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Abstract—In this work, we argue that current state-of-the-
art methods of aircraft localization such as multilateration are
insufficient, in particular for modern crowdsourced air traffic
networks with random, unplanned deployment geometry. We
propose an alternative, a grid-based localization approach using
the k-Nearest Neighbor (k-NN) algorithm, to deal with the
identified shortcomings. Our proposal does not require any
changes to the existing air traffic protocols and transmitters,
and is easily implemented using only low-cost, commercial-off-
the-shelf hardware.

Using an algebraic multilateration algorithm for comparison,
we evaluate our approach using real-world flight data collected
with our collaborative sensor network OpenSky. We quantify its
effectiveness in terms of aircraft location accuracy, surveillance
coverage, and the verification of false position data.

Our results show that the grid-based k-NN approach can
increase the effective air traffic surveillance coverage compared to
multilateration by a factor of up to 2.5. As it does not suffer from
dilution of precision to the same extent, it is more robust in noisy
environments and performs better in pre-existing, unplanned
receiver deployments. We further find that the mean aircraft
location accuracy can be increased by up to 41% in comparison
with multilateration while also being able to pinpoint the origin
of potential spoofing attacks conducted from the ground.

Index Terms—air traffic control, wireless localization, crowd-
sourced networks, k-nearest neighbors

I. INTRODUCTION

Air traffic control (ATC) is the backbone of what is arguably
the key means of personal transport in the modern world. As
traffic continues to grow dramatically, ATC has to manage
ever more aircraft. Large European airports, such as London
Heathrow or Frankfurt/Main, experience spikes of more than
1,500 daily take-offs and landings, and industry forecasts
predict that world-wide flight movements will double between
2015 and 2034 [1]. Additionally, as Unmanned Aerial Vehicles
(UAV) enter the civil airspace, they must learn to co-exist with
manned aircraft and existing air traffic control systems. While
forecasts project a steady 5% annual increase of global manned
flight traffic over the next 20 years, UAV are projected to
outgrow traditional air traffic by several orders of magnitude:
In 2035, 250,000 UAV are expected to be operating in the US
alone, compared to a mere 45,000 passenger aircraft around
the globe [2]. However, as this paradigm shift progresses,
many technological issues have yet to be solved to ensure
the safe control of both manned and unmanned aircraft.

The key issue in controlling the airspace is to know where
an aircraft is at any given time. For the pilot, this is achieved

through navigational aids, such as Distance Measuring Equip-
ment (DME) or, more recently, satellite navigation. For ground
controllers, the traditional options to obtain an aircraft’s posi-
tion comprise voice communication via VHF/HF and primary
and secondary surveillance radar (PSR and SSR, respectively).
Recently, technological developments and stricter separation
needs have given rise to other methods of aircraft localiza-
tion, most notably the Automatic Dependent Surveillance–
Broadcast protocol (ADS-B) and multilateration (MLAT).

While ADS-B relies purely on the aircraft correctly broad-
casting their own position to other aircraft and ground stations,
MLAT can provide an independent means of localization by
exploiting the time differences of arrival (TDoA) of signals
received at several different ground stations. Both methods
achieve greatly increased localization accuracy compared to
previous radar surveillance and are key technologies in next
generation ATC concepts such as SESAR or NextGen [3].

At the same time, crowdsourced air traffic communication
networks have gained importance over the past decade. Large
private companies such as FlightRadar24 and PlaneFinder,1

research networks such as OpenSky,2 enthusiast websites,3

and increasingly flight authorities themselves [4] rely less
and less on planned deployments of ATC receivers. Instead,
they use distributed networks which are randomly deployed.
Contrary to traditional, carefully planned receiver networks,
this crowdsourced use of cheap sensors provides a number of
new challenges to existing localization algorithms.

In this work, we investigate alternatives to multilateration
for independent localization in air traffic communication net-
works. We present a new method based on expected TDoAs,
which is robust in noisy environments and depend less on the
system’s receiver geometry. We show that it is effective even
in unplanned deployments of cheap, crowd-sourced, off-the-
shelf ATC receiver networks. Our approach does not require
changes to existing technology standards or to the aircraft’s
legacy hardware equipment, which is particularly important
given aviation’s long adoption and certification cycles [5].

We make the following contributions in this paper:

• We develop a new grid-based method to localize aircraft
based on their wireless signals. We utilize a combination
of the k-Nearest Neighbor algorithm and the expected

1http://flightradar24.com, http://planefinder.net
2http://opensky-network.org
3http://adsbexchange.com
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TDoA of ATC signals to estimate their origin.

• We analyse the disadvantages of multilateration, the
current state of the art solution for aircraft localization.
Concretely, we examine the robustness in noisy
environments, the coverage in a typical air traffic
surveillance area, and the efficiency of the signal usage.

• We evaluate our approach on real-world data and
show that it performs better in wide area settings than
multilateration. Compared to the latter, our approach is
cheaper and more scalable, and improves surveillance
range, detection speed and location accuracy in real-
world environments. In particular, our approach is much
less dependent on perfect system geometry.

• Finally, we study the effectiveness of verifying air traffic
control data. We show that verification of legitimate and
false flight data using our approach is quicker and can
also provide improved localization of the origin of false
data injections on or near the ground.

We have used the core localization idea in previous work
for security and data verification purposes [6]. The present
work focuses further on localization and provides extensive
analysis concerning the benefits in modern crowdsourced air
traffic communication sensor networks. We have provided new
data and new findings to substantiate our approach, including
the theoretical underpinning of expected TDoAs, a robustness
analysis, a new discussion of its usefulness for verification, and
comparisons with multilateration in crowdsourced networks.

The remainder of this paper is organized as follows. Sec-
tion II discusses the background necessary for the aircraft
localization problem, including the related work. Section III
analyzes the problems of multilateration while Section IV
illustrates the differences between TDoA-based algorithms.
Section V explains the concept of expected TDoAs, and
how it can be exploited for lightweight aircraft localization.
Section VI details our experimental setup, whereas Section VII
evaluates the scheme against real-world flight data. Section
VIII examines the scheme’s data verification effectiveness.
Finally, Section IX summarizes and concludes this work.

II. BACKGROUND

A. Modern Air Traffic Control

Since World War II, ATC surveillance data has been pro-
vided by PSR and SSR in various forms. PSR is a term
comprising non-cooperative radar localization systems that use
a rotating antenna radiating a pulse position-modulated and
highly directional electromagnetic beam on a low GHz band.
The pulses are returned by all reflecting targets in the airspace;
measuring the bearing and round trip time provides the targets’
positions.

In contrast, SSR is a cooperative technology comprising
the so-called transponder Modes A, C, and S. Ground stations
interrogate the transponders of aircraft in range using digital
messages on the 1030 MHz frequency, which reply with the

Figure 1: Overview of the ADS-B system architecture. Aircraft
receive positional data that is transmitted via the ADS-B Out
subsystem over the 1090ES or the UAT data link. It is then
received and processed by ground stations and by other aircraft
via the ADS-B In subsystem.

requested information on the 1090 MHz channel. SSR pro-
vides additional target information compared to PSR besides
the position, including identity and altitude.

One of the most recently introduced ATC technologies is the
ADS-B protocol, which is the satellite-based successor of SSR.
It is currently being rolled out in most airspaces and promises
lower cost and more accurate surveillance [7]. Contrary to
primary and secondary radar, it does not rely on interroga-
tions. Using two potential datalinks (1090 Extended Squitter,
or Universal Access Transceiver), the aircraft automatically
broadcasts its position and velocity (twice per second) as well
as its identification (every five seconds) to all other aircraft and
ground stations in the vicinity (see Fig. 1 for an illustration).

As it is possible to capture all popular wireless protocols
with cheap off-the-shelf wireless receivers, crowdsourced sen-
sor networks have increased in popularity over recent years
[5]. Using any wireless receiver such as popular software-
defined radios, any signal sent by the aircraft, including ADS-
B and SSR, can be used for TDoA-based localization such as
multilateration [8].

B. Characteristics of Aircraft Localization

To be able to develop an appropriate localization method, in
particular for crowdsourced networks, it is crucial to first iden-
tify the characteristics of the ATC environment. The following
characteristics distinguish the aircraft localization problem
from other wireless localization problems (e.g., wireless sensor
networks or vehicular ad hoc networks):

• Outdoor line-of-sight environment: Contrary to many
localization problems found in academic research, the
aircraft location problem is naturally outdoors. On the
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1090 MHz channel, the line of sight (LoS) is a crucial
factor in receiving signals. We require an outdoor LoS
propagation model for our work in terms of loss and
propagation.

• Vast distances: In wide area ATC surveillance, the
distances covered are naturally much larger than in more
local or indoor problems. Aircraft flying at cruising
altitudes (typically 35,000 feet or higher for commercial
aircraft) can be observed up to the radio horizon of
400 km or more. This is orders of magnitude larger than
typical indoor localization problems.

• Few multipath effects: At typical aircraft cruising alti-
tudes, we experience comparably few diffractions leading
to multipath effects that influence signal characteristics.
This enables us to use simpler theoretical models than in
more complex indoor and multipath-rich environments.
Most importantly, the propagation timings between air-
craft positions and sensors can be approximated easily
by using the speed of light c.

C. Related Work

Indoor and outdoor localization problems have been studied
extensively in the literature, often in the scope of sensor
networks and radar applications. Liu et al. [9] give an overview
of the techniques used in wireless indoor positioning including
the different algorithms (k-Nearest Neighbor, lateration, least
squares and Bayesian among others) and primitives such as
received signal strength (RSS), TDoA, time of arrival (ToA)
and angle of arrival (AoA). RSS-based methods are the most
popular within any type of wireless networks as they are often
readily supported out of the box and do not require additional
hardware such as high precision clocks or antenna arrays.

While TDoA systems are limited in indoor environments
(due to multipath effects and non-availability of time syn-
chronization and clocks fine-grained enough to provide good
results at very short distances [10]), they offer very superior
performance in long-distance outdoor environments such as
those encountered in the aircraft localization problem where
the non-line-of-sight error is not the dominant error source
[11]. Errors in RSS-based outdoor localization are typically
much larger, ranging up to a few hundred meters already in
comparatively small outdoor settings of 2 km [12].

In terms of algorithms, the k-Nearest Neighbors (k-NN)
algorithm has proven to do very well in short-distance, indoor
RSS fingerprinting compared to other methods [13], although
it has been studied less in long-distance scenarios (such as
aircraft localization) and can become computationally more
expensive with very large databases.

Overall, the main (distributed) localization approach used
within aviation is MLAT [6], which we discuss in detail in
the next section and which provides the baseline for our
evaluations. To the best of our knowledge the combination
of the k-NN algorithm with TDoA as a primitive has not
been studied. In the following, we argue that this combination
is beneficial in particular for crowdsourced networks with
random, imperfect system geometry in which the performance
of MLAT suffers strongly.

Central 
Processing 

Station

Hyperboloids

Aircraft message 
transmission

1 2 3

Station A Station B

Station D Station C

Figure 2: Basic multilateration architecture with four receivers
and three resulting hyperboloids.

III. MULTILATERATION

MLAT is a proven and well-understood concept that is used
in civil and military navigation and already serves as a backup
for ATC around some airports. It has been the consensus
solution in academia and aviation circles as a backup solution
for primary and secondary radar [3].

A. Concept

To localize the 2D-origin of a signal using MLAT, three (or
more) receiver stations measure the time at which they receive
the same message from an aircraft. They send this data to the
central processing station which can calculate the aircraft’s
position from the intersecting hyperboloids that result from
the time difference of arrival between the receiver stations.

Traditionally, the algorithms to solve this problem are
classified into open form (or iterative) and closed form (or
direct). This classification of algorithms is based on their need
of information from external sources: those that require a
previous estimation of the solution are considered open form
and those that do not require such information are closed form.

Mantilla-Gaviria et al. [14] discuss the different MLAT
models used for airport surface surveillance and classify them
into three main categories: numerical, statistical and algebraic.
The resulting problem obtained by these models is then
numerically solved, e.g., by using least squares or singular
value decomposition-based regularization.

B. Downsides

However, despite its popularity, MLAT suffers from a num-
ber of known pitfalls.

First, MLAT is highly susceptible to noise, outliers, and
even minor measurement errors outside a small core area.
An important quality metric for a deployment and its MLAT
accuracy with respect to the target object’s relative position
is the geometric dilution of precision, or GDOP (see Fig. 3).
It describes the effect of a deployment on the relationship
between the errors of the obtained TDoA measurements and
their resulting impact on the final errors in the object’s
calculated position, or formally:

∆LocationEstimate = ∆Measurements · GDOP (1)
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Figure 3: Geometric dilution of precision. The circles show
the measurement errors of the respective receivers; the in-
tersections demonstrate the area where the true location of
the measured object can be found. An adverse placement of
receivers in relation to the target (top) can severely affect
the outcome of the localization compared to a favorable
deployment (bottom).

GDOP is widely used in positioning systems such as
GPS, where good ratings for this multiplier are commonly
considered to be below 6, with 10 to be fair and everything
over 20 to be of poor quality [15]. For a full explanation of
how to calculate different DOP values, see [16].

Second, traditional MLAT systems are very expensive:
Where ADS-B needs only a single receiver for accurate wide
area surveillance of up to 400 km, MLAT requires every
signal to be received by at least three stations with little
noise. On top of this, geographical obstacles (e.g., mountain
ranges, oceans) make it relatively more difficult to install
a comprehensive wide area system at the desired service
level. However, even where this is not a problem, MLAT’s
discussed dilution of precision characteristics necessitate a
well-planned system geometry to accurately cover a given
area [14]; an unplanned, or crowdsourced sensor network
deployment cannot typically provide good enough GDOP
values to achieve the same service quality.

Considering these drawbacks and the fact that modern
crowdsourced networks with cheap off-the shelf sensors are
becoming more popular, there is a need for other TDoA-based
approaches that can improve on these problems.

IV. ANALYSING SCALABILITY AND COVERAGE OF
CROWDSOURCED LOCALIZATION

One of our main goals is to tackle MLAT’s scalability
and coverage problems, especially in deployments with less
than perfect system geometry. An ATC data communications
network consists of a given number of sensors that are
deployed outside, in a line of sight with the airspace they
are expected to cover. Naturally, overlapping reception ranges
between receivers are required to obtain TDoAs. If more
sensors are to receive the same message, they need to be
located closer together. While this increases the overlap, it also
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Figure 4: The map shows the geometric dilution of precision
of our 8 sensor measurement system for wide area multilatera-
tion. All sensors are on the ground, the assumed measurement
altitude is 38,000 feet.

Absolute Relative Area covered
All messages 63,410,017 100% 100%

# seen by >=2
sensors 26,305,043 41.48% 46.51%

# seen by >=3
sensors 8,912,305 14.06% 17.25%

# seen by >=4
sensors 2,560,727 4.04% 5.28%

# seen by >=5
sensors 394,362 0.62% 0.84%

# seen by >=6
sensors 18,777 0.0003% 0.0004%

# seen by >=7
sensors 97 1.5 ∗ 10−6% 2.1 ∗ 10−6%

# MLAT &
GDOP < 10 3,319,618 5.24% 6.67%

Table I: Statistics on the utilized OpenSky dataset. The table
shows the absolute and relative number of messages collected
by a given amount of sensors. The last column provides the
relative area covered by that number of sensors.

decreases the overall ADS-B coverage of the receivers. Worse
even, only a small part of the MLAT coverage is usable, since
GDOP causes its accuracy to deteriorate quickly. Methods not
suffering as much from GDOP and working with fewer sensors
could vastly improve efficiency compared to MLAT.

Figure 4 illustrates the dilution of precision experienced
by multilateration in our crowdsourced deployment using 8
ADS-B sensors. Covering an area of 3 degrees longitude × 3
degrees latitude at an altitude of 38,000 feet, it is indicative of
a wide area multilateration system used for en-route airspace
surveillance. As can be observed, the darkest areas, which
illustrate the lowest GDOP values, only make up a fraction
of the surveillance area, while the system’s geometry causes
most parts to have unusably high dilution of precision.

To demonstrate this fact with real flight data, we analysed
more than 60 million ADS-B messages from aircraft at cruis-
ing altitudes (ca. 38,000 ft) using 8 OpenSky sensors from
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Figure 5: An example illustrating the calculation of Expected
TDOAs. The assumed distance of the sender to both receivers
is divided by c. Subtracting the smallest time ti from the other
times gives the TDoAs relative to receiver i.

an unplanned and crowdsourced deployment in Switzerland.
Table I illustrates the number of messages that are picked up
by a given number of receivers. Only 14% of all received
messages are seen by 3 or more sensors on the ground and
can be used for MLAT. If we only take into account messages
with GDOP below 10, we are left with only 5.24% of usable
messages.

If we look at the area covered, we find that in our deploy-
ment the MLAT coverage makes up roughly 17% of the overall
covered area. The area where MLAT is reliably accurate is
even smaller, only 6.67% of the total area is covered by
messages with a GDOP of less than 10. Thus, the usability
of the received ADS-B messages for MLAT is reduced by a
factor of more than 2.5 compared to localization methods that
would not be affected by GDOP.

V. DESIGNING A NEW AIRCRAFT LOCALIZATION
APPROACH FOR CROWDSOURCED DEPLOYMENTS

We propose a grid-based k-NN approach which is more
robust against dilution of precision and works accurately
regardless of the system geometry. As laid out above, this char-
acteristic increases the signal utilisation and overall coverage
of a deployment, thus vastly reducing costs and improving the
detection range and speed of new aircraft at the same time.

A. Expected TDoAs

The key insight of our approach is the use of Expected
TDoAs. As outlined before, the time differences of arrival
of a received signal between multiple sensors are a physical
primitive that can be used to establish the possible location(s)
of a sender. For our approach, we extend this concept and
(pre-)calculate the time differences that we would expect to
see based on any given location.

Concretely, we can use an idealized outdoor LoS propa-
gation model suitable for the aircraft localization problem.
We then calculate the absolute propagation times of an ATC
signal’s origin to the receiving ground stations by dividing the
distances d1, ..., dn between the sender and each of the stations
i = 1, ..., n by the speed of light c (see Fig. 5).4

ti =
di
c

(2)

4As the propagation is not happening in a vacuum, this is an approximation,
however, the difference is insignificant [17].

Algorithm 1 Localization offline phase. Requires coordi-
nates of sensors and grid as input and outputs the training
sets for the online phase.

1: Input: gridcoords, sensors, squaresize
2:
3: trainingset← [ ]
4: grid← constructGrid(gridcoords, squaresize)
5: for ∀sensorcombinations do
6: TDoA_training ← [ ]
7: for ∀square ∈ grid do
8: TDoAs← computeTDoAs(sensors.coords,square)
9: TDoAtraining.add(TDoAs, gridsquare)

10: end for
11: trainingset.add(TDoAtraining,

sensorcombination)
12: end for

Algorithm 2 Localization online phase. Requires the
number of neighbors k and the trainingsets from the
offline phase as input and calculates the location estimate
of the message’s origin.

1: Input: k, trainingset, flight
2:
3: loop
4: m← newPositionMessage(flight)
5: r ← receivers(m)
6: if numberOfReceivers(m) > 2 then
7: TDoAs← calculateTDoAs(m)
8: trainingset← getTrainingset(r)
9: knn← runKNN(trainingset,TDoAs,k)

10: estimate← getCenter(knn)
11: end if
12: end loop

Subtracting the smallest resulting time tmin from the other
times provides the Expected TDoAs relative to the nearest
receiver i:

ETDoAi = ti − tmin (3)

We use this calculation of Expected TDoAs to estimate the
origin of the signal, as explained in the following section.

B. Aircraft Localization with Expected TDoAs

Putting these findings together, we design a novel approach
to locate aircraft. In an offline training phase, a 2D grid of
the surveillance area is computed that contains the expected
TDoA measurements for each position for the given sensor
deployment. In the online phase, for every incoming message,
the k nearest neighbors of the messages’ TDoAs on the grid
are looked up. These neighbors are then averaged, resulting
in the final estimate of the sender’s location.

a) Offline phase: Over an exemplary grid of N × M
squares, we calculate the fingerprint vector of expected TDoAs
between the deployed sensors for every square using equations
2 and 3. Based on this, we create the final training set
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Figure 6: Localization with 3-NN. Using TDoA data from 4
sensors S1, ..., S4, the 3 nearest neighbors N1, N2, N3 in the
lookup table are averaged to obtain the final estimate E.

by generating every subset of combinations with at least 2
sensors (

∑n
i=2

(
n
i

)
, with n being the number of sensors), e.g.,

26 sets overall for a 5 sensor deployment. This is required
when a new message is received by fewer than the maximum
number of deployed sensors, with 2 sensors (or one TDoA
measurement) as the lower limit. In that case the appropriate
set is chosen during the online phase to find the k nearest
neighbors. Algorithm 1 details the offline training phase.

b) Online phase: In the online phase, new message data
is analyzed and the location determined (see Algorithm 2
for an overview of the whole process). Using the k-Nearest
Neighbors algorithm, we obtain the closest points from our
training grid that match the fingerprints of our test data.

Setting the number of nearest neighbors to k, we match the
received physical fingerprint R = TDoA1, ..., TDoAn to the
saved grid fingerprint F based on their Euclidean distance

D(R,F ) =

√√√√ n∑
i=1

(R TDoAi
− F TDoAi

)2 (4)

It is intuitive that in the spatial domain of our grid there are
multiple neighbors that are approximately the same distance
from our point of interest, hence k is an important parameter
influencing the accuracy. If k > 1, the positions of all k
neighbors are averaged by taking the mean of the longitude
and the latitude (see Fig. 6 for an illustration). This constitutes
the final estimate of the aircraft position, which on average is
closer to the true location than any single neighbor as our
evaluation will show.

VI. EXPERIMENTAL SETUP

We will now describe our experimental setup and design,
i.e., how we collected the data used to evaluate our approach,

and the design of the grid used for the localization algorithm.
We implement all algorithms in MATLAB.

A. Data Collection and Hardware
As ADS-B has been in the roll-out phase for years, we can

use real-world data to estimate the propagation characteristics
of ADS-B messages. We do not make any assumptions on
hardware features such as sending power or antennas as there
are many configurations found in different aircraft.

For our evaluation, we rely on real-world ADS-B data which
we obtained from OpenSky a participatory sensor network for
air traffic communication data, specifically ADS-B. It provides
access to 3 years of historical raw message data as well as
metadata, and offers a very fast query infrastructure, ideal for
large-scale research projects. As of October 2016, it has saved
more than 200 billion air traffic communication messages,
covers about 3,000,000km2 on three continents, captures more
than 16,000 unique aircraft every day, and has seen over
100,000 different aircraft overall. For more detail on OpenSky,
its use cases for aviation security and privacy, and its big data
infrastructure, refer to [8], [18], [19].

For the present analysis, we use a dataset that spans the
period between 26 June 2013 and 25 June 2014. This dataset
contains more than 60 million ADS-B messages received from
SBS-3 sensors manufactured by Kinetic Avionics. Besides the
message content, they provide a timestamp of the message
reception. From this data, we use 5 sensors that are closely
located together to be able to calculate their TDoA data.
The timestamps have a clock resolution of 50 ns. The sensors
have omnidirectional antennas and can receive signals from a
distance of up to roughly 400 km.

B. Synchronization
As our low-cost SBS-3 sensors do not provide built-in

synchronization (e.g., via GPS), we synchronize our data a
posteriori with the help of positional ADS-B messages sent by
aircraft. By using the positional information in those messages
and approximating their respective propagation time, we can
recover the timing offset between our ground station sensors
and achieve global synchronization. We also take into account
the drift of the internal clocks to improve the results. Overall,
this approach enables us to achieve synchronization that is
low-cost and works well with minimal requirements. More
accurate and efficient synchronization using GPS could help
to further improve on the accuracy of our results.

C. Grid Design
We construct a 2D grid over a typical flight altitude of

38, 000 ft (ca. 11, 582m) with a size of 2 degrees longitude
and 2 degrees latitude which, due to the Earth’s spherical
geometry, translates to an area of ca. 150 km × 220 km =
33, 000 km2. We obtain evenly-spaced approximate squares
where the number of squares (or the squares’ size) is a trade-
off between performance and accuracy as elaborated in the
evaluation section. Of course, computation time and accuracy
also depend on the size of the surveillance area. 33, 000 km2

are representative for wide area ATC surveillance, covering
aircraft’s en-route flight phase at cruising altitude.
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Horizontal Error [m] MLAT 600 m2 Grid 300 m2 Grid 150 m2 Grid 75 m2 Grid 50 m2 Grid
Mean 199.46 171.01 134.37 122.31 118.14 116.454

Median 91.87 140.38 98.60 84.92 80.38 78.63
RMSE 334.47 225.51 198.14 190.29 187.31 185.79

99th percentile 1306.70 902.08 870.18 870.61 841.33 835.63
Relative comp. time 62.3% 100% 399% 1599% 7272% 16375%

Table II: Horizontal errors in different grid square sizes using k-NN vs. MLAT, with 5 sensors and k = 5. k-NN shows a
better mean accuracy than MLAT of up to 41% in our dataset.

VII. EVALUATION

In this section, we use the collected flight data to verify our
approach. We analyze the location accuracy by comparing it to
the GPS data broadcast by aircraft using ADS-B and discuss
the impact of the number of neighbors and the grid setup on
its performance. We further compare it against an algebraic
MLAT algorithm as described in [20],5 to show its improved
efficiency in the examined aircraft localization setting.

A. Aircraft Localization Accuracy

To ensure a baseline for the accuracy of the localization
method, we compare it with the GPS-based ADS-B posi-
tion claims of legitimate flight data. We use a part of the
whole dataset (comprising over 100,000 positional ADS-B
messages), where every message has been seen by 5 sensors,
providing us with sufficient TDoA measurements for our
comparative analysis. All location claims are within the pre-
defined surveillance grid in terms of latitude and longitude,
while their mean altitude is 11,148.8m (σ = 687.59m).

Table II shows the localization quality using k-NN with
squares of five different sizes over an area of 33,000 km2 with
k = 5. As expected, increasing the number of squares has
a positive impact; the smaller the square, the more accurate
location predictions become. For example, a reduction in
grid square size from 600m2 to 300m2 improves mean
accuracy by 37.5%. This naturally comes with a trade-off as
the computational time to run the k-NN algorithm increases
linearly by 400%. Overall, we found that 150m2 provides a
good trade-off between accuracy and performance.

Concerning the optimal choice of k, Fig. 7 illustrates the
accuracy gained by averaging a higher number of neighbors.
We can see a large improvement until k = 5 especially for a
grid square size of 600m2. Further decreases in mean accuracy
are small and much less pronounced with smaller square sizes.

We compare k-NN with an algebraic MLAT algorithm using
the same TDoA measurements from 5 sensors. The results
show that with a 600m2 grid size, k-NN does 14.2% better
than MLAT on mean errors, increasing to 41% for a 50m2

grid size. Overall, we find that k-NN does better than MLAT
on noisy TDoA measurements such as those we experienced
in our real-world data. Especially the more outlier-sensitive
metrics RMSE and mean improve with k-NN while MLAT
generally shows good median results. Since k-NN is more
robust against dilution of precision, this is to be expected as
the mean GDOP in our dataset is 24.35 (σ = 8.06). Taking

5Algebraic approaches require more receivers, but provide better accuracy
and lower computational resources than numerical models [14].
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Figure 7: Optimal choice of neighbors k for different square
sizes (MLAT as comparison).

Error [m] MLAT 2 Sens. 3 Sens. 4 Sens. 5 Sens.
Mean 199.5 26,956.7 311.8 147.3 122.3

Median 91.9 22,737.1 145.4 95.8 84.9
RMSE 334.5 33,380.4 761.3 237.6 190.3
99%ile 1306.7 63,500.2 2,469.6 983.7 870.6

Table III: Average horizontal errors using k-NN (k = 5) with
150m square size and different amounts of receivers. MLAT
(5 sensors) is provided as comparison.

only “good” values below 10 into account, MLAT’s metrics are
bound to improve vastly. However, doing this also decreases
the number of usable messages by over 90%, reinforcing the
fact that k-NN is useful in a much larger area.

The computational time is the trade-off for k-NN’s accuracy
and robustness. Only with the largest square size of 600m2 it
is in a range comparable to MLAT. However, depending on the
density of the airspace and the available equipment, even larger
grids and longer computation times would not pose a problem
in real-world settings. The complexity of the algebraic MLAT
algorithm is constant, while k-NN depends on the number of
squares, i.e., both the size of the monitored area and the desired
accuracy. If we assume assume a constant surveillance area,
every reduction of the square size by half increases the number
of squares, and thus the runtime, by four times. However, since
a standard Macbook Pro (2013, 2.5Ghz i5, 8GB RAM) can
run a single localization in less than 0.007 seconds on the
300m2 grid in our test area, the complexity remains negligible
in ATC surveillance: more than 140 aircraft can be localized
at the same time while maintaining an update rate of less than
a second. In scenarios where localization is used mainly to
verify suspicious aircraft data, the runtime of the algorithms
is even less critical as the examined amount of data is small.

For our analysis, it is furthermore important to compare
the impact of sensor numbers on localization. Table III shows
the results for the same dataset and a 150m2 grid size, if
only a subset of the five sensors receives the messages. After
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Figure 8: Median location error depending on the level of
noise σ affecting the measurements. k-NN results obtained
with k = 5 and 4 different square sizes.

analysing all possible subsets and averaging the results, we
conclude that with only three sensors sufficient horizontal
accuracy can be achieved.

B. Robustness

One of the main advantages of k-NN over MLAT is its
robustness to noise. To analyze the impact of noisy signal
measurements, we conduct simulations testing various noise
levels against both algorithms, using a scenario similar to the
one with which we collected our real-world data. We randomly
distribute 5 sensors on a 100x100 km grid, at altitudes ran-
domly drawn from between 0 and 1,000m. We create 100,000
aircraft signals sent from the grid at a height between 10,000m
and 11,000m, calculate their ideal time of arrival at the 5
sensors and add white Gaussian noise Zi ∼ N (0, σ) for each
time i, where σ is the standard deviation given in seconds. We
repeat this simulation 1,000 times at each σ level to smooth
out effects of the sensor placement.

From the results shown in Fig. 8, we can conclude that
the MLAT algorithm performs very well for no or very little
noise. This is not surprising for an exact method. However, the
algorithm is much less robust against increased noise levels
compared to k-NN. As the noise approaches σ = 10−7.5s, we
can see that the median location error of MLAT surpasses the
one of k-NN with k = 5 and 75m2/ 150m2 square sizes. This
means that at a noise level of over 31.6ns, our k-NN approach
provides superior results.

Fig. 9 gives further insight into the underlying reasons for
the performance difference between both algorithms. It shows
the median location error depending on the GDOP of the
measured signal. At a noise level of σ = 10−7s, we find
that MLAT only performs well when GDOP is extremely low,
while k-NN is unaffected by this problem. Comparing MLAT
to k-NN with various grid densities, we can see that only
signals with GDOP < 5 can provide a low average localization
error; higher GDOP levels are quickly outperformed by all
square sizes. Unfortunately, such a low dilution of precision
is present in only a very small fraction of the potential
surveillance area (as illustrated in Fig. 4).

These findings illustrate that the MLAT algorithm requires
extremely tight and costly synchronization and is still severely
inhibited by the geometry of its receiver’s locations. In
contrast, k-NN with expected TDoAs can provide effective
localization with good quality even with low-cost hardware
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Figure 9: Median location error depending on the geometric
dilution of precision affecting the measurements at a noise
level of σ = 10−7s. k-NN results obtained with k = 5 and 4
different square sizes.

such as Kinetic Avionics SBS-3 boxes and fully arbitrary
receiver placement. These characteristics are very helpful in
cases where deployment options are limited. Further, they can
facilitate the use of TDoA-based localization in modern crowd-
sourced receiver networks or pre-existing ADS-B deploy-
ments, both of which are regularly not optimized for perfect
MLAT system geometry. It has to be noted that in professional
ATC environments, continuous tracking algorithms further
improve on the quality of the discrete localization results [21],
however, this can be applied to all techniques equally.

VIII. DATA VERIFICATION

We now consider the verification of ADS-B data using
our approach. Data verification can be necessary for several
reasons, such as transponder malfunctions, inaccurate aircraft
instrument data, or the deliberate broadcast of false data.
Without loss of generality, we assume such an adversarial case,
where false location data is injected into the ATC system by
using manipulated ADS-B messages. The attackers have two
different mobility models, influencing the credibility of their
positional claims. The data verification itself is done via a
threshold: if an aircraft’s ADS-B claim is deviating too much
and for too long from the estimate, it is flagged as an anomaly,
and thus as a possible attack.

A. Test Data

We use our real-world flight data obtained from OpenSky
to test our data verification scheme. Out of the whole dataset
described in VI-A, we analyze 1,341 legitimate flights
and show that they are accurately verified by our system.
Furthermore, we use data from two simulated attacker types
(due to ethical and legal reasons, we do not implement
real-world attacks) on the ground and in the air and check
whether they will be verified or not. Each attacker injects 200
messages with the legitimate coordinates of a real flight from
our sample and follows specific location patterns:

• Attacker 1 is ground-based and mobile, defined by a
random horizontal start position on the grid, a random
horizontal direction, and an altitude between 0 and 500m,
moving on the ground with a speed of 50 km/h.

• Attacker 2 is a legitimate aircraft, broadcasting a wrong
track. Its starting position is the same as the real aircraft
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Attacker Type Distance from claim [start/end/avg]
Ground, mobile 74.897 / 88.682 / 77.535 km

Aircraft 0 / 28.864 / 11.627 km

Table IV: Averaged horizontal distances from the two attack-
ers’ real positions to their claimed aircraft positions during the
time that flight data is injected.

but then real and fake track diverge horizontally at a
random angle between 10 and 25 degrees (at cruising
altitude), making attacker 2 more difficult to detect.

To illustrate their relative positions, Table IV shows the
average deviations from the real track for both attacker types
(at the beginning and the end of the attack, and on average,
respectively). The attackers’ TDoAs are calculated by dividing
the 3D distance between the sensors by the speed of light c
and adding white Gaussian noise analogous to our real data to
account for measurement and processing errors. We test each
scenario 1000 times and analyze the detection rate.

B. Evaluation

We now derive potential verification thresholds based on
all legitimate flights and evaluate the resulting speed of de-
tection against both attacker models. We further analyze how
accurately the true origin of a signal can be located by our
localization approach and MLAT.

Through experimental analysis of the legitimate data, we
obtain a threshold that has not been exceeded by any of the
legitimate flights in our dataset. More formally, we first obtain
the number of consecutive messages n for given thresholds
T , after which the number of failed verifications (or the
probability of false alarms Pfa) reaches 0. We then evaluate
the time required to detect both attackers given T and n, such
that the probability of missed detection Pmd reaches 0, too.

Fig. 10 shows three thresholds T1 = 250m, T2 = 500m
and T3 = 750m, signifying the distance between our localiza-
tion and the aircraft’s position claim, and their likelihoods Pfa

of failing to verify a real flight depending on n. For threshold
T1, we find that Pfa reaches 0 when the average deviation
between position claim and k-NN estimate exceeds 250m over
a contiguous period of 28 messages. For the higher thresholds
T2 and T3, respectively, 15 and 9 messages are sufficient.

Within these 28/15/9 messages, we detect all injections by
attacker 1 (making Pmd = 0); their location always far exceeds
all thresholds. Attacker 2, who starts out from the correct
position of the impersonated aircraft, is much less obvious
and continuously exceeds T1 after 41.7 messages on average
(32.9 for T2, 29.6 for T3). After 57 messages, Pmd reaches 0,
thus all injections have been detected (44 for T2, 45 for T3).

This means, reliable detection is possible after about 22
seconds without any lost messages or 44 seconds assuming
a typical 50% message loss on the ADS-B channel [22].
Naturally, the precise thresholds depend on equipment and
scenario and should be trained and fitted accordingly.

Besides the simple verification of flight data, localization
methods can provide an estimate of an attacker’s current
location. Table V provides the results of this estimation for
both attacker types. k-NN with expected TDoAs not only
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Figure 10: Analysis of different thresholds. The graph shows
the percentage of real flights that fail to verify as legitimate
based on distance from the aircraft location claim and number
of consecutive messages exceeding this distance. k-NN results
obtained with k = 5 and 150m2 square size.

Distance to attacker [km]
Attacker Type k-NN MLAT

Ground, mobile 1.918 44.947
Aircraft 0.145 0.270

Table V: Mean distances to actual horizontal location of an
attacker. k-NN (k = 5) with 150m square size.

accurately detects the distances between the attacker and the
claim but can also give a good guess about the real origin of
the signal. The horizontal estimate for the origin of message
signals fits within approximately 2, 000m of the real location
for the ground-based attacker type. For the aircraft attacker
type, we obtain an estimate that is accurate within the typical
range for legitimate flight localization as discussed in the
previous section, i.e. with an error of less than 200m.

In comparison, Table V illustrates the performance of
MLAT in the same scenario. While MLAT can also verify
the data and detect deviations between the signal origin and
the position claim, it can not provide an accurate guess of the
ground-based attackers type. Caused by large GDOP values of
1000 and more, the sensors’ estimates of other objects in the
same plane (i.e., on or near the ground) suffer from an average
error of more than 44 km, making them essentially unusable.
The origin of the aircraft attacker 2 is estimated with a low
error of 270m, which is in line with MLAT’s performance for
the localization of legitimate flight data in our setup.

This shows that, while it is entirely feasible (though costly)
to build an MLAT system with good accuracy even for large
surveillance areas in high altitudes, it is difficult to provide the
same level of accuracy on the ground with the same system,
especially when using cheap and unplanned deployments.

IX. CONCLUSION

We proposed a new method for the localization of aircraft
based on the expected time differences of arrival and the k-
Nearest Neighbor algorithm. We evaluated our scheme with
real-world flight data from our large-scale sensor network
OpenSky using only low-cost ADS-B sensors in an unplanned
and crowdsourced deployment. We find that it outperforms
the popular multilateration approach in terms of range and
coverage. Since it is not similarly affected by dilution of
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precision, it is possible to increase the overall coverage by
a factor of up to 2.5 in our examined setting.

In terms of accuracy, our results show that the mean aircraft
location accuracy can be increased by up to 41% in compar-
ison with an algebraic MLAT algorithm. Furthermore, as it
does not suffer from dilution of precision to the same extent,
our approach is also more robust and less susceptible to noisy
environments and bad system geometry, making it a better
choice for pre-existing and unplanned receiver deployments.

Finally, we compare our approach against MLAT for the
verification of aircraft location claims. The increased coverage
improves the verification radius and enables us to detect
even sophisticated aircraft-based attackers within 40 seconds.
Furthermore, contrary to MLAT, it is possible to detect the
approximate location of ground-based attackers within a mean
horizontal error of about 2, 000m.

Further work will involve analyzing the capabilities of our
approach when it comes to localization in 3D space. While
3D localization is a natural extension of this work, it is
significantly more difficult as the degrees of freedom are
increased. Nevertheless, even a less accurate solution could
be helpful for verification purposes, in particular compared to
MLAT, which is generally not able to give any useful altitude
approximations of aircraft [23].
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