into the future (in contrast to CTL op-
erators like EF that specify behavior arbitrarily far in the future).
Furthermore, trajectory formulas cannot express negation of a tra-
jectory (“Match any pattern that doesn’t look like...”) or the OR of
trajectories (“Match any pattern that looks like this or that.”). In
practice, the specfication language typically provides many fea-
tures to ease writing trajectory formulas, but fundamentally, many
properties that could be expressed in, say, CTL, simply cannot be
expressed with trajectory formulas.

In exchange for this loss of expressiveness, though, comes a
crucial property for efficiency: for any trajectory formula, there
is a unique symbolic simulation vector (assignment of 0s, 1s, Xs,
and symbolic values to the circuit inputs) that captures all behav-
iors that satisfy the trajectory formula. Verification, therefore, can
be done with a single run of symbolic simulation — we symbol-
ically simulate the vector for � , and after each simulation event,
we check that the circuit state is consistent with the corresponding
part of � . This algorithms is usually much faster than the itera-
tions required for reachability and model checking.

In practice, the main obstacle to symbolic trajectory evaluation
is figuring out how to express the desired property using trajec-
tory formulas that can be symbolically simulated efficiently. If
the simulation vector has too many symbolic variables, the BDDs
will become too big, just as in symbolic simulation.

III. ENHANCEMENTS AND RESEARCH DIRECTIONS

For space reasons, this paper can only give a brief taste of an ex-
tensive and varied research area. The fundamental problem with
all of the methods described in the preceding section is that the
BDDs can become too large to build within the limits of avail-
able memory. The aim of most research, therefore, is how to make

BDDs smaller. I will briefly describe three general directions
of research: improving BDDs, improving combinational equiv-
alence checking, and improving sequential verification.

A. Better BDDs

The most obvious approach for making BDDs smaller is to try to
find a better version of BDDs. Numerous researchers have inves-
tigated countless variants on BDDs, generally producing design
trade-offs that are useful in some cases and useless or even coun-
terproductive in others. For example, zero-suppressed BDDs [20]
have a slightly different reduction rule in order to represent sparse
sets efficiently. Several BDD variants have edge weights and
multiple terminal nodes in order to represent numerical functions.
Many representations are more general than BDDs, and can prov-
ably represent more functions more compactly, but lose canonic-
ity, thereby severely reducing their usefulness for formal verifica-
tion. Bryant [6] surveys many of these variants.

As we saw in Figure 2, choosing a good variable order can
greatly affect BDD size. Many variable ordering heuristics have
been developed for different domains, but much more work needs
to be done. Currently, many people rely on dynamic variable
reordering [23], a technique that periodically searches for better
variable orders by exploiting the fact that small changes in the
variable order are easy to make.

Finally, on a more mundane but very practical level is research
aimed at efficient implementation of BDDs. Brace et al.’s pa-
per [1] is the basis of most current implementations. Several pa-
pers have addressed making BDDs interact better with caches and
virtual memory [21, 24, 18] and with parallel machines [27]. Sen-
tovich [26] gives a comparison of several popular BDD packages.

B. Tricks for Combinational Equivalence

The key idea behind most research to improve combinational
equivalence checking is to take advantage of structural similari-
ties between the circuits. The circuits being compared in practice
are usually quite similar, since the typical verification problem is
to check that a small change didn’t break the circuit.

Most approaches follows a framework proposed by Brand [2].
First, simulate the two circuits for a small number of random in-
puts. Points in the circuits that behaved identically during simu-
lation are considered to be possibly equivalent. Then, try to prove
that the possibly equivalent points are indeed equivalent, using
any equivalences we’ve proven already to simplify the task.

Jain et al. [16] survey a wide variety of these algorithms. Here,
let’s consider a simple example of how such an algorithm might
work. Suppose we are comparing two large circuits. In the first
step, we run, say, 64 random simulation vectors. Points in the
two circuits that behaved identically for all 64 simulation vectors
are labeled as possibly equivalent. Next, we look for a possible
equivalence between points in the two circuits that are close to the
primary inputs. If we can prove these two points equivalent (by
buildingthe BDDs), we then delete the portions of the circuits that
we have proven equivalent and introduce a new primary input at
the equivalent point. If we can repeat this process all the way to
the primary outputs, we have proven the two circuits equivalent,
withoutever buildingBDDs for the entire circuit (just BDDs for a

small part at a time). Note that if this method fails to prove the two
circuits equivalent, we cannot conclude that they are inequivalent
without further computation, because the new primary inputs we
introduced are not really primary inputs so we don’t really have
full controllability of them. This problem, called the false nega-
tive problem, is a serious obstacle for these algorithms in practice.

C. Tricks for Sequential Reasoning

The first problem encountered using the basic algorithms for se-
quential verification is that the BDD for the transition relation can
be too large to build. Note that we were building the BDD for the
transition relation only as a means to compute images. If we find
an alternative way to compute images, we avoid this problem al-
together. For example, good solutions have been found for syn-
chronous circuits [11, 28], asynchronous circuits [7], and loop-
free sequential programs [15].

The more serious problem is that the BDDs representing sets of
states can become too large to build. Some attacks on this prob-
lem are to use multiple small BDDs (instead of one large BDD)
to represent a set of states (e.g., [14, 19]), to perform a modified
reachability iteration (e.g., [7, 8]), or to approximate the set of
states with a smaller BDD (e.g., [22, 17]). This is an active re-
search area, and much work remains to be done.

IV. WHERE TO LEARN MORE

For those interested in more details, Gupta [13] has written a
much broader and deeper survey paper, which, although some-
what dated, is still an excellent source. More recently, Clarke and
Kurshan [9] have written a very accessible introductory article
that gives insight into the history and motivation behind formal
hardware verification as well as the methods. The article also in-
cludes several sidebars authored by industrial researchers on prac-
tical experiences using formal hardware verification.

Exploring the research literature is more daunting because for-
mal verification research is published in a wide variety of venues.
Application and methodology papers tend to appear in confer-
ences related to the specific application area. Research on im-
proving verification algorithms often appear in VLSI CAD con-
ferences and journals. Fundamental theoretical results generally
appear in the theoretical computer science literature. In the past
several years, a few publications have emerged that devote sub-
stantial attention to BDD-based formal verification, such as the
conferences Computer-Aided Verification and Formal Methods in
Computer-Aided Design, and the journal Formal Methods in Sys-
tem Design. Several survey papers and textbooks are due to ap-
pear shortly.

REFERENCES

[1] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient Implementation of a
BDD Package,” DAC, 1990, pp. 40–45.

[2] D. Brand, “Verification of Large Synthesized Designs,” ICCAD, 1993,
pp. 534–537.

[3] R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipula-
tion,” IEEE Trans. on Computers, Vol. C-35, No. 8 (Aug. 1986), pp. 677–
691.

[4] R. E. Bryant, “A Methodology for Hardware Verification Based on Logic
Simulation,” J. of the ACM, Vol. 38, No. 2, Apr. 1991, pp. 299–328.

[5] R. E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary De-
cision Diagrams,” ACM Computing Surveys, Vol. 24, No. 3, Sep. 1992,
pp. 293–318.

[6] R. E. Bryant, “Binary Decision Diagrams and Beyond: Enabling Technolo-
gies for Formal Verification,” ICCAD, 1995, pp. 236–243.

[7] J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, and D.L. Dill, “Sym-
bolic Model Checking for Sequential Circuit Verification,” IEEE Trans.
on CAD of Integrated Circuits and Systems, Vol. 13, No. 4 (Apr. 1994),
pp. 401–424.

[8] H. Cho, G. D. Hachtel, E. Macii, B. Plessier, and F. Somenzi, “Algorithms
for Approximate FSM Traversal,” DAC, 1993, pp. 25–30.

[9] E. M. Clarke and R. P. Kurshan, “Computer-Aided Verification,” IEEE
Spectrum, Jun. 1996, pp. 61–67.

[10] A. Cohn, “The Notion of Proof in Hardware Verification,” J. of Automated
Reasoning, Vol. 5, No. 2, 1989, pp. 127–139.

[11] O. Coudert and J. C. Madre, “A Unified Framework for the Formal Verifi-
cation of Sequential Circuits”, ICCAD, 1990, pp. 126–129.

[12] E. M. Clarke, E. A. Emerson, and A.P. Sistla, “Automatic Verification of
Finite State Concurrent Systems Using Temporal Logic Specifications: A
Practical Approach,” Symp. on Princ. of Prog. Lang., 1983, pp. 117–126.

[13] A. Gupta, “Formal Hardware Verification Methods: A Survey,” Formal
Methods in System Design, Vol. 1, No. 2/3, 1992, pp. 151–238.

[14] A. J. Hu and D. L. Dill, “Efficient Verification with BDDs Using Implicitly
Conjoined Invariants,” Computer-Aided Verification: 5th Int’l Conf., 1993,
Springer LNCS 697, pp. 3–14.

[15] A. J. Hu, D. L. Dill, A. J. Drexler, and C. H. Yang, “Higher-Level Specifi-
cation and Verification with BDDs,” Computer-Aided Verification: 4th Int’l
Wkshp, 1992, Springer LNCS 663.

[16] J. Jain, A. Narayan, M. Fujita, andA. Sangiovanni-Vincentelli, “Formal Ver-
ification of Combinational Circuits,” VLSI Design, 1997.

[17] W. Lee, A. Pardo, J.-Y. Jang, G. Hachtel, and F. Somenzi, “Tearing Based
Automatic Abstraction for CTL Model Checking,” ICCAD, 1996, pp. 76–
81.

[18] S. Manne, D. Grunwald, and F. Somenzi, “Remembrance of Things Past:
Locality and Memory in BDDs,” DAC, 1997, pp. 196–201.

[19] K. L. McMillan, “A ConjunctivelyDecomposedBooleanRepresentation for
Symbolic Model Checking,” Computer-Aided Verification: 8th Int’l Conf.,
1996, Springer LNCS 1102, pp. 13–25.

[20] S.-i. Minato, “Zero-Suppressed BDDs for Set Manipulation in Combinato-
rial Problems,” DAC, 1993, pp. 272–277.

[21] H. Ochi, K. Yasuoka, and S. Yajima, “Breadth-First Manipulation of Very
Large Binary-Decision Diagrams,” ICCAD, 1993, pp. 48–55.

[22] K. Ravi and F. Somenzi, “High-Density Reachability Analysis,” ICCAD,
1995, pp. 154–158.

[23] R. Rudell, “Dynamic Variable Ordering for Ordered Binary Decision Dia-
grams,” ICCAD, 1993, pp. 42–47.

[24] J. V. Sanghavi, R. K. Ranjan, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “High Performance BDD Package By Exploiting Memory Hi-
erarchy,” DAC, 1996, pp. 635–640.

[25] C.-J. H. Seger and R. E. Bryant, “Formal Verification by Symbolic Evalua-
tion of Partially-Ordered Trajectories,” Formal Methods in System Design,
Vol. 6, 1995, pp. 147–189.

[26] E. M. Sentovich, “A Brief Study of BDD Package Performance,” Formal
Methods in CAD: 1st Int’l Conf., 1996, Springer LNCS 1166, pp. 389–403.

[27] T. Stornetta and F. Brewer, “Implementation of an Efficient Parallel BDD
Package,” DAC, 1996, pp. 641–644.

[28] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “Implicit State Enumeration of Finite State Machines using
BDD’s” ICCAD, 1990, pp. 130–133.

DAC is the Design Automation Conference. ICCAD is the International Confer-
ence on Computer-Aided Design.

