

Theory and Automated Verification Group

CS-RR-08-05

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD

Design and Verification of
On-Chip Communication Protocols

Peter Böhm
Tom Melham

Design and Verification of
On-Chip Communication Protocols1

Peter Böhm
Oxford University Computing Laboratory,

Wolfson Building, Oxford, OX1 3QD, England
Email: peter.boehm@comlab.ox.ac.uk

Tom Melham
Oxford University Computing Laboratory,

Wolfson Building, Oxford, OX1 3QD, England
Email: tom.melham@comlab.ox.ac.uk

Abstract—Modern computer systems rely more and
more on on-chip communication protocols to exchange
data. To tackle performance requirements these protocols
have become highly complex, which makes their formal
verification usually infeasible with reasonable time and
effort.

We present an initial case study for a new approach
towards the design and verification of on-chip communica-
tion protocols. This new methodology combines the design
and verification processes together, interleaving them in a
hand-in-hand fashion.

In our initial case study we present the design and
verification of a simple arbiter-based master-slave commu-
nication system inspired by the AMBA High-performance
Bus architecture. Starting with a rudimentary, sequential
protocol, the design is extended by adding pipelining and
burst transfers. Both extensions are realized as transfor-
mations of a previous version such that the correctness of
the former leverages the verification of latter. Thus, we
also argue about the correctness of both extended designs.

I. INTRODUCTION

Modern computer systems rely more and more on
highly complex on-chip communication protocols to
exchange data. The enormous complexity of these pro-
tocols results from tackling high-performance require-
ments. Protocol control can be distributed, and there may

1This report is a corrected version of P. Boehm and T. Melham,
”Design and verification of On-Chip Communication Protocols”, in
Seventh International Workshop on Designing Correct Circuits 2008:
Budapest, 29-30 March 2008: Participants’ Proceedings, edited by
G. J. Pace and S. Singh, ETAPS 2008 (March 2008), pp. 15-29.

be non-atomicity or speculation. Moreover, different sys-
tem components may have separate clocks or adjustable
clock frequencies, requiring asynchronous communica-
tions. These complexities arise in many important circuit
design areas, such as multicore architectures, system-on-
chip, or network-on-chip designs.

Whereas the efforts of chip manufacturers to validate
or even formally verify their designs has increased over
the last years, the complexity of communication proto-
cols makes their formal verification usually infeasible
within reasonable time and effort.

We present a new approach towards the design and
formal verification of on-chip communication protocols.
The approach can be summarized as follows. We start
with a design model for a basic protocol that can be
formally verified with reasonable effort; this is then
extended with advanced features step-by-step to meet
performance demands, handle asynchronous communi-
cation, or improve fault-tolerance. These extensions are
realized by mathematical transformations of a previous
design, rather than constructing a new design. The cor-
rectness of an extended design is obtained from the
correctness of the previous version and either the trans-
formation itself (correctness-by-design) or a refinement
or simulation relation between the two versions.

Using this approach, the verification is interleaved
with the protocol design process in a hand-in-hand
fashion. The task of obtaining the next, more advanced
design then splits into three main challenges: (i) is
there an algebraic model to derive the extended design
from the previous one? (ii) how does the refinement or

simulation relation between them look? (iii) how does
the correctness statement need to be modified during the
design steps?

Verification by stepwise refinement is, of course, not
new (cf. Section I-A). The novelty of our approach
lies in the application of this methodology to protocol
verification, and in the technical details of the specific
optimising transformations we propose to investigate.
Given a clean algebraic model for the three parts men-
tioned above, this leads to a new methodology combining
design and verification into a single process. This ap-
proach is new, to the best of our knowledge, with respect
to high-performance on-chip communication protocol
design and verification.

This paper presents an initial case study demonstrating
the extension of a simple, rudimentary communication
protocol with pipelining and burst transfer features. The
basic protocol is a sequential arbiter-based master-slave
communication protocol inspired by the AMBA High-
performance Bus (AHB) architecture [1] but reduced
to its basics. It supports sequential master-slave com-
munication, including possible slave-side wait-states for
memory system operations.

We formally specify a design model realizing the pro-
tocol using the Isabelle/HOL [2] theorem prover. Masters
and slaves are specified at gate-level as state machines
using transition functions. The arbiter is abstracted to a
function providing bus grant signals to the masters and
obeying a simple fairness property.

The verification is performed using a combination of
interactive proofs with Isabelle/HOL and the open-source
model checker NuSMV [3]. The NuSMV model checker
is used via the oracle-based, domain-reducing interface
IHaVeIt [4]. To argue about the behavior over time within
the theorem prover, we had to transfer the model-checked
temporal logic properties to cycle-accurate statements.
This was done using a formalization of an execution
trace semantics which relates a hardware cycle to a
current state.

Finally, we describe transformations to the design
model realizing pipelining and burst transfers of variable
but known length. We formulate local and global correct-
ness properties for the new designs and argue about their

validity. The correctness is obtained from the correctness
of the previous design and reasoning about the applied
transformation. Hence, we show transformations that
conserve correctness properties from its input design and
provide correctness-by-design properties.

Even though our technical approach in this case study
is modelling in higher order logic, and a combination
of theorem proving with Isabelle and model checking
with NuSMV, this is not necessarily our plan for future
development of this work. We are primarily interested
in capturing the right collection of primitive definitions
and proof structures to support our planned refinement
approach. Therefore, we are deliberately not starting
with a pre-conceived notion of what language this future
work will happen in, or what tool support we need
to provide. Within the overall project, we are focusing
on the right basic structuring principles for protocol
descriptions with the specific features we are looking
at. Choice of language and tools will come after, once
we know what we need.

Organization of the paper: Next we discuss related
work. In Section II we present the basic overall structure
of our communication system and introduce notation
used. The design and verification of the basic, sequential
design is detailed in Section III. Afterwards, we present
the transformation and correctness for pipelining in Sec-
tion IV and for burst transfers in Section V. Finally, we
conclude and outline future work in Section VI.

A. Related Work

Most existing work n this area of formal verification
addresses the verification of specific protocols. For ex-
ample, Roychoudhury et al. [5] present a formal speci-
fication of the AMBA protocol. They use an academic
protocol version and verify design invariants using the
SMV model checker. In [6] Amjad verifies latency,
arbitration, coherence, and deadlock freedom properties
on a simplified AMBA model. Schmaltz et al. present
initial work [7] of a generic network on chip model as
a framework for correct on-chip communication. They
identify key constraints on architectures and show pro-
tocol correctness provided these constraints are satisfied.

All these approaches rely on a post-hoc protocol ver-
ification, which is a key difference to the methodology

presented here. Even the framework presented in [7]
relies on a post-hoc verification of protocol properties
against their constraints. This verification approach be-
comes more and more infeasible, due to the complexity
of modern communication protocols.

In [8] Müffke presents a framework for the design of
communication protocols. It provides a dataflow-based
language for protocol specification and decomposition
rules for interface generation. These rules relate dataflow
algebra and process algebra. Aside from noting that
correct and verified protocol design is still an unsolved
problem, Müffke does not address the verification aspect
in general. He claims that the generated interfaces are
correct by construction in the sense that if the generated
interface is implemented correctly than the behavior of
the components complies with the protocol specification.
But he neither addresses the protocol correctness itself
nor the verification of the implementation against the
specification.

The basic idea behind our approach is similar to Intel’s
integrated design and verification (IDV) system [9]. The
IDV system justifies its transformations by a local proof
using simple equivalence checking. We expect that fo-
cusing on transformations tailored specifically for high-
performance on-chip communication protocols result in
more intricate refinement steps than can be handled by
equivalence checking.

Verification by refinement or simulation relations
is also used in many related areas. In [10] Aagaard
et al. present a framework for microprocessor correct-
ness statements based on simulation relations. Chatterjee
et al. [11] verify a memory consistency protocol against
weak memory models using refinement via model-
checking. In [12] Datta et al. present a framework to
derive verified security protocols using abstraction and
refinement steps. They introduce a similar approach to
ours but nevertheless neither of them deals with on-chip
communication or even complexities arising from high-
performance demands.

II. BASICS

In this Section we present the overall structure of our
communication system and introduce basic notation used
throughout the paper.

The presented design is an arbiter-based master-slave
system inspired by the AHB architecture. A number
of masters (specified by NS) are interconnected with
a number of slaves (specified by NS) via a commu-
nication bus. Bus access on the master-side is granted
by an arbiter. The bus itself consists of a ready signal
plus separated control and data parts. Additionally, the
masters are interconnected with the arbiter via signals to
request and grant the bus.

The masters are connected to the bus using multiplex-
ers controlled by the arbiter. The bus signals generated
by the slaves are obtained via large or-trees. The bus is
defined in Definition 1.

Definition 1 (Master-Slave Communication Bus)
The master-slave communication bus is defined as the
tuple of signals between the master and slaves:

bust = (rdyt, transt, wrt, addrt, wdatat, rdatat)
∈ (B,B,B,Bad,Bd,Bd)

where the components are:

• rdy is the afore mentioned bus ready signal.
• trans is the signal indicating either a idle transfer

(0) or a data transfer (1).
• wr denotes if a data transfer is a read (0) or write

(1) transfer.
• addr denotes the address bus of width ad. The

address consists of a local address part (the lower
sl bits) specifying the memory address within a
slave and a device address (the upper ad− sl bits)
specifying the currently addressed slave.

• wdata denotes the write data bus of width d.
• rdata denotes the read data bus of width d.

We refer to the last two components as data bus and to
the second to fourth components as control bus.

Since the generation of the different bus signals has
to be slightly modified during the presented transforma-
tions, they are defined in detail within the corresponding
sections.

The basic, pivotal protocol characteristics can be sum-
marized as: (i) every transfer consists of an address and
a data phase, (ii) the end of each phase is defined by
the bus signal rdy, and (iii) the bus is granted to some
master at all times.

addr(i) data(i)

transfer

phases

rdy

clk

i

t t+1 t+2 t+3 t+4cycles

abstr. time a(i) d(i),g(i+1)

data(i-1)

d(i-1),g(i)

t+5

i-1

Fig. 1. Sequence of Sequential Transfers

The first two properties are illustrated in Fig. 1. Every
transfer starts with an address phase during which the
signals on the control bus need to be generated. The
address phase ends with an active rdy signal. At that
time, the control bus signals have to be valid.

After the address phase, the data phase starts. It is
again completed by an active rdy signal. In case of a
write transfer, the master has to provide valid data on the
wdata bus during this phase. In case of a read transfer,
the slave has to provide valid data on the rdata bus at
the end of this phase when the rdy signal is active.

The third characteristic is detailed as follows: the
arbiter always grants the bus to some master. In case
no master has requested bus access, the bus is granted
to a default master defM . If a master is granted the bus
but there is no data to transmit, the master has to initiate
an idle transfer. This transfer is distinguishable from a
data transfer and a slave has to acknowledge with a zero
wait-state response.

A. Notation

Throughout the next sections we use natural numbers
u ∈ [0 : NM − 1] and v ∈ [0 : NS − 1] to refer to the
u-th master and v-th slave and denote them with m[u]
and s[v], respectively. When the number of the master or
slave is irrelevant, we omit the u or v and use simply m

or s to refer to any of them. We assume that NM = 2k

for k ∈ N and NS = 2ad−sl.
In order to specify the design they are related to,

we index them with either seq for sequential, pipe for
pipelined, or burst for burst design. When we refer to
an arbitrary design, we omit the index.

We denote a bit vector x ∈ Bn with x[n− 1 : 0] and
refer to its a-th bit with x[a] where a ∈ {0, . . . , n− 1}.
For a bit vector x ∈ Bn we use the predicate unary(x)
to specify that x is a unary coded bit vector, i. e. x[i] =
1 ⇐⇒ x[j] = 0 for all j 6= i. Moreover, we denote the

value of x interpreted as a unary number by 〈x〉u and
define it as 〈x〉u = a ⇐⇒ x[a] = 1. Analogously, we
denote the value of a bit vector x ∈ Bn interpreted as a

binary number by 〈x〉. It is defined by 〈x〉 =
n−1∑
i=0

x[i] ·2i.

We denote the binary representation of a unary coded bit
vector x ∈ Bn with n = 2k by binu(x) ∈ Bk and define
it as y = binu(x) ⇐⇒ 〈y〉 = 〈x〉u.

Finally, we define a signal sig as a function from clock
cycles to Boolean values. Thus, sig : N→ Bn for some
n ∈ N. We refer to the value of a signal with sigt. In
order to refer to the value of a signal during a time
interval, we use the notation sig[a:b] = x with x ∈ Bn

as a shorthand for siga = . . . = sigb = x. Similarly, we
use sig[a:b] = sig′[a:b] for a signal sig′ as a shorthand for
siga = sig′a ∧ . . . ∧ sigb = sig′b.

III. SEQUENTIAL DESIGN

In this Section we present a simple, sequential reali-
sation of the protocol without any support of advanced
functionality such as pipelining or burst transfers. We
start by introducing the concept of an abstract transfer.
Afterwards, we specify the main parts of the commu-
nication system, i. e. arbiter, salve, and master, by an
implementation-close description and reason about local
correctness. Finally, we define the bus components in the
sequential design and argue about global correctness in
Section III-D.

The following definition of an abstract transfer relies
on the basic protocol property that there is always on
master who is granted the bus (cf. Section II). This
definition is crucial to the reasoning throughout this
paper. The definition is illustrated in Fig. 1.

Definition 2 (Abstract Sequential Transfer) The i-th
abstract sequential transfer trseq(i) is defined in terms of
three cycle-accurate time points, a corresponding grant
signal vector gnt(i) ∈ BNM , and a single bit id(i) ∈ B
indicating if the transfer is a idle transfer or not. The
first time point g(i) ∈ N is the point in time when the
bus is granted to the master 〈gnt(i)〉u. The second time
point a(i) ∈ N is the point in time when the address
phase ends, i. e. when the rdy signal is active the first
time after g(i). The third time point d(i) ∈ N denotes the
time when the data phase of transfer i ends, i. e. when
the rdy signal is active for the second time after g(i).

trseq(i) = (gnt(i), id(i), g(i), a(i), d(i))
∈ B

NM ×B×N×N×N

The components are defined as
gnt(i) = arb.grantg(i)

id(i) = transa(i)

g(i) =

{
0 : i = 0
d(i− 1) : otherwise

a(i) = min{t > g(i) | rdyt}
d(i) = min{t > a(i) | rdyt}

where arb.grant denotes the arbiter configuration com-
ponent specifying the current grant vector. It is specified
in detail in the next section.

When talking about transfers, we often need to refer
to the time point when the host of the granted master
requested this transfer. This is done via the transfer
request time trt(i) of transfer i.

Definition 3 (Transfer Request Time) Given a trans-
fer tr(i) we define the transfer request time trt(i) as
the time point where the master 〈gnt(i)〉u received the
corresponding startreq signal. Let x = 〈gnt(i)〉u, then
trt(i) is defined by:

trt(i) =

{
max{j ≤ g(i) | m[x].startreqj} : id(i)
∞ : ¬id(i)

Note that the second case specifies trt(i) for an idle
transfer. This is only done for reasons of completeness
and is not used within the proofs as we only refer to
trt(i) in case of a data transfer.

A. Arbiter

The arbiter grants bus access to a master m[u] by
activating the corresponding bit grant[u] in the grant
bit vector. In case no master requests the bus, the arbiter
grants the bus to a default master defM as defined in
Section II. In the scope of this project, we abstract
the arbiter to a combinatorial circuit relying on an
abstract function af generating a new grant vector given
the current one and the current request vector. Thus,
af (grant, req) returns a new grant vector.

The inputs of the arbiter are a request signal from
every master, thus a bit vector reqin ∈ BNM , and the
rdy signal of the bus. The arbiter updates the grant

bit vector at the end of an address phase, i.e. at a(i).
In order to store the information whether an active rdy

signal represents the end of an address phase or the end
of a data phase, we introduce a singe bit register aphase.

However, if the grant vector is updated at the end of
the address phase, the old vector is still required during
the data phase to select the correct wdata output from
a transmitting master. Therefore, the old grant vector is
stored as a delayed grant vector in the register dgrant.

Moreover, a request vector req has to be maintained
in order to store which masters requested the bus.

Thus, the configuration of the sequential arbiter is:

arbt
seq = (grantt, dgrantt, reqt, aphaset)

∈ B
NM ×BNM ×BNM ×B

The arbiter is specified by the following update rules:
Let updt = aphaset ∧ rdyt and u ∈ [0 : NM − 1], then:

grantt+1 =

{
af (reqt, grantt) : updt

grantt : otherwise

dgrantt+1 =

{
grantt : updt

dgrantt : otherwise

reqt+1[u] =


1 : reqin[u]
0 : af (reqt, grantt)[u]

∧ updt

reqt[u] : otherwise

aphaset+1 =

{
¬aphaset : rdyt

aphaset : otherwise

Note that aphase is initialized with 0.

Lemma 1 (Sequential Arbiter Correctness) Let u ∈
[0 : NM − 1] be a master index. Then, the local arbiter
correctness is described by the following:

unary(grantt) ∧ (grantt 6= grantt+1 =⇒ rdyt)
∧ (aphaset ⇐⇒ t ∈ [g(i) + 1 : a(i)] for some i)
∧ (reqin[m]t =⇒ grantt

′
[m] for some t′ > t)

Finally, the arbiter provides the outputs grantt to the
masters, i. e. grant[u] for u ∈ [0 : NM−1] to master mu,
as well as to the control bus multiplexers. Additionally,
it provides dgrantt to the write data bus multiplexer.

B. Slave

The task of a slave is to perform read or write accesses
to an attached memory system mem. Regarding the bus,
the slave has the inputs sel ∈ B indicating that the
slave is currently addressed, the rdy signal, the wdata

component, and the control bus. The addr signal is

reduced to the local address addr[sl − 1 : 0] ∈ Bsl. the
upper part of the address bus, namely addr[ad− 1 : sl],
is used to generate the select signal sel by an address
decoder (cf. Section II).

In case a slave is currently addressed, indicated by
an active sel input at the end of the address phase,
it has to sample the control bus data in case of a
data transfer. Afterwards, the actual memory system
access is performed during the data phase. Within that
access the memory system can activate a memory busy
signal mem.busy. The requested data is delivered by the
memory system in the cycle when mem.busy is inactive
for the first time after the start of the request. We assume
that the memory is busy for at most k cycles.

At the end of the memory request, the slave activates
the rdyout output and provides the read data on the
rdataout output in case of a read access.

As we will see during pipelining in Section IV,
the sequential slave is a little bit more complex than
the pipelined one. This results from the fact that the
sequential slave has to generate the rdy signal indicating
the end of the address phase, a(i), additionally to the
rdy signal indicating d(i). As the address data can be
sampled during one cycle, a unit delay register rdy′ is
used to delay an active rdy single by one cycle. Then,
if rdy′ and sel is active, the rdyout output is enabled to
generate the bus.rdy signal at a(i).

Moreover, in case of an idle transmission, the slave
just produces a rdyout signal in the next cycle (at d(i)).

The slave configuration is defined as the tuple

st
seq = (statet, wrt, addrt, wdatat, memt)

where

• state ∈ {idle, req} denotes the automaton state.
• wr ∈ B, addr ∈ Bsl, wdata ∈ Bd denote the

registers to sample the corresponding bus signals.
• mem : Bsl → Bd denotes the local memory.

The slave is realized in a straight forward way accord-
ing to the above description. We omit details here.

The local correctness statement reads as follows.

Lemma 2 (Sequential Slave Correctness) Given that
sel ∧ rdy′ holds at time t on sequential slave sseq. Let

t′ = min(k > t | ¬mem.busyk), then:

rdyt
out ∧ (¬transt =⇒ rdyt+1

out)
∧
(
transt =⇒
¬rdy

[t+1:t′−1]
out ∧ rdyt′

out ∧
(¬wrt =⇒ rdatat′

out = memt′ [addrt]) ∧
(wrt =⇒ memt′ [addrt] = wdatat′)

)
C. Master

The master provides the interface between the commu-
nication system and an attached host system. Within the
scope of this case study, the master is our main interest as
we present transformations to add advanced functionality
to it.

The task of the master is to handle host requests to
transfer data. Thus the master has inputs from the host
denoted startreq ∈ B, indicating a transfer request, and
host data signals denoted hwr ∈ B, haddr ∈ Bad,
and hwdata ∈ Bd for the respective transfer data. The
master has to perform a bus request to the arbiter in
case it is not granted the bus. It has to transfer the data
according to the sequential schedule, hence the next time
it is granted the bus.

Additionally, in case there is no data to transmit but
the master is granted the bus, it has to initiate an idle
transfer in order to meet the protocol requirements.

The inputs to master m[u] for u ∈ [0 : NM − 1]
regarding the bus are the signals rdy ∈ B, grant[u] ∈ B,
and rdata ∈ Bd as defined in Section II.

As outputs the master provides the signals transout ∈
B, wrout ∈ B, addrout ∈ Bad, and wdataout ∈ Bd

needed for the corresponding bus signals. It provides a
request signal req ∈ B to the arbiter and a busy signal
busy ∈ B as well as a signal rdataout ∈ Bd for the
read data to the host. The purpose of the busy signal is
the following: the correct transmission of a host request
is shown if the master is not busy while the transfer is
initiated (startreqt =⇒ ¬busyt).

The configuration of the master consists of a state

component, a set of registers to sample a host request,
and a register to sample data from the rdata bus at the
end of a read request. In detail, the configuration of a
sequential master mseq is defined as the tuple

mt
seq = (statet, vreqt, lwrt, laddrt, lwdatat, lrdatat)

where the components are:

idle:
busy=vreq

aph:
busy,

transout=vreq
dph

rdy ∧
grant rdy

rdy ∧ ¬grant: busy

rdy ∧ grant
¬(rdy ∧ grant) ¬rdy ¬rdy: busy

startreq ∧ ¬grant: req

Fig. 2. Sequential Master Control Automaton

• state ∈ {idle, aph, dph} denotes the automaton
state: idle is the idle state, aphase the state denoting
the address phase, and dphase the state denoting the
data phase, respectively.

• vreq ∈ B denotes that a valid request is currently
processed.

• lwr ∈ B denotes the local copy of the hwr input.
It is written when a host request is sampled.

• laddr ∈ Bad denotes the local copy of the address
analogously to wr.

• lwdata ∈ Bd denotes the local hwdata copy.
• lrdata ∈ Bd denotes the register used to sample

the rdata bus.

The control automaton is shown in Fig. 2 illustrating
the update of the state component and the output signal
generation. The bus outputs different from transout are
straight forward the respective local components.

The other configuration components are updated ac-
cording to the following specification.

vreqt+1 =



1 : startreqt ∧
(
idlet ∧ ¬busyt

∨ datat ∧ grantt ∧ rdyt
)

0 : datat ∧ rdyt

∧ ¬(startreqt ∧ grantt)
vreqt : otherwise

lrdatat+1 =

{
rdatat : datat ∧ rdyt ∧ ¬lwrt

lrdatat : otherwise

xt+1 =

{
hxt : startreqt ∧ ¬busyt

xt : otherwise

where x ∈ {lwr, laddr, lwdata} and idlet, datat denote
that the automaton is in the corresponding state.

Next we argue about the local correctness of the
master. We split this argumentation into two parts: (i) lo-
cal correctness with respect to the host interface, and
(ii) local correctness with respect to the bus.

We call a master locally correct with respect to the
host interface iff it requests the bus upon a valid host

request, i. e. a request initiated when the master has not
been busy. Therefore, the master shall activate the busy

signal during a transfer. Moreover, every time the master
is granted the bus, the busy signal has to be inactive for
at least on cycle to enable the host to initiate a transfer.

Lemma 3 (Master Correctness wrt. Host Interface)
Given a master mseq, a transfer trseq(i), and
the corresponding transfer request time trt(i). If
startreqtrt(i) ∧ ¬busytrt(i) holds, then:

(reqtrt(i) ∨ granttrt(i)) ∧ busy[trt(i)+1:d(i)−1]

∧ (grantd(i) =⇒ ¬busyd(i))
∧ (¬grantd(i) =⇒ busyd(i) ∧ ¬busyd(i)+1)

Proof: The proof is obtained by simple reasoning on
the control automaton of the master and can be checked
automatically.

The second correctness part is the more interesting
one. We say that the master is locally correct with respect
to the bus iff the following properties hold: (i) the master
reacts to an active rdy and grant signal by starting a
transmission; either a idle or a data transmission, (ii) it
keeps the bus control signals stable during the address
phase, (iii) in case of a write transfer it keeps the write
data stable during the data phase, and (iv) in case of a
read transfer it samples the rdata bus correctly at the
end of the data phase.

Next we define a predicate called lcorr formulating
the above properties. Afterwards, we state and prove the
correctness lemma for the sequential master.

Definition 4 (Local Master Correctness wrt. Bus)
Given a master m, a transfer tr(i), and a host request
hreqtrt(i) = (hwr, haddr, hwdata). Then, the local
master correctness predicate lcorr(m, tr(i), hreqtrt(i))
is defined by: lcorr(m, tr(i), hreqtrt(i)) holds iff either
m 6= 〈gnt(i)〉u or m = 〈gnt(i)〉u and

trans
[g(i)+1:a(i)]
out = d(i)

∧ id(i) =⇒
(
wr

[g(i)+1:a(i)]
out = hwrtrt(i)

∧ addr
[g(i)+1:a(i)]
out = haddrtrt(i))

)
∧ (id(i) ∧ hwrtrt(i)) =⇒

wdata
[a(i)+1:d(i)]
out = hwdatatrt(i)

∧ (id(i) ∧ ¬hwrtrt(i)) =⇒ lrdatad(i)+1 = rdatad(i)

Lemma 4 (Local Master Correctness wrt. Bus)
Given a sequential master mseq, a transfer trseq(i),
and a corresponding host request hreq

trt(i)
seq . Then

lcorr(mseq, trseq(i), hreaq
trt(i)
seq) holds.

Proof: The proof is obtained in two steps: (i) by
reasoning about the control automaton of the master,
a similar statement is proven which argues about the
register contents at time g(i) instead of the host inputs
at time trt(i), (ii) afterwards, the claim is obtained with
Lemma 3.

D. Global Correctness

In this Section we argue about the global correctness
of the sequential communication system. First, we define
the values of the bus components in detail. Afterwards,
we argue about the bus signal generation and introduce
some global invariants which ease the argumentation
about global correctness. Finally, we state the global
correctness theorem of the sequential design and argue
about its validity.

Definition 5 (Sequential Bus Components) Let u =
〈arb.grantt〉u and du = 〈arb.dgrant〉u. Then the com-
ponents of the bus from Definition 1 in the sequential
design are defined by:

rdyt =
NS−1∨
v=0

s[v].rdyt
out

transt = m[u]seq.transt
out

wrt = m[u]seq.wrt
out

addrt = m[u]seq.addrt
out

wdatat = m[du].wdatat
out

rdatat =
NS−1∨
v=0

s[v].rdatat
out

As mentioned in Section II, the control bus signals
are obtained from the master currently granted the bus
and selected by binu(grant) using multiplexers. Anal-
ogously, the wdata bus is obtained from the master
outputs by a multiplexer controlled by binu(dgrant).

In the following, we introduce global properties and
invariants for the sequential communication system. The
first invariant argues about the set of masters. It states
that there is exactly one master that is not idle during a
transfer. It is exactly the master who is granted the bus.

Invariant 1 (Master Uniqueness) Given a transfer
trseq(i). Then:

∃!u ∈ [0 : NM − 1]. m[u].state[g(i)+1:d(i)] 6= idle ∧
m = 〈gnt(i)〉u

Proof: The validity of this invariant follows from
the following three properties: (i) the unary(grant)
property of the arbiter, (ii) the fact that the grant signal
only changes after the active rdy signal at the end of the
address phase, and (iii) the fact that a master only leaves
the idle state if the grant and rdy signals are active.

Given the master uniqueness we show that the bus
signals generated by the masters are obtained correctly.

Lemma 5 (Master to Bus Correctness) Given a se-
quential transfer trseq(i) and let u = 〈gnt(i)〉u. Then:

trans[g(i)+1:a(i)] = m[u].trans
a(i)
out ∧

wr[g(i)+1:a(i)] = m[u].wr
a(i)
out ∧

addr[g(i)+1:a(i)] = m[u].addr
a(i)
out ∧

wdata[a(i)+1:d(i)] = m[u].wdata
d(i)
out

Proof: The lemma is obtained from Invariant 1, the
local master correctness from Lemma 4, and the arbiter
correctness from Lemma 1.

Next, we formulate an invariant similar to Invariant 1
but for the set of slaves. It states that all slaves are in
idle state during the address phase and there is exactly
one slave that is not in the idle state during the data
phase. This is exactly the slave addressed by the master.

Invariant 2 (Slave Uniqueness) Given a sequential
transfer trseq(i). Let u = 〈gnt(i)〉u be the granted
master. Then:

∀v ∈ [0 : NS − 1]. s[v].state[g(i)+1:a(i)] = idle

∧ ∃!v ∈ [0 : NS − 1]. s[v].state[a(i)+1:d(i)] 6= idle ∧
v = 〈m[u].addr[ad− 1 : sl]〉

Proof: The invariant is obtained in three steps:
(i) the address decoder correctness ensures that
unary(sel) holds and 〈sel〉u = addr[ad−1 : sl], (ii) the
master correctness (Lemma 4) and Lemma 5 entail that
the address bus is stable during the whole address phase,
and (iii) reasoning on the slave control automaton shows
that the only time interval the idle state is left is between
the rdy signal at time a(i) and the next one (d(i)).

A property similar to Lemma 5 regarding the rdy and
rdata signals of the bus can be formulated. It is obtained
from Invariant 2 and the slave correctness in Lemma 2.

Lemma 6 (Slaves to Bus Correctness) Given a trans-
fer trseq(i) and let v = 〈addra(i)[ad − 1 : sl]〉 be the
addressed slave. Then:

rdy[a(i):d(i)] = s[v].rdy
[a(i):d(i)]
out ∧

rdatad(i) = s[v].rdata
d(i)
out

Finally, the overall correctness theorem reads as follows.

Lemma 7 (Overall Correctness Sequential System)
Let hreqk

m denote a host request at time k with
startreqk on master mseq. Moreover let

w = s[〈haddrk[ad− 1 : sl]〉].mem(haddrk[sl − 1 : 0])

denote the addressed memory word. Then:

¬busyk
m =⇒ ∃i.

(
k = trt(i)

∧ tr(i) = (gnt(i), id(i), g(i), a(i), d(i))
∧ gnt(i) = mseq ∧ id(i)
∧ (hwrk =⇒ wd(i) = hwdatak)
∧ (¬hwrk =⇒ lrdatad(i)+1 = wd(i))

)
Proof: The first two clauses follow from the arbiter

correctness in Lemma 1 and the correctness of the master
with respect to the host interface (Lemma 3). The third
follows from the transfer definition in Definition 2 and
again the arbiter correctness. The last three clauses are
given by the master to bus correctness in Lemma 5,
the slave to bus correctness in Lemma 6, and the local
correctness of both (Lemmas 4 and 2).
Note that one would need a much more evaluated ar-
bitration system in order to provide the read data from
time k instead of time d(i).

IV. PIPELINED PROTOCOL

In this section, we derive a communication system
supporting pipelined data transfer from the previous se-
quential design based on a correctness-preserving trans-
formation. The idea behind the pipelining of this protocol
is to execute the address phase of a transfer i in parallel
with the data phase of address i − 1. This is possible
because of the separated control and data buses. A
sequence of pipelined transfers is shown in Fig. 3.

The bus for the pipelined system stays exactly the
same as for the sequential system.

busi = (rdyi, transi, wri, addri, wdatai, rdatai)

As we focus on the transformation applied to the
master, we do not go into details regarding arbiter
and slaves here. The arbiter is obtained by ignoring
the aphase bit register from the sequential arbiter and

updating the grant vector each time the rdy signal is
active. Since the grant vector is updated every time
rdy is active, we have to introduce a third grant register
denoted ddgrant which is updated with the data from
dgrant in exactly the same way as dgrant with grant.

This results from the following: The master for the
next transfer is specified by the grant vector at time g(i).
In contrast to the sequential arbiter, the grant vector is
also updated at time g(i). Thus the control parts of the
bus during the address phase are not specified by the
grant but by the dgrant vector. But then, we need even
one more copy of the former grant vector to control the
data multiplexer during the data phase.

The slave is obtained by removing the unit delay rdy′.
The pipelined slave only generates a rdy signal after the
memory access, thus at the end of the data phase.

Finally, we adopt the abstract transfer definition.

Definition 6 (Abstract Pipelined Transfer) The i-th
abstract pipelined transfer is defined analogous to
the sequential transfer from Definition 2 as the tuple
trpipe(i) = (gnt(i), id(i), g(i), a(i), d(i)) where the
components are defined as:

gnt(i) = grantg(i)

id(i) = 〈gnt(i)〉u.trans
a(i)
out

g(i) =

{
0 : i = 0
a(i− 1) : otherwise

a(i) = min{t > g(i) | rdyt}
d(i) = min{t > a(i) | rdyt}

The new definition is illustrated in Fig. 3. Note that the
only difference to the sequential definition is that g(i) is
now recursively defined over a(i−1) instead if d(i−1).
This represents the pipelining in the abstract transfer and
results in the additional properties a(i) = d(i − 1) for
i > 0 and g(i) = d(i− 2) for i > 1.

Next we specify the transformation for the master
followed by the local correctness argumentation. Finally,
we reason again about the global correctness of the
pipelined communication system.

A. Master

Our gaol is to obtain a master supporting pipelined
transfers from the master only supporting sequential
transfers. We derive the new master in an algebraic
way such that we can use the correctness of the former

data(i+2)

addr(i+3)

addr(i) data(i) addr(i+2)

transfer i

phases

rdy

data(i-1) addr(i+1) data(i+1)

i-1 i+1
i+2

t t+1 t+2 t+3 t+4cycles t+5

abstr. time d(i-1) a(i)
g(i+1)

d(i) a(i+1)
g(i+2)

d(i-2) a(i-1)
g(i)

d(i+1),a(i+2)
g(i+3)

addr(i-1)

data(i-2)

clk

d(i+2),a(i+3)
g(i+4)

t+6

i+3

Fig. 3. Sequence of Pipelined Transfers

master to argue about the new one. The basic idea
behind the transformation is to execute two sequential
masters in parallel. Then we restrict the behavior of the
parallel system by excluding some bad executions. In the
following, we denote the two sequential masters with m1
and m2, hence mpipe = (m1, m2).

These behavioral constraints are obtained by mod-
ifying the inputs to the internal sequential masters.
This is realized by a logic denoted InpTrans splitting
the inputs into two sets of inputs for m1 and m2.
Additionally, we need to combine the outputs of the
two internal masters to generate the outputs of a single
master. This combinatorial function is called TransOut

in the following.
If we execute two sequential masters in parallel, the

state space of mpipe.state is equal to the cartesian
product of the state components of the two sequential
masters.

mpipe.state ∈ mseq.state×mseq.state

The key question is now which behavior has to be
excluded from the purely interleaved execution of both
control automatons. We aim to obtain a behavior where
m1 dominates m2 in the sense that m2 only becomes
active in situations where the sequential master could not
executed the required behaviour. We have the following
two key properties which have to be maintained: (i) m2
never requests the bus and (ii) m2 only leaves the idle
state in case m1 is at the end of the address phase and an
additional, parallel transfer from mpipe is required. The
first property is required to prohibit the situation that the
bus is granted to mpipe and the master would have to
‘decide’ which of the sequential masters requested the
bus (and has stored the data to transmit). Moreover, the

arbiter cannot handle two requests from one master in
the sense to be able to grant the bus twice to that master.

These properties are realized in the following way:
The first one is obtained by restricting the startreq input
of m2 and adjusting the busy output to the host. The
latter has to be done in order to preserve the property
that a transfer is handled correctly if the busy signal is
inactive. The second property is achieved by restricting
the grant input of m2.

Next we define the InpTrans function which splits
the inputs of the master and applies the described re-
strictions. Then we specify the pipelined master in terms
of a transition function using the InpTrans function.

Definition 7 (Input Transformation) Given a master
mpipe. Let inp = (startreq, hreq, rdata, rdy, grant)
denote its inputs with hreq = (hwr, haddr, hwdata).
Then we define the function InpTrans by:

InpTrans inp = let
startreq2 = startreq ∧ grant ∧ (m1.state = addr)
grant2 = grant ∧ (m1.state = addr)

in
(inp, (startreq2, hreq, rdata, rdy, grant2))

Definition 8 (Master for Pipelined Transfers) Given
a pipelined master mpipe = (m1, m2) and let dMseq

denote the transition function from the sequential
master as defined in Section III-C. Moreover, let
inp = (startreq, hreq, rdata, rdy, grant) denote the
inputs of mpipe with hreq = (hwr, haddr, hwdata).
Then, the pipelined master is defined by the following
transition function.

dMpipe mpipe inp = let
(inp1, inp2) = InpTrans inp

in
(dMseq m1 inp1, dMseq m2 inp2)

Finally, the outputs are obtained in a straight forward
way. The sequential master which is currently in the
addr or data state provides the corresponding bus out-
puts. Additionally, the reqout signal to the arbiter is only
triggered by m1.

The only non-obvious computation is the busy signal.
Obviously, the pipelined master has to be busy if both
sequential masters are busy. Additionally, the second
sequential master is not allowed to request the bus.
Therefore we have to enable the busy signal in cases
where the first master is busy and the second master
would have to request the bus after a startreq signal.
There are three of those cases, namely (i) both sequential
masters are in the idle state and the first master is waiting
for a grant signal, (ii) m1 is in the address phase and
the bus is no more granted to the master, and (iii) m1 is
in the data phase and neither the bus is granted anymore
nor the rdy signal is active.

Definition 9 (Output Transformation) Given a mas-
ter mpipe. Then its outputs are obtained from the outputs
of the sequential masters m1 and m2 in the following
way:

reqt
out = m1.reqt

out

xt
out = if (m2.statet = addr)

then m2.xt
out else m1.xt

out

wdatat
out = if (m2.statet = data)

then m2.wdatat else m1.wdatat

busyt
out = (m1.busyt ∧m2.busyt)

∨ (m1.busyt ∧m1.statet = idle ∧
m2.statet = idle)

∨ (m1.statet = addr ∧ ¬grantt)
∨ (m1.statet = data ∧ ¬(grant ∧ rdy))

where x ∈ {trans, addr, wr}.

Recall that the grant vector only changes in a cycle
when rdy is active. Thus if the the bus is granted to
a master this holds until the next active rdy signal and
vice versa.

Next we argue about the local correctness of the
pipelined master. Similar to the local correctness of
the sequential master, we split cases into host interface
correctness and bus correctness. The correctness with
respect to the host interface reads similar to for the
sequential system. The only difference is that we also
have to ensure that there is a cycle when busy is

inactive before the data phase (i. e. at a(i)) if the bus
is still granted. This is required to allow pipelined data
transfers. The proof is slightly more complex because
one has to argue about two consecutive transfers instead
of one as they are executed partially in parallel.

The correctness with respect to the bus is also the
same as for the sequential system. This maybe surprising
fact results from the pipelined transfer definition which
encapsulates the parallel execution property. This leads
to clean correctness statements but has to be considered
during the proof.

Lemma 8 (Local Master Correctness wrt. Bus)
Given a master mpipe, a pipelined transfer trpipe(i),
and a corresponding host request hreqtrt(i). Then the
local correctness predicate for the sequential system
from Definition 4 also holds for the pipelined master,
thus lcorr(mpipe, trpipe(i), hreqtrt(i)).

Proof: This lemma is obtained from: (i) the correct-
ness properties for m1 and m2, (ii) m1 always executes
in advance to m2, i. e. for a sequence of transfers for
which the master is constantly granted the bus, m1
always executes the odd transfers within this sequence
and m2 the even ones. (iii) induction on the length of
the sequence of consecutive granted transfers.

B. Global Correctness

The global correctness of the pipelined system is ob-
tained completely analogous to the sequential argumen-
tation. The two invariants have to be slightly modified.

Invariant 1 (master uniqueness) needs to be adopted
to take the parallel execution of address and data phase
into account. Moreover, the new state space has to be
considered and whether a master granted the bus for
consecutive transfers.

In Invariant 2 (slave uniqueness) not all slaves are
in the idle state during address phase since the address
phase of a transfer is equal to the data phase of the
previous transfer. Hence, it has to be modified to state
that during the address phase of a transfer, the only slave
not in the idle state is the slave address by the master
specified by the old grand vector dgrant of the arbiter
at time a(i).

Finally, the global correctness statement reads the
same as for the sequential design in Lemma 7. Similarly
to the local correctness, this results from the abstract
transfer definition but additionally from the fact that the
properties regarding the address and data phase in the
global correctness statement are formulated completely
separately. The difficulties arising from the transfer
pipelining has already been dealt with in the previous
local correctness properties and the invariants.

V. BURST PROTOCOL

In this Section we specify a transformation providing
burst transfers applicable to either the sequential or
the pipelined system. The presented transformation is
general enough that there are only few cases where one
has to distinguish whether a sequential or a pipelined
design is extended. Therefore, we present the general
transformation and accept the slightly increased com-
plexity at some places.

A burst transfer of size (bsize + 1) is a read or write
transfer supposed to start a some base address baddr

transferring all data from address baddr to baddr+bsize.
We support burst transfers of arbitrary but fixed length
up to a maximum denoted BM . The actual length of
a transfer is specified during the corresponding host
request. We assume that BM = 2b − 1 for some b ∈ N
and thus we use bsize ∈ Bb.

The communication bus between masters and slaves
stays as before, but to realize burst transfers, we need
to introduce two additional signals from the master to
the arbiter. Hence, besides the req signal, the master
provides the outputs bst ∈ B and bsize ∈ Bb to the
arbiter. These signals are used to signal a burst transfer
request to the arbiter that has to ensure that the grant
signal stays constant during a burst transfer.

As in the previous section, we focus on the master
transformation and therefore, we only describe the arbiter
and slave shortly.

The arbiter is obtained from the corresponding previ-
ous arbiter, i. e. sequential or pipelined, by adding two
additional registers for every master to sample burst
request data. That is upon an active startreq signal
from some master, the corresponding flag indicating a
burst request is set if the bst bus signal is active. At

the same time, the bsize signal is sampled. When the
bus is granted to a master with a pending burst request,
the arbiter keeps the grant vector stable for bsize may
transfers.

The slave is the same as in the corresponding sequen-
tial or pipelined system.

Finally, we adapt the transfer notation to support
burst. These changes are more complex than the changes
from sequential to pipelined transfers. Again, the basic
principle is to add a component bst(i) to indicate a burst
transfer together with a field bsize(i). The end of the
address phase is now not only a single time point but
a partial function assigning a address phase end time to
every sub-transfer n ∈ [0 : bsize(i)− 1].

Definition 10 (Abstract Burst Transfer) The i-th ab-
stract burst transfer trburst(i) within the burst commu-
nication system is defined as the tuple

trburst(i)
= (gnt(i), id(i), g(i), a(i), d(i), bst(i), bsize(i))
∈ BNM ×B×N× (N→ N)×N×B×Bb

where the components are defined as:

gnt(i) = grantg(i)

id(i) = m[〈gnt(i)〉u].trans
a(i)
out

g(i) =


0 : i = 0
a(i− 1, bsize(i− 1))

: i > 0 ∧ (m pipelined)
d(i− 1) : i > 0 ∧ (m sequential)

a(i, n) =



min{t > g(i) | rdyt}
: n = 0 ∨ ¬bst(i)

min{t > a(i, n− 1) | rdyt}
: n ∈ [1 : bsize(i)] ∧ bst(i)

undefined : otherwise

d(i) =


min{t > a(i, 0) | rdyt}

: ¬bst(i)
min{t > a(i, bsize(i)) | rdyt}

: bst(i)
bst(i) = m[〈gnt(i)〉u].bsta(i,0)

bsize(i) = m[〈gnt(i)〉u].bsizea(i,0)

The main difference between this definition and the
previous is the case split on actual burst transfers. In
case of a non-burst transfer the above definition resolves
to one of the previous transfer definitions depending on

the kind of master we are extending by burst support.

A. Master

In the following we present the transformation to add
burst transfer support to one of the previous masters.
The basic idea is simple: We add a counter for the
burst sub-transfers and simulate a sequence of bsize

many standard transfers. Thereby, the arbiter correctness
ensures that the bus is granted during the whole burst
transfer. We specify the whole transformation again in
terms of an input transformation InpTrans and an output
transformation TransOut .

The interface from host to master has to be extended
by two new signals: Upon a host request, hbst ∈ B
signals that the current transfer is a burst request of size
hbsize ∈ Bb. Additionally, we introduce a signal to the
host called bdataupd ∈ B. It is used to signal that the
data in wdata has to be updated for a burst write access
or a data chunk from a burst read access can be read from
the rdata bus. Hence, we require that the host updates
the wdata register at the time bdataupd is active for a
burst write access and the host hast to read the data from
rdata in the cycle after bdataupd was active. We define
bdataupd in detail within the specification of TransOut .

Note that this host interface requirement could be
discharged by extending the master with a data mem-
ory of address width b. This would not complicate
the subsequent correctness argumentation significantly
but lengthen the specification of the transformations.
Therefore we omit it here.

We also have to extend the configuration of the master
by three new components to handle burst requests:
bst ∈ B and bsize ∈ B

b are used to sample the
corresponding host signals upon a request. bfst ∈ B
indicates if the first burst sub-transfer has to be sent.
This flag is needed because the local address register has
to be incremented before every burst sub-transfer except
the very first. Thus, the configuration of a burst master
is defined as the tuple

mburst = mx × (bst, bsize, bfst)

where x is either seq or pipe.
In contrast to the InpTrans for the pipelined master,

this transformation is not only a combinatorial circuit

but a state-representing extension to the master con-
taining the newly introduced configuration parts. Thus,
we describe the InpTrans box by a next state function
dInpTrans and denote its output function by InpTrans
which is defined afterwards.

Definition 11 (Input Transformation) Given a mas-
ter mburst supporting burst transfers. Let inp =
(startreq, hreq, rdata, rdy, grant) denote its inputs
with hreq = (hwr, haddr, hwdata, hbst, hbsize) and
let mx denote the master which is extended. Moreover,
let done = (bsize = 0) and

bupd =

rdy ∧ ¬bfst : x = pipe

rdy ∧ (state = data) : x = seq

Then we define dInpTrans by:

dInpTrans (bst, bsize, bfst) inp = let

bfst ′ =


1 : startreq ∧ ¬mx.busy

∧ hbst ∧ ¬(grant ∧ rdy)
0 : rdy ∧ grant

bfst : otherwise

bst′ =


hbst : startreq ∧ ¬mx.busy

0 : bupd ∧ done

bst : otherwise

bsize′ =


hbsize : startreq ∧ ¬mx.busy

bsize− 1 : bupd ∧ bst ∧ ¬done

bsize : otherwise
in

(bst′, bsize′, bfst ′)

The outputs generated by the InpTrans box are spec-
ified by the InpTrans function defined in the following.

Definition 12 (Input Transformation Signals)
Let (bst, bsize, bfst) denote the current
state of the InpTrans box and let inp =
(startreq, hreq, rdata, rdy, grant) denote its inputs
with hreq = (hwr, haddr, hwdata, hbst, hbsize).
Additionally, let mx denote the master which is
extended, done = (bsize = 0), and

bupd =

rdy ∧ ¬bfst : x = pipe

rdy ∧ (state = data) : x = seq

Moreover let nextbst be a shorthand for bupd ∧ bst ∧

¬done. Then, the output function InpTrans is given by:

InpTrans (mx, bst, bsize, bfst) inp = let
startreqburst = startreq ∨ nextbst

wrburst =

{
mx.wrout : nextbst

hwr : otherwise

addrburst =

{
mx.addrout + 1 : nextbst

haddr : otherwise

in
(startreqburst , wrburst , addrburst)

Now, we can define the master supporting burst trans-
fers based on a previous master and the presented input
transformation.

Definition 13 (Master for Burst Transfers) Given a
master mburst = (mx, bst, bsize, bfst) and the transition
function dMx for x either seq or pipe. Moreover, let
inp = (startreq, hreq, rdata, rdy, grant) denote its
inputs with hreq = (hwr, haddr, hwdata, hbst, hbsize).
Then, the burst master is defined by the following tran-
sition function.

dMburst mburst inp = let
(startreqburst , wrburst , addrburst) =

InpTrans (mx, bst, bsize, bfst) inp
m′x = dMx mx (startreqburst , wrburst , addrburst ,

hdata, grant, rdy)
in

(m′x, dInpTrans (bst, bsize, bfst) inp)

Finally, we specify the output transformation. Except
for the busy and bdataupd outputs, the outputs remain
the same as for the previous masters. The signal to up-
date the burst data is given by bdataupdt = bupdt∧bstt∧
¬donet where done denotes bsize = 0 as before. The
busy signal has to be adapted for the case a burst access
is in progress. Usually the busy signal turns off at the end
of a request if the bus is still granted, i. e. at time d(i) for
a single non-burst transfer. The busy signal is modified
such that it remains active during a burst transfer. Thus
we obtain busyt = mx.busyt ∨ (bstt ∧ ¬done). For all
other outputs, TransOut is just the identity.

In the remaining of this section, we argue about the
local correctness of the presented construction. The local
correctness of the master supporting burst transfers is
again split into the correctness regarding the host inter-
face and regarding the bus. The correctness with respect

to the host interface is very similar to the previous ones,
extended by the correct sampling of the wdata for the
sub-transfers during a burst request. Since the sequential
or pipelined master can only update all host data registers
at the same time, the transition function of the burst
master simulates a completely new transfer with the
same wr, the increased addr, and the new wdata.

As before, the local correctness with respect to the
bus is the more interesting case. Here we spilt cases
on burst transfers: (i) in case of a non-burst transfer,
the master has to obey the local correctness statement
from the sequential (Lemma 4) or pipelined (Lemma 8)
master. (ii) in case of a burst transfer, it has to simulate
a sequence of locally correct single transfers as defined
in Definition 14.

Definition 14 (Local Master Correctness) Given
a master mburst , a transfer trburst(i), and a burst
host request hreqtrt(i) on mburst . Moreover, let
0 < n ∧ n < bsize(i) − 1. In order to increase
readability, we omit the transfer index i in the
following. Then, we define the predicate indicating local
burst correctness lbcorr(mburst , trburst , hreqtrt) by:

lbcorr(mburst , trburst , hreqtrt) holds iff either
mburst 6= 〈gnt〉u or bst = 0 or mburst = 〈gnt〉u,
bst = 1, and

lcorr
(
mburst , (1, gnt, g, a(0), a(1)),

(hwrtrt, haddrtrt, hwdatatrt)
)
∧

lcorr
(
mburst , (1, gnt, a(n− 1), a(n), a(n + 1)),

(hwrtrt, haddrtrt + n, hwdataa(n−1))
)
∧

lcorr
(
mburst , (1, gnt, a(bsize− 2), a(bsize− 1), d),

(hwrtrt, haddrtrt + bsize− 1, hwdataa(bsize−2))
)

Finally, the argumentation about the global correctness
is straight forward analogous to the global correctness
of the sequential or pipelined design. As for the local
correctness one splits cases if the requested transfer
is a single or a burst transfer. For single transfer the
global correctness of the corresponding design holds.
For a burst transfer the local correctness statement from
Definition 14 is lifted to the global level the same way
as done for the sequential or pipelined design.

VI. CONCLUSION AND FUTURE WORK

As on-chip communication systems have become
more complex to meet performance requirements, their
formal verification has become infeasible in reason-
able time and effort with current post-hoc verification
methodologies. Our new approach tries to resolve this
by introducing a new methodology to design and ver-
ify communication protocols in an algebraic fashion.
This approach is based on correctness-preserving or
correctness-inheriting transformations to a simpler de-
sign providing enhanced functionality.

The results presented here are only initial work. Be-
sides tackling more transformations, future work will
also have to address the following issues. First, we
need to find a more systematic method for applying
transformations. For example, the pipelined design pre-
sented here is obtained by a parallel composition of two
sequential masters and imposing extra constraints of the
inputs (Definition 7) and combining the outputs in an
appropriate way (Definition 9). In this initial work these
constraints were devised by hand, but we want to provide
a more systematic approach to this, either through a
formal analysis such as model checking or by adopting
a notational structure that makes them evident.

Second, we will need to devise a range of refinement
relations to link different abstraction levels of a model;
either temporal, logical, or a combination of them. We
need to find methods to reason about the relationships
between communications at an implementation level,
e. g. register transfers, and a more abstract, system level.
This is needed, for example, to relate an atomic, high-
level transfer to non-atomic communications possibly
spread over space and time on a cycle-accurate register
transfer level.

Third, we must address the problem of incorporat-
ing methods to tackle problems evolving from high-
performance aspects on gate-level or even physical lay-
ers. For example, a desirable goal is to develop a method
to argue about low-level timing constraints or distributed,
asynchronous clocks within our methodology.

Finally, we emphasise that our main interest for future
development of these ideas is not to analyse AMBA or
standard system-on-chip bus protocols. Our aim is de-

velop a framework for the design and formal verification
of scalable, high-performance communication platforms
that allow customisation.

REFERENCES

[1] AMBA Specification Revision 2.0, ARM, 1999. [Online].
Available: http://www.arm.com

[2] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A
Proof Assistant for Higher-Order Logic, ser. LNCS. Springer,
2002, vol. 2283.

[3] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. R.
Marco Pistore, R. Sebastiani, and A. Tacchella, “NuSMV 2:
An open source tool for symbolic model checking,” in CAV
’02. Springer-Verlag, 2002, pp. 359–364.

[4] S. Tverdyshev, “Combination of Isabelle/HOL with automatic
tools,” in FroCoS 2005, Vienna Austria, ser. LNCS, vol. 3717.
Springer, 2005, pp. 302–309.

[5] A. Roychoudhury, T. Mitra, and S. Karri, “Using formal tech-
niques to debug the amba system-on-chip bus protocol,” Design,
Automation and Test in Europe Conference and Exhibition,
2003, pp. 828–833, 2003.

[6] H. Amjad, “Model checking the AMBA protocol in HOL,”
University of Cambridge, Computer Laboratory, Tech. Rep.
UCAM-CL-TR-602, Sep. 2004. [Online]. Available: http:
//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-602.pdf

[7] J. Schmaltz and D. Borrione, “Towards a formal theory of
on chip communications in the acl2 logic,” in ACL2 ’06:
Proceedings of the sixth international workshop on the ACL2
theorem prover and its applications. New York, NY, USA:
ACM, 2006, pp. 47–56.

[8] F. Müffke, “A better way to design communication
protocols,” Ph.D. dissertation, University of Bristol,
May 2004. [Online]. Available: http://www.cs.bris.ac.uk/
Publications/Papers/2000199.pdf

[9] C. Seger, “The design of a floating point unit using the
integrated design and verification (idv) system,” in Sixth Inter-
national Workshop on Designing Correct Circuits: Participants’
Proceedings, M. Sheeran and T. Melham, Eds., March 2006.

[10] M. Aagaard, B. Cook, N. A. Day, and R. B. Jones, “A frame-
work for microprocessor correctness statements,” in CHARME
’01: Proceedings of the 11th IFIP WG 10.5 Advanced Research
Working Conference on Correct Hardware Design and Verifica-
tion Methods. London, UK: Springer-Verlag, 2001, pp. 433–
448.

[11] P. Chatterjee, H. Sivaraj, and G. Gopalakrishnan, “Shared
memory consistency protocol verification against weak memory
models: Refinement via model-checking,” in CAV ’02: Proceed-
ings of the 14th International Conference on Computer Aided
Verification. London, UK: Springer-Verlag, 2002, pp. 123–136.

[12] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic, “Ab-
straction and refinement in protocol derivation,” in CSFW ’04:
Proceedings of the 17th IEEE workshop on Computer Security
Foundations. Washington, DC, USA: IEEE Computer Society,
2004, p. 30.

	TechReportCover.pdf
	TechReportRR0805

