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ABSTRACT
In this paper we propose a novel algorithm for tracking
people in highly dynamic industrial settings, such as con-
struction sites. We observed both short term and long term
changes in the environment; people were allowed to walk
in different parts of the site on different days, the field of
view of fixed cameras changed over time with the addition
of walls, whereas radio and magnetic maps proved unsta-
ble with the movement of large structures. To make things
worse, the uniforms and helmets that people wear for safety
make them very hard to distinguish visually, necessitating
the use of additional sensor modalities. In order to address
these challenges, we designed a positioning system that uses
both anonymous and id-linked sensor measurements and ex-
plores the use of cross-modality training to deal with envi-
ronment dynamics. The system is evaluated in a real con-
struction site and is shown to outperform state of the art
multi-target tracking algorithms designed to operate in rel-
atively stable environments.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-Time and Embedded Systems

General Terms
Algorithms, Experimentation, System

Keywords
Wireless Sensor Networks; Tracking

1. INTRODUCTION
To date, the majority of positioning systems have been de-

signed to operate within environments that have long-term
stable macro-structure with potential small-scale dynamics.
These assumptions allow for stable maps to be produced and
gradually aged with the incorporation of minor variations.
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Figure 1: The WiFi signal strength received by the worker in
circle is affected by the installation of a new wall (a) Before
the installation, there are direct WiFi signals from the access
point (shown as triangle) to the worker, (b) The worker
is blocked by the new wall, which affects the propagation
properties of the WiFi signals as shown in the graph above.

For example, in an indoor environment, the positions of walls
and floors remain constant over time, whereas positions of
furniture can change from day to day.

In this work, we tackle the problem of accurate localiza-
tion in construction sites which are characterized by rapid
large-scale changes in structure. For example, Fig. (1) shows
the effect of a wall being installed in the middle of one of
our tracking experiments. The received signal strength of a
worker’s smartphone from one of the access points dropped
considerably after the installation of the wall, in a matter of
minutes. The field of view of the camera also changed, not
allowing us to directly visually track the people behind the
wall. In addition to these short changes, during our experi-
ments we observed much more significant long term changes
(Fig. (2), Fig. (6)); within periods of a few weeks, the
scene changed dramatically, staircases or entire floors were
added, obfuscating the view to the first floors and creating
additional layers where people needed to be tracked.

Currently, there is no system that allows for workers to
be tracked reliably and robustly during all phases of con-
struction. As a case in point, consider the challenges in a
unified positioning system that works equally as well during
deep foundation excavation through to an almost complete
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Figure 2: We have conducted tracking experiments in a construction site setting: (a) the construction site on day 1, (b)
the construction site on day 36, (c) floor plan of the site. The site changes rapidly from day to day, precluding the use of
positioning systems which rely on stable, long-term maps.

multi-storey building. At different points in time, the per-
formance of different techniques alters, with some improving
and some degrading. The site itself changes rapidly from day
to day, precluding the use of systems which rely on stable,
long-term maps (e.g. WiFiSLAM) for positioning.

Our aim is to provide a system that can monitor the lo-
cation of workers to indicate working hazards (e.g. red and
green zones), which can be individually tailored. For exam-
ple, a steel-worker has the training to operate in areas which
might not yet be poured with concrete whilst forming the
steel rebar. Conversely, a general construction worker should
not venture into regions where steel-work has not been com-
pleted. This level of safety requires positioning precision
beyond the majority of indoor positioning solutions, with
desired sub-meter accuracy.

In addition, for such a positioning system to be used and
adopted in the construction industry, it should be low-cost,
exploit existing infrastructure and not require manual tun-
ing and calibration. We note that a pervasive feature of con-
struction environments is the use of site-wide closed-circuit
television (CCTV) to provide security. CCTV alone is not
useful for positioning, as we have to identify what each ob-
ject in the video sequence actually is. This is especially
challenging for low-resolution, grainy footage typically ob-
tained from CCTV, which is unable to accurately distin-
guish between different people based on facial recognition.
Instead however, we note that the task of identifying mov-
ing objects from a video sequence is a much easier problem.
To tackle the identification problem we use devices carried
by the workers which emit radio signals (WiFi/BTLE) and
capture inertial measurements to assign identities to each
trajectory. This is complicated by the fact that the visual
detector is affected by occlusions, changing light conditions
and challenges in detection when targets coalesce e.g. if
workers are standing together.

We further note that when we have identified a trajec-
tory and linked a set of visual observations with a set of
radio and inertial measurements with high probability, we
can then use such a trajectory to learn the parameters of all
the components in the system. For example, we can learn
the radio model, which can help calibrate the system for
when the camera is occluded. Individuals also have differ-
ent gait lengths and whilst a worker is being tracked by the
high-resolution vision system, we can exploit this to learn
the optimal step-length. This provides us with better mea-

surements when a user steps behind a wall, disappearing
from the camera’s view. Lastly, we can also learn positions
of workers that can actually be observed by a particular
camera. This occlusion map is useful for filtering out im-
possible trajectories. In essence, we are exploiting the fact
that different sensing technologies have uncorrelated failure
modes to provide a robust, adaptive positioning framework.
To summarize, the major contributions of this work are as
follows:

1. A positioning framework explicitly designed for rapidly
changing environments.

2. A technique for cross-modal sensor parameter learning.

3. A CCTV and smartphone based positioning system.

4. Extensive experiments in a real construction site.

2. PROBLEM DEFINITION
In this paper we tackle the problem of tracking people

in environments equipped with one or more stationary cal-
ibrated cameras. We assume that people that desire to
be tracked carry a mobile device, such as a smartphone
or customized worker safety equipment, and move freely in
and out of the field of view (FOV). We divide time into
short time intervals, and at each time t we receive a num-
ber of camera detections of the moving objects denoted as
Ct = {c1t , c2t , ..., cjt , ...}, 1 ≤ j ≤ |Ct|. A camera detection
cjt represents the bounding box of the jth object generated
by a foreground detector as shown in Fig. (4). Note that
at time t we could be receiving camera detections not only
from people but also from other moving objects (i.e. ve-
hicles); false positive detections are also received due to il-
lumination changes, shadows, etc. In order to reduce the
number of false positive detections and concentrate on de-
tecting only people we apply a head detector to the output
of a foreground detector.

At time t we also receive a collection of radio measure-
ments Rt = {rkt }, 1 ≤ k ≤ K where K is the total number
of people with mobile devices who wish to be tracked and
rkt = [rss1, ..., rssm]kt is a vector of received signal strength
(RSS) measurements of the kth device from m access points.
Additionally, we assume that each mobile device is equipped
with an inertial measurement unit (IMU) containing an ac-
celerometer and a magnetometer. This allows us to generate
at time t a collection of inertial measurements denoted as
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Figure 3: Overview of the proposed system architecture.

St = {skt } where skt = [bkt , d
k
t , θ

k
t ] is a vector that contains

the step indicator, step-length and heading of the kth person
respectively. Each index k uniquely identifies a person and
corresponds to a unique MAC address of the mobile device.

The problem to solve is the following : Given anonymous
camera detections C1:t, id-linked radio measurements R1:t

and id-linked inertial measurements S1:t estimate the trajec-
tories of all users carrying mobile devices and moving inside
the camera FOV.

3. SYSTEM OVERVIEW
An overview of the proposed system architecture is shown

in Fig. (3). The Positioning and Identification filter obtains
anonymous camera detections, radio and inertial measure-
ments from multiple people and is responsible for solving
three problems. Firstly, it establishes the correspondences
of camera detections across frames, that is, links together
anonymous camera detections that correspond to the same
person. Secondly, it finds the mapping between anonymous
camera detections and id-linked smartphone (radio and step)
measurements. Finally, it identifies and estimates the posi-
tions of multiple targets.

The Adaptive Learner uses the output of the filter in com-
bination with the input observations, and performs cross-
modality training. Specifically, it configures the foreground
detector’s internal parameters taking into account available
motion measurements. In addition, it tunes the step-length
estimation method by leveraging reliable camera measure-
ments. Finally, it exploits camera measurements to learn
the radio model; radio, magnetic and occlusion maps can
also be learned which can be used to further improve the
system’s accuracy.

The remaining components of the system are existing mod-
ules which pre-process raw sensor data and transform them
to camera, step and radio measurements.

4. MULTIPLE TARGET TRACKING
In this section we provide a brief overview of previous

work on multiple target tracking (MTT). A more detailed
description of MTT algorithms can be found in [2].

4.1 Introduction to Multiple Target Tracking
Under the general MTT setup a number of indistinguish-

able targets are assumed to move freely inside the field of
view; they can enter and exit the FOV at random times.

D1
D3

D4

D2

Figure 4: Camera detections generated by our system: a)
people are detected correctly by a head detector applied to
the output of the foreground detector (D1 and D2), b) Illu-
mination variations create false positive detections (D3). In
this case the use of the head detector allows us to discard
this measurement, c) not all moving people are detected, the
dotted bounding box (D4) shows a case of missing detection.

The system receives sensor data about the position of the
targets periodically which are noisy, include false alarm mea-
surements (i.e. background noise or clutter) and occur with
some detection probability. Each target follows a sequence
of states (e.g. positions) during its lifetime called track.
The main objective of MTT is to collect sensor data con-
taining multiple potential targets of interest and to then
find the tracks of all targets and filter out the false alarm
measurements. If the sequence of measurements associated
with each target is known (i.e. id-linked measurements)
then the MTT reduces to a state estimation problem (e.g.
distinct Kalman/particle filters can be used to follow each
target). However, when the target-to-measurements associ-
ation is unknown (for example, anonymous measurements
from cameras, radars and sonars are used) the data associa-
tion problem must be solved in addition to state estimation.
Essentially, the data association problem seeks to find which
measurements correspond to each target.

MTT algorithms handle both the data-association and the
state-estimation problems and they are generally divided
into two categories a) Unique-neighbor data association and
b) All-neighbor data association. The former methods al-
low at most one measurement to be used to update a given
track and they usually do not permit a measurement to be
used more than once. On the other hand, the all-neighbor
data association methods use multiple measurements to up-
date the track estimates. A representative algorithm from
the first category is the popular multiple hypothesis track-
ing (MHT) algorithm [20, 1]. MHT is a deferred decision
logic method which maintains multiple track hypotheses.
In MHT alternative data association hypotheses are formed
whenever there are measurement-to-track ambiguities. The
measurement-to-track association decision is postponed un-
til enough measurements are collected that can be used to re-
solve the association ambiguities. A well known all-neighbor
data association method is the joint probabilistic data asso-
ciation (JPDA) filter [8]. JPDA approximates the posterior
distribution of the targets as separate Gaussian distribu-
tions for each target. At each time step, instead of finding a
single best association between measurements and tracks,
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Figure 5: Graphical models for the multiple target tracking problem. Shaded nodes indicate observations and clear nodes
indicate hidden variables. Nodes with dashed lines use particle filtering estimation. Dashed arrows indicate that the association
between target states and measurements must be recovered before updating a target with a specific measurement. (a) Standard
particle filter: uses sampling to estimate the joint posterior distribution of states and data associations (P (Zt|C1:t)), (b) In Rao-
Blackwellized particle filter (i.e. RBMCDA) the data-association is decoupled from the state estimation. The filter samples
only from the data-associations distribution P (λt|C1:t). The distribution of target states conditioned on the association
P (Xt|λt, C1:t) is calculated analytically. (c) Proposed approach: id-linked radio (Rt) and inertial (St) measurements are
incorporated to RBMCDA in addition to the camera detections (Ct). The data association problem is changed compared to
(a) and (b) as now we need to recover the association between id-linked measurements and tracks in addition to the anonymous
measurements-to-tracks association.

JPDA enumerates all possible associations and computes
association probabilities. The state of each target is then
updated by every measurement with weights that depend
on the association probabilities. The main disadvantage of
JPDA is its tendency towards track coalescence for closely
spaced targets.

Particle filters (i.e. sequential Monte Carlo methods) have
also been used extensively in MTT problems [9] and are
typically considered as generalizations of the MHT. Particle
filters represent the data association and state posteriors as
a discrete set of hypotheses (i.e. particles) and allow for
non-linear state-space models.

4.2 Rao-Blackwellized Particle Filtering
In Bayesian inference, the objective is to compute the

posterior distribution P (z1:t|y1:t) where z1:t are the hidden
states at times 1 to t and y1:t are the received measurements
up to time t. Suppose we can decompose the hidden state
zt into two parts: a root variable λt and a leaf variable xt
as shown below:

P (x1:t, λ1:t|y1:t) = P (x1:t|λ1:t, y1:t)P (λ1:t|y1:t) (1)

If we can compute the conditional posterior distribution
P (x1:t|λ1:t, y1:t) analytically, then we only need to sample
from P (λ1:t|y1:t) using the particle filter. Thus, the main
idea of Rao-Blackwellized particle filtering (RBPF) [6, 5] is
to reduce the number of variables that are sampled by evalu-
ating some parts of the filtering equations analytically. This
reduction makes RBPF computationally more efficient than
the standard particle filter, especially in high dimensional
state-spaces.

The Rao-Blackwellized Monte Carlo Data Association fil-
ter (RBMCDA) [22, 23] is a sequential Monte Carlo MTT
method that uses Rao-Blackwellized particle filtering (RBPF)
to estimate the posterior distribution of states and data asso-
ciations efficiently. More specifically, instead of using a pure
particle representation of the joint posterior distribution of

states and data associations (see Fig. (5a)), RBMCDA pro-
ceeds by decomposing the problem into two parts: a) es-
timation of the data-association posterior distribution and
b) estimation of the posterior distribution of target states.
The first part is estimated by particle filtering and the sec-
ond part is computed analytically using Kalman filtering
(Fig. (5b)). The aforementioned decomposition is possible,
since in RBMCDA the dynamic and measurement model of
the targets are modeled as linear Gaussian conditioned on
the data association thus can be handled efficiently by the
Kalman filter.

A high level overview of the RBMCDA algorithm is shown
in Alg. (1). The algorithm maintains a set ofN particles and
each particle corresponds to a possible association of anony-
mous measurements (yt) to tracks. Each particle maintains
for each target its current state xt (e.g. location) and state
uncertainty (i.e. posterior distribution p(xt|y1:t)). In the
first step (line 4), a Kalman filter is used to predict the next
state of a target based on its previous state (p(xt|y1:t−1)).
Then, the algorithm considers associating each anonymous
measurement with each one of the targets in the particle
and estimates the probability of each candidate association
event (lines 5-6). The association events are modeled with
the association indicator λt (e.g. (λt = 0) =⇒ clutter as-
sociation at time t, (λt = j) =⇒ target j association at
time t, etc). The association probability π̂j for target j is
computed from the measurement likelihood p̂(yt|λt) and the
prior probability of data associations p(λt|λt−1). By sam-
pling the resulting importance distribution, the algorithm
selects only one of the candidate associations (line 7) and up-
dates the state of the respective target with the anonymous
measurement (line 8). This is repeated for each anonymous
measurement (e.g. for each camera detection in the camera
frame). The particle’s weight is then updated taking into
account its previous weight and the probabilities of selected
associations (line 9). Once all particles have been updated
and their weights normalized (line 11), they are re-sampled
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based on their normalized weights (line 12). At the end of
each iteration, the positions of the targets are estimated as
a weighted average (i.e. mixture of Gaussians) across all
particles (line 13).

Note that the algorithm above allows us to enforce data
association constraints. For instance, we can express that
each track is updated by at most one visual measurement,
by suitably modeling association priors in line 5.

1: Input: N particles, a measurement vector yt.
2: Output: p(xt, λt|y1:t): the joint distribution of target

states and target-to-measurement associations at time t
given measurements up to time t.

3: for each particle i ∈ (1..N) do
4: For all targets run Kalman filter prediction step.
5: Form the importance distribution as:

For all association events j calculate the unnormalized
association probabilities:

π̂
(i)
j = p̂(yt|λ(i)

t = j, y1:t−1, λ
(i)
1:t−1)p(λ

(i)
t = j|λ(i)

1:t−1)
6: Normalize the importance distribution.

7: Draw new λ
(i)
t from the importance distribution.

8: Update target λ
(i)
t with yt using Kalman correction

step.
9: Update particle weight.

10: end for
11: Normalize particle weights.
12: Resample.
13: Approximate p(xt, λt|y1:t) as:

p(xt, λt|y1:t) ≈
∑N

i=1 w
(i)
t δ(λt − λ

(i)
t )N (xt|M (i)

t , P
(i)
t )

where (M
(i)
t , P

(i)
t ) are the means and covariances of the

target states of the ith particle.

Algorithm 1: A high-level description of the RBMCDA filter

The existing RBMCDA algorithm is designed to work
with anonymous observations. In the next section we point
out how we extend it in order to exploit radio and inertial
observations that are inherently linked to unique device IDs
(i.e. MAC addresses).

5. PROPOSED APPROACH
We are now in a position to describe how we extend the

RBMCDA framework to address the identification and track-
ing problem in a construction site setting. The key difference
here is that we introduce id-linked observations in addition
to the anonymous camera observations (Fig. (5c)). This im-
pacts a number of steps in the algorithm above as explained
in this section.

5.1 State Prediction and Update
As in the original algorithm, each particle uses a set of

Kalman filters to track targets; however, in our case, we are
not interested in tracking all targets within FOV; we only
track people equipped with mobile devices and we continue
to do so when they temporarily come out of the FOV. We
extend the framework in [22, 23], in order to use id-linked
observations in the prediction and correction steps of the
Kalman filter. In particular, we use inertial sensor measure-
ments to predict the next state of a person (instead of only
relying on the previous state as in line 4). Furthermore, we
use WiFi/BTLE and camera measurements to correct the

person’s state (instead of only anonymous camera measure-
ments as in line 8).

More specifically, the target’s dynamics in our system are
modeled by the following linear equation:

xt = Ftxt−1 +Bt

[
dt cos(θt)
dt sin(θt)

]
+ wt (2)

where t denotes the time index, xt = [x, y]T is the 2-D
state vector of the target’s position, Ft is the state tran-
sition matrix and the pair (dt,θt) represents the target’s
step-length and heading respectively. Finally, Bt is a con-
trol input indicating whether a step has been taken or not
and wt is the process noise which is assumed to be normally
distributed with mean zero and covariance matrix Q (i.e.
wt ∼ N (0, Q)). As we already mentioned in Section 2, our
objective is to track all people that carry mobile devices.
Thus, once we associate a camera measurement to a per-
son ID (i.e. device ID) , Eqn. (2) is used as the predictive
distribution of a Kalman filter to model the motion of the
identified person using his/her inertial measurements.

Compared with existing techniques [19] that use heuris-
tics to model the human motion, we will show in the eval-
uation section that the use of inertial measurements in our
approach results in more accurate tracking. We should note
here that Eqn. (2) is event-based (i.e. based on step events)
and events among the different targets are inherently not
synchronized. In other words, the steps of different people
do not take place at the same time. However, because we
need to know the predicted locations of all targets at a spe-
cific time, we process Eqn. (2) in a time-based manner. We
run the prediction equation for all targets on fixed inter-
vals (i.e. every second) and during that time we find the
number of steps taken by each person and we calculate the
step-length accordingly. Incomplete steps are handled by
accounting only for a percentage of the step-length.

Unlike the original RBMCDA filter that only uses anony-
mous observations to update the target’s state (line 8), in
our system a measurement yt at time t is a vector containing
an anonymous location measurement (2D image coordinates
transformed to the world plane via a projective transforma-
tion) from the camera system and multiple id-linked radio
signal strength measurements from people’s mobile devices.
Thus, the state vector xt of a target is related to the system
measurements yt according to the following model:

yt = f(xt) + vt =


xt

RSS1 (xt))
RSS2 (xt))

...
RSSm (xt))

+ vt (3)

where f is a non-linear function that translates the state
vector to the measurement domain and vt is the measure-
ment noise which follows a normal distribution with zero
mean and covariance matrix R (vt ∼ N (0, R)). The func-
tion RSSi is given by:

RSSi(xt) = Pi − 10nilog10‖Oi − xt‖2 , i ∈ [1..m] (4)

where m is the total number of WiFi/BTLE access points
and RSSi(xt) is the expected signal strength at location xt
with respect to transmitter Oi. Pi is the received power at
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Figure 6: Radio and magnetic maps of the construction site: (a) WiFi map obtained during the first day of the experiment
showing the RSS with respect to one access-point (circle denotes the position of the AP), (b) WiFi map obtained 36 days later
for the same AP which was moved from its initial location because the ground floor had to been built, (c) magnetic map on
day 1, (d) magnetic map on day 36. The environment constantly changes which makes the task of localization and tracking
very challenging.

the reference distance of 1 meter and ni is the path loss ex-
ponent. In order to meet the requirements of the RBMCDA
filter, i.e. calculate analytically the posterior distribution of
the target states with a Kalman filter, Eqn. (3) must be lin-
ear Gaussian. The non-linearity of the measurement model
in our case is handled via the unscented transformation [10].
Thus, the state estimation can be computed analytically us-
ing the unscented Kalman filter (UKF) and each particle
contains a bank of UKFs; one filter for each target.

5.2 Tracking and Identification
In this section, we show how we modified the association

steps in lines 5-7 to leverage id-linked measurements.
Suppose for instance that at time t we receive camera

detections Ct = {cjt}, 1 ≤ j ≤ |Ct| and radio measurements
Rt = {rkt }, 1 ≤ k ≤ K whereK is the number of people with
a mobile device. Each one of the |Ct| anonymous camera
detections could be one of the following three types: (a) a
person with a device, (b) a person without a device or (c)
clutter (e.g false camera detection caused by illumination
changes). Our objective is to associate the type (a) camera
detections with the correct radio measurements. In order to
do that we follow the following procedure. We enumerate
all possible combinations Ω = |Ct| ×K between the camera
detections and the id-linked measurements and we create
new measurements yi

t, i ∈ [1..Ω] with the following structure:

yi
t = {cmt , rjt}, m ∈ [1..|Ct|], j ∈ [1..K] (5)

Now, a measurement yit which contains a correct association
will have the following property RSS(cmt ) ≈ rjt for the cor-
rect (m, j) pair, where RSS() is the function in Eqn. (4).
In other words, if a person is detected by the camera, then
his/her radio measurements (i.e. received signal strength)
at that location should match the predicted radio measure-

ments at the same location. Camera detections of type
(b) and (c) would normally not exhibit the same property.
As we have already mentioned the association probability
is computed as the product of the measurement likelihood
and association prior. The measurement likelihood of as-
sociating yi

t with target j, p̂(yi
t|λt = j) is computed as

p̂(yi
t|λt = j) = N (yi

t; ŷt, Vt) where ŷt is the expected mea-
surement of target j at the predicted state and Vt is the
innovation covariance obtained from the UKF.

Given m simultaneous measurements within a scan the
predictive distribution of data associations can be defined
as an mth order Markov-chain p(λm

t |λm−1
t , ..., λ1

t ) which al-
lows us to enforce certain association restrictions. In our
system this predictive distribution is defined (i.e. assigns
zero probability to unwanted events) so that the following
conditions are met:

1. A track can be updated with at most one measure-
ment.

2. A measurement can only be used to update at most
one track.

3. An already established track (with a specific sensor
ID) can only be updated with a measurement of the
same sensor ID.

4. Once a camera detection is assigned to a track all other
measurements which include the latter camera detec-
tion are classified as clutter.

5. A new target is not born if there is an existing target
with the same sensor ID as the newborn target. This
means that each particle maintains only targets with
unique sensor IDs.
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Some of the above restrictions can be relaxed depending on
the application scenario. For instance, when two people are
close to each other they can be detected as one object. In
this case the 4th restriction can be relaxed in order to allow
two tracks (i.e. two people with different sensor IDs) to be
updated with the same camera detection.

To summarize, a particle represents states only for people
carrying mobile devices - not for all people in the field of
view. Inertial data of each person’s device are used to pre-
dict their next state. Anonymous camera data are associ-
ated with a person’s track only if they agree with both their
inertial and radio data. Finally, we should note here that
when at some time-step a particular target does not receive
radio measurements then if the target is a new target the
identification and creation of a new track is postponed until
radio measurements are available. Otherwise, if the target
is an existing target, tracking proceeds by only considering
the motion model of the target (Eqn. (2)). A high-level
work-flow of the proposed technique is shown in Alg. (2).

1: Input: N particles, camera (Ct), radio (Rt) and inertial
(St) measurements.

2: Output: p(xt, λt|y1:t).
3: Apply Eqn. (5) to Ct and Rt to create yt.
4: for each measurement m ∈ (1..|yt|) do
5: for each particle i ∈ (1..N) do
6: For all targets in i run prediction step (Eqn. (2)).
7: Form the importance distribution and draw new as-

sociation event (λ
(i)
t ).

8: Update target λ
(i)
t with m using UKF correction

step. Update particle weight.
9: end for
10: end for
11: Normalize particle weights.
12: Resample.
13: Approximate p(xt, λt|y1:t) as in Algorithm 1

Algorithm 2: A high-level work-flow of the proposed system.

6. CROSS-MODALITY LEARNING
In this section we will show how our framework is capa-

ble of cross-modality learning, i.e. how a subset of sensor
modalities is used by the Adaptive Learner (Fig. (3)) to
train the internal parameters of the system.

6.1 Track Quality Estimation
As we have briefly mentioned in the introduction the out-

put (i.e. track) of our Positioning and Identification filter
can be used to learn the parameters of various internal com-
ponents of our system. Once we have identified a track (i.e.
we have linked a visual trajectory with radio and inertial
measurements), we can use it to learn, for example, the
radio propagation model since this track contains all the
necessary information (i.e. location-RSS data points) for
this purpose. In a similar manner we can learn radio and
magnetic maps, train the foreground detector and improve
the step-length estimation. All the these will be discussed
in more detail later in this section. However, in order to
achieve all of the above objectives, we first need to assess
the quality of output tracks to make sure that they qualify
for the training process. Thus, the goal of the Track Quality
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Figure 7: Track quality estimation: The figure shows the
quality score of 16 tracks along with their RMSE. Tracks
with quality score above the horizontal dotted line are con-
sidered qualifying and can be used for cross-modality train-
ing

Estimation phase, is to find candidate tracks which can be
used for cross-modality training.

Let us assume that at time-step (or scan) t we receive m
measurements {y1t , y2

t , ..., y
m
t }. In addition y0

t is defined for
each time-step to be a dummy variable indicating the pos-
sibility of a missed detection. Then the incremental quality
score of a track j during this time-step is defined as:

∆Lj
t =



log

(
p̂(yit|λt = j)pd
p̂(yi

t|λt = 0)

)
, if ∃ i ∈ [1..m] s.t λt = j

log (1− pd) , otherwise

where the quantity p̂(yi
t|λt = j) is the likelihood of the mea-

surement assigned to track j. The term p̂(yi
t|λt = 0) =

p(clutter) is the likelihood of the measurement originating
from clutter which has a uniform probability density over
the measurement space of volume V (i.e. p(clutter) = V −1)
and finally pd is the probability of detection. Then, the
cumulative quality score of track j is given by:

Qj =

T∑
t=1

∆Lj
t (6)

where T is the total length of the track. As we can see the
quality score Q of a track penalizes the non-assignments due
to missing detections while favoring the correct measurement-
to-track associations. Fig. (7) shows that the quality score
is negatively correlated with the root mean square error. Fi-
nally, in order to mark a track as a high confidence track that
qualifies for cross-modal training its quality score is tested
against a pre-determined threshold QTh. If Qj ≥ QTh then
the track is qualified (i.e. high quality track) and it can
be used for cross-modality training, otherwise the track is
rejected (Fig. (7)).

6.2 Foreground Detector Training
The mixture of Gaussians (MoG) [27] foreground detec-

tion which is used by our system is one of the most popular
approaches for detecting moving targets from a static cam-
era. This approach maintains a statistical representation
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of the background and can handle multi-modal background
models and slow varying illumination changes.

In the original algorithm the history of each pixel is mod-
eled by a mixture of K (typically 3-5) Gaussian distribu-
tions with parameters (wk, µk, σkI) for the mixture weight,
mean and covariance matrix of the kth Gaussian compo-
nent. In order to find the pixels that belong to the back-
ground, the Gaussian distributions are ordered in decreas-
ing order according to the ratio (wk/σk); background pixels
exhibit higher weights and lower variances than the fore-
ground moving pixels. The background model is obtained

as B∗ = arg minB

(∑B
k=1 wk > Pb

)
where Pb is the prior

probability of the background. The remaining K − B∗ dis-
tributions represent the foreground model.

On the arrival of a new frame each pixel is tested against
the Gaussian mixture model and if a match is found the
pixel is classified as a background or foreground depending
on which Gaussian component it was matched with. If no
match is found the pixel is classified as a foreground and it is
added to the mixture model by evicting the component with
the lowest weight. When a pixel is matched, the weight of
that Gaussian component is updated using an exponential
weighting scheme with learning rate α as wt+1 = (1−α)wt+
α, and the weights of all other components are changed to
wt+1 = (1 − α)wt. A similar procedure is used to update
the mean and covariance of each component in the mixture.

The learning rate (α) controls the adaptation rate of the
algorithm to changes (i.e. illumination changes, speed of
incorporating static targets into the background) and is the
most critical parameter of the algorithm. Fast learning rates
will give greater weight to recent changes and make the al-
gorithm more responsive to sudden changes. However, this
can cause the MoG model to become quickly dominated by a
single component which affects the algorithm’s stability. On
the other hand slow learning rates will cause a slower adap-
tation change which often results in pixel misclassification.
Over the years many improvements have been suggested by
the research community that allow for automatic initializa-
tion and better maintenance of the MoG parameters [4].
More recent techniques [26, 25] address challenges like sud-
den illumination variations, shadow detection and removal,
automatic parameter selection, better execution time, etc .

In this section we propose a novel method for obtain-
ing the optimum learning rate α∗ of the foreground de-
tector using the high-quality tracks of our filter. Suppose
we are given a track Xj

1:T = {xj1, x
j
2, ..., x

j
T } of length T

where xjt , t ∈ [1..T ] denotes the state of the track at time
t. Since, both camera and inertial measurements could have
been used to estimate track Xj

1:T then its states xjt , t ∈ [1..T ]
are of two types: type (a) states that have been estimated
using camera and inertial measurements and type (b) states
that have been estimated only using inertial measurements.
A high-quality track ensures that Xj

1:T contains the right
mixture of type (a) and type (b) states and thus does not
deviate significantly from the ground truth trajectory. This
is possible, since propagating a track by only using inertial
measurements is accurate enough for short periods of time.
This key property of the inertial measurements allows us to
use a high quality track as if it was the ground truth tra-
jectory to train the learning rate of the foreground detector.
In other words the type (b) states of a high quality track
tells us that the target is moving to specific locations and

the foreground detector does not detect any target at those
locations.

The quality score of tracks (Eqn. (6)) can be used to find
the optimum learning rate by solving the following optimiza-
tion problem: Given a time window T find a learning rate
α∗ so that the cumulative quality score (CQS)

∑
j Qj of all

high quality tracks j ∈ T is maximized.

6.3 Optimizing the Step Length Estimation
Similar to the foreground detector training procedure, high

quality tracks can also be used to learn the step-length model
of each person being tracked. More specifically, the step-
length of a user can be obtained from the universal model
proposed in [21] as:

s = h(afstep + b) + c (7)

where s is the estimated step-length, h denotes the user’s
height, fstep is the step frequency obtained from the device’s
accelerometer and (a, b, c) are the model parameters. The
model above describes a linear relationship between step-
length and step frequency weighted by the user’s height.

Since the heights of people that we need to track are not
known a priori every time a new track is initialized that
contains a sensor ID which has not been recorded before,
the step-length estimator uses Eqn. (7) to provide an initial
estimate of the target’s step-length. At this point the height
value is set to the country’s average for men of ages between
25 and 34 years old. The parameters (a, b, c) have been pre-
computed with a training set of 8 people of known heights
using foot mounted IMUs.

As the tracking process proceeds high quality tracks are
obtained periodically for each target. From these tracks the
following IMU data are extracted for each step: a) step
frequency, b) step start-time and c) step end-time. The
start/end times of each step obtained from the IMU data
are then matched to camera detections in order to obtain
the position of the target during those times which are es-
sentially the step-lengths measured from the camera system.
Thus, for each target we obtain a collection of n calibration
points {Svi, f i

step}ni=1 where Svi is the visual step-length of

the ith step and f i
step its frequency obtained from the IMU.

The calibration set of each target is then used to train a
personal step-length model of the form Sv = w1fstep + w0

using the least squares fitting. Finally, the step-length esti-
mator can switch to the trained model once the least squares

goodness of fit
(
R2 = 1− residual sum squares

total sum squares

)
exceeds a pre-

defined threshold.

6.4 Radio Model/Maps Learning
High quality tracks are also being used in order to learn

the parameters of the radio propagation model which our
system uses as explained in Section 5. More specifically,
from a high quality track Xj

1:T = {xj1, x
j
2, ..., x

j
T } of length

T , the type (a) states are extracted. Let us call a type
(a) state as x̃jt ; this state has been estimated using camera,
radio and inertial measurements. Thus a collection of type
(a) states S = {x̃jt : j ∈ K, t ∈ T }n of length n where K
is the total number of people with smartphones and T is
the running time of our filter, contains n pairs of (location,
RSS) measurements. Now, this collection of (location, RSS)
points can be used to estimate the parameters of the log-
normal radio propagation model [24] given by Eqn. (4) for
each access point using least squares fitting.
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Figure 8: Cumulative distribution function of RMSE for
different learning setting.

At regular intervals we re-estimate the radio model pa-
rameters based on the most recent portion of collected data.
We should note here that the parameters of the radio model
are initialized empirically based on a number of studies for
different environments [24].

Additionally, we can follow similar procedure to learn ra-
dio, magnetic and occlusion maps. The radio and the mag-
netic maps can be combined and used for localization in
situations where the camera is occluded by an obstacle or
they can be used in conjunction with the radio model to
improve the system’s accuracy. Additionally, the occlusion
map, which is derived from the camera detections provides
statistics about the environment (i.e. frequent visited areas,
inaccessible areas, etc) which our system can use to improve
its performance. For instance, suppose that a particular per-
son is not detected by the camera during some time and our
filter reverts to IMU tracking; the occlusion map can help
us filter out impossible trajectories.

7. SYSTEM EVALUATION

7.1 Experimental Setup
In order to evaluate the performance of the proposed ap-

proach we have conducted two real world experiments in a
construction site (Fig. (2)). In both experiments we placed
two cameras with non-overlapping FOV at approximately
8 meters above the ground facing down. In the first ex-
periment the two cameras were covering an area of approxi-
mately 11m × 9m each and in the second experiment an area
of 14m × 4m each. The duration of each of the experiments
was approximately 45 minutes with the cameras recording
video at 30fps with a resolution of 960 × 720 px. We should
also mention here that each camera was processed separately
(i.e. we do not consider the multi-camera system scenario).
The area of the site was outfitted with 12 WiFi and 8 BTLE
access points and 5 workers were supplied with smartphone
devices. The total number of people in the scene was varying
from 3 to 12 as workers were entering and exiting the field of
view. The objective of the experiment was to identify and
track the workers who were carrying a smartphone device
using camera , radio and inertial measurements. The radio
measurements were obtained by their smartphones receiv-
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Figure 9: Accuracy comparison of the proposed approach
and the original RBMCDA (vision only) algorithm.

ing WiFi and BTLE beacons at 1Hz and 10Hz respectively.
The inertial measurements (i.e accelerometer and magne-
tometer) obtained from their smartphones had a sampling
rate of 100Hz.

To obtain the ground truth of people’s trajectories we fol-
lowed the same approach proposed in [19]. We supplied all
people to be tracked with helmets of different colors and
their ground truth trajectories were obtained using a mean-
shift tracker [18] to track the colored helmets. We should
also note here that our approach does not make use of any
appearance or color features for tracking and color features
were only used to acquire accurate ground truth.

7.2 Results
The first set of experiments evaluates the tracking accu-

racy of our system (i.e. how well we can identify and track
people with smartphone devices among all people in the
FOV). Moreover, we examine what is the effect of cross-
modal training on the performance of our system. Our per-
formance metric in this experiment is the root mean square
error (RMSE) between the ground-truth and the estimated
trajectory. In all the experiments shown here we have used
100 particles. In addition, instead of using line 13 of Alg.
(1) to estimate the filtering distribution, in each step the lo-
cation of each target is estimated using the particle with the
highest weight. For this test we used 30 minutes worth of
data running our filter on time-windows of one minute (i.e.
1800 frames). Fig. (8) shows the error CDF over this period
over all targets for different settings. More specifically, our
approach achieves a 90 percentile error of 2.5m when the
system is untrained, which improves to 1.8m when the fore-
ground detector is trained. The error decreases further as
the parameters of the radio propagation model are learned,
achieving a 90 percentile error of 1 meter. Finally, once
the optimum step-length of each person is learned the accu-
racy increases further to approximately 0.8 meters. As we
can see the error decreases significantly once both the fore-
ground detector and the radio model are learned. This is ex-
pected since our system requires both camera and radio mea-
surements in order to determine the correct measurement to
track association and update the target states. In the case of
excessive missing camera detections, the trajectory of a tar-
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Figure 11: The figure shows the RMSE between the pro-
posed technique and the vision-only tracking for different
amounts of occlusion. The use of inertial measurements
by the proposed technique improves tracking significantly
in noisy scenarios.

get is estimated only by inertial measurements which is the
main cause of the low accuracy. On the other hand, if the
radio model was not trained, camera detections would not
be able to be linked with radio measurements, which would
also cause identification and tracking errors. Once the fore-
ground detector and the radio model are trained Fig. (8)
does not show any significant improvement after learning
the step-length model. This is reasonable since, in this case
most of the time the targets are updated with camera obser-
vations which are used to correct the predicted by the IMU
states. However, from our experiments we have observed
that once the camera becomes unavailable, the difference
in accuracy between a trained and a universal step-length
model is significant.

In our second test we compare the proposed approach with
the original RBMCDA algorithm (referred to as vision-only
tracker in this section) which uses only visual observations
for tracking. In this test we used the same experimental
setup as described in the previous paragraph. Both tech-
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Figure 12: Illustrative example showing the difference be-
tween vision-only tracking (red line) and the proposed ap-
proach (blue line) in the presence of occlusions (gray area).
In cases of prolonged missing camera detections (green
squares) the constant velocity model of the vision-only
tracker is not sufficient enough to maintain tracking. On
the other hand the proposed technique with the aid of iner-
tial measurements is capable of closely following the target
despite the presence of long-term occlusions.

niques use the same foreground detector settings and in
addition the proposed method uses a learned radio model.
Fig. (9) shows the error CDF for the two methods. As we
can observe the proposed technique achieves a 90 percentile
error of 1 meter as opposed to vision-only tracking which has
a 90 percentile error of 1.8 meters. The main source of error
of the vision-only tracking is due to data association ambi-
guities which the proposed technique reduces significantly
with the help of radio and inertial measurements. More-
over, the proposed technique supports target identification
which is not possible when pure visual tracking techniques
are used.

The next step is to compare our technique with the re-
cently proposed RAVEL system [19] which is also a multi-
ple hypothesis tracking and identification system. RAVEL
which is discussed in more detail in Section 8 exploits the
smoothness of motion and radio signal strength data in order
to track and identify targets. Unlike our technique, RAVEL
is more of a reconstruction technique (i.e. performs off-line
tracking) as it requires to observe all measurements over a
time window (W ) in order to provide the trajectories of each
target. We have tested RAVEL using time windows of sizes
30 and 60 seconds over a period of 10 minutes and we have
compared it with the proposed online system. Both systems
are capable of learning the radio model parameters, thus
we performed these tests using the learned radio model for
both systems. In Fig. (10) RAVEL(30s) and RAVEL(60s)
shows the accuracy of RAVEL for window sizes of 30 and 60
seconds respectively. Proposed denotes the proposed system
with learned radio model, PropTr1 is the proposed system
optimized one level further i.e. foreground detector train-
ing and PropTr2 denotes the proposed approach when the
step-length model is also learned. Fig. (10) shows that the
average error of RAVEL decreases from 1.2m to 0.9m as
we increase the window size. Our approach with a trained
radio model is slightly worse than RAVEL(60). However,
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Figure 13: The RMSE of the proposed technique under dif-
ferent amounts of injected heading error.

once our system trains the foreground detector, the aver-
age error decreases significantly and continues to decrease
as the step-length model is also learned. Unlike our system,
RAVEL estimates the trajectory of a target using only vi-
sual data thus it becomes easily susceptible to errors due
to missing camera detections. Our system without training
achieves a similar performance but in real-time.

The final set of experiments aims to demonstrate the ro-
bustness of the proposed technique. First we wanted to see
how our technique performs on difficult trajectories (i.e. var-
ious amounts of occlusions and missing detections). In or-
der to simulate occlusions we remove a specific area of the
field of view (FOV) by disabling the camera detections in-
side that area. More specifically, we generated occlusions at
random locations that occupy a rectangular area of specific
size inside the FOV. Then we evaluated the accuracy of the
proposed approach compared to the vision-only tracker on
50 trajectories of variable length generated from our ground
truth data. Fig. (11) shows the RMSE over all trajectories
between the proposed system and the vision-only tracker for
different configurations of occlusions (i.e. shown as the per-
centage of occluded FOV). For each configuration we run
the test 10 times; each time the occlusion was positioned to
a different location. The two methods achieve a compara-
ble performance when there are no occlusions. However, the
proposed approach significantly outperforms the vision-only
tracking in scenarios with long-term occlusions and large
amounts of missing detections. In the presence of long-term
occlusions the constant velocity/acceleration motion model
utilized by most visual tracking techniques fails and cannot
be used to reliably model the inherently complex human
motion. On the other hand Fig. (11) shows that the use of
inertial measurements by the proposed technique provides
a more accurate model of human motion. An illustrative
example is shown in Fig. (12).

Additionally in order to study how our approach can cope
with variable noise from the inertial sensors we followed a
similar procedure as in the previous paragraph and we gen-
erated 50 trajectories from our ground truth data. At each
time-step and for each trajectory we inject a random bias
error to the heading estimator. More specifically we sample
a heading error uniformly from a specific range of the form
[a..b] degrees and we add it to the output of the heading
estimator. By doing this we can get an idea of how our ap-
proach performs in environments with disturbed magnetic
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Figure 14: The figure shows the cumulative quality score
(CQS) over a period of time as a function of the foreground
detector learning rate (α). The optimum learning rate ac-
cording to RMSE maximizes CQS, thus this metric can be
used to train the foreground detector.

fields. Fig. (13) illustrates the results of this experiment
for different amounts of injected noise. As we can see the
proposed technique can cope with moderate amounts of in-
ertial noise; achieving a sub-meter accuracy for bias up to
30 degrees.

Finally, Fig. (14) shows how our approach can find the
optimum learning rate (α∗) of the foreground detector by
solving the optimization problem discussed in Section 6.2.
In the example above we used 5 minutes of data, running
the foreground detector for different values of (α) and cal-
culating the cumulative quality score (CQS) for that period.
Our intuition is that the optimum learning rate will reduce
the number of missing detections, thus increasing the num-
ber of high quality tracks as well as their quality score. This
is shown in Fig. (14) where the optimum learning rates
achieve a high CQS, also evident by the low RMSE.

8. BACKGROUND
A variety of positioning systems have been proposed by

the research community over the past ten years. Recent
surveys outlining the different techniques and their accura-
cies can be found in [14, 17]. In this section we will give a
brief overview on the most recent positioning systems that
make use of radio-, inertial- and visual- sensing ( i.e. using
a stationary camera) to track multiple people. The posi-
tioning systems to be described here can be divided into
two categories: a) systems that combine visual and radio
measurements and b) those that combine visual and inertial
measurements.

Vision+Radio positioning systems: The recent Ra-
dio And Vision Enhanced Localization (RAVEL) system [19]
fuses anonymous visual detections captured by a stationary
camera with WiFi readings to track multiple people moving
inside an area with CCTV coverage. The WiFi measure-
ments of each person are used to add context to the tra-
jectories obtained by the camera in order to resolve visual
ambiguities (e.g. split/merge paths) and increase the ac-
curacy of visual tracking. RAVEL operates in two phases
namely tracklet generation and WiFi-aided tracklet merg-
ing. In the first phase visual detections collected over a
period of time are used to form unambiguous small trajec-
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tories (i.e. tracklets). In the second phase, RAVEL uses the
aforementioned tracklets to create tracklet trees for each per-
son (i.e. probable trajectory hypotheses). Then, the WiFi
measurements of each person are used to search through the
tracklet tree in order to find their most likely trajectory. The
most likely trajectory is the one that agrees the most with
the WiFi measurements. Unlike our technique, RAVEL per-
forms off-line tracking, i.e. the trajectory of each person is
reconstructed after all camera detections and WiFi measure-
ments for a period of time have been observed. In addition,
RAVEL does not make use of inertial measurements and
thus it is more susceptible to positioning errors due to miss-
ing detections (i.e. static people that become part of the
background).

In a similar setting the EV-Loc system [29] estimates the
position of multiple people using both WiFi and camera
measurements. More specifically, EV-Loc estimates the dis-
tance of each person from a number of access points first
using camera measurements and then using WiFi readings.
The Hungarian algorithm [3, 12] is then used to find the best
mapping between camera and WiFi measurements. After
this optimization problem is solved, the camera and WiFi
locations of each person are fused to form a weighted average
final location. Unlike our work, EV-Loc concentrates on the
problem of finding the best matching between camera and
WiFi traces (i.e. the matching process is performed after the
visual tracking is completed ) and does not provide a gen-
eral tracking framework that incorporates multiple sensor
modalities.

Finally, Mandeljc et al. presented in [16, 15] a fusion
scheme that extends the probabilistic occupancy map (POM)
[7] with radio measurements. In the original POM frame-
work the area of interest (i.e. the ground plane as viewed by
the cameras) is divided into a number of cells forming a grid.
Under this framework humans are represented as rectangles,
and detections are generated using background subtraction
techniques. The algorithm models each cell of the grid as
random variable representing the probability of a cell being
occupied by a person. Finally the goal of the algorithm is to
estimate the probabilities of occupancy for each cell given
binary images obtained from a background subtraction pro-
cess from multiple overlapping cameras. In [16] the POM
is extended so that the cell occupancy probabilities are es-
timated using ultra-wideband (UWB) radio sensors in addi-
tion to the cameras. Essentially, the radio measurements are
anonymized and they are used to provide a prior occupancy
model which is then combined with the camera occupancy
model. This additional radio information increases the ac-
curacy and robustness of the algorithm. Later in [15], the
POM is extended further so that the anonymous camera de-
tections are augmented with identity information from radio
tags. The augmentation of anonymous detections with iden-
tity information is done on a frame-by-frame basis where at
each time instant the optimal assignment between radio and
camera locations is obtained using the Hungarian algorithm.
The fusion scheme of [16, 15] was evaluated using only UWB
radios which exhibit sub-meter accuracy and there is no indi-
cation of how this method will perform with radios of lower
accuracy (i.e. WiFi). Although [15] seems similar to our
method, it requires multiple cameras with overlapping fields
of view, it does not take advantage on inertial measurements,
and finally it does not possess the learning capabilities of our
method.

Vision+Inertial positioning systems: Instead of us-
ing radio measurements for identification the methods in this
category use inertial measurements. For instance, the sys-
tem in [28] fuses motion traces obtained from one stationary
camera mounted on the ceiling and facing down with motion
information from wearable accelerometer nodes to uniquely
identify multiple people in the FOV using their accelerom-
eter node IDs. Background subtraction is used to detect
people from the video footage and then their floor-plane ac-
celeration is extracted by double differentiation. The camera
acceleration traces are then compared against the overall
body acceleration obtained from the accelerometer nodes
using the Pearson’s correlation coefficient. The accelera-
tion correlation scores among all possible combinations of
camera-accelerometer pairs are then used to form an assign-
ment matrix. Finally, the assignment problem is solved us-
ing the Hungarian algorithm. The initial algorithm of [28]
is extended in [11] to allow for better path disambiguation
based on people’s acceleration patterns by keeping track of
multiple trajectory hypotheses.

More recently the OPTIMUS system [13] uses a similar
approach, where inertial measurements from smartphones
are used to identify visual trajectories. The algorithm uses
histograms of oriented gradients (HOG) descriptors to de-
tect people in a scene covered by one stationary camera and
then optical flow is used to group consecutive detections
together when there are no ambiguities forming tracklets.
A track-level association procedure is then performed to
merge the found tracklets and create full trajectories. At the
identification stage accelerometer readings from the smart-
phones are converted into binary vectors that indicate the
user’s movement and are matched with movement vectors
extracted from the visual trajectories using the Hungarian
algorithm. Unlike our work, the methods described above
use inertial data mostly for identification purposes; they are
not used for identification and positioning. In addition, they
are specifically designed having only one sensor modality in
mind and thus they do not provide a general multi-sensor
multi-target tracking framework.

9. CONCLUSION
In this paper we proposed a multi-modal positioning sys-

tem for highly dynamic environments. We showed that it
is possible to adapt Rao-Blackwellised particle filters - tra-
ditionally used to discern tracks using anonymous measure-
ments - in order to both identify and track people being
monitored by CCTV and holding mobile devices. We fur-
ther showed that there is significant scope for automatically
training the various sensor modalities, and this proved par-
ticularly useful in rapidly changing environments. Our ex-
periments showed that even without training, our online ap-
proach achieves similar positioning accuracy to the existing
off line RAVEL approach; with training the positioning error
is decreased by a further 50%.
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