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Abstract. StocHy is a software tool for the quantitative analysis of
discrete-time stochastic hybrid systems (shs). StocHy accepts a high-level
description of stochastic models and constructs an equivalent shs model.
The tool allows to (i) simulate the shs evolution over a given time hori-
zon; and to automatically construct formal abstractions of the shs. Ab-
stractions are then employed for (ii) formal verification or (iii) control
(policy, strategy) synthesis. StocHy allows for modular modelling, and
has separate simulation, verification and synthesis engines, which are
implemented as independent libraries. This allows for libraries to be eas-
ily used and for extensions to be easily built. The tool is implemented
in c++ and employs manipulations based on vector calculus, the use of
sparse matrices, the symbolic construction of probabilistic kernels, and
multi-threading. Experiments show StocHy’s markedly improved per-
formance when compared to existing abstraction-based approaches: in
particular, StocHy beats state-of-the-art tools in terms of precision (ab-
straction error) and computational effort, and finally attains scalability
to large-sized models (12 continuous dimensions). StocHy is available at
www.gitlab.com/natchi92/StocHy.

1 Introduction

Stochastic hybrid systems (shs) are a rich mathematical modelling framework
capable of describing systems with complex dynamics, where uncertainty and
hybrid (that is, both continuous and discrete) components are relevant. Whilst
earlier instances of shs have a long history, shs proper have been thoroughly
investigated only from the mid 2000s, and have been most recently applied to the
study of complex systems, both engineered and natural. Amongst engineering
case studies, shs have been used for modelling and analysis of micro grids [?],
smart buildings [23], avionics [7], automation of medical devices [3]. A benchmark
for shs is also described in [10]. However, a wider adoption of shs in real-
world applications is stymied by a few factors: (i) the complexity associated
with modelling shs; (ii) the generality of their mathematical framework, which
requires an arsenal of advanced and diverse techniques to analyse them; and (iii)
the undecidability of verification/synthesis problems over shs and the curse of
dimensionality associated with their approximations.

This paper introduces a new software tool - StocHy - which is aimed at
simplifying both the modelling of shs and their analysis, and which targets
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the wider adoption of shs, also by non-expert users. With focus on the three
limiting factors above, StocHy allows to describe shs by parsing or extending
well-known and -used state-space models and generates a standard shs model
automatically and formats it to be analysed. StocHy can (i) perform verification
tasks, e.g., compute the probability of staying within a certain region of the state
space from a given set of initial conditions; (ii) automatically synthesise policies
(strategies) maximising this probability, and (iii) simulate the shs evolution over
time. StocHy is implemented in c++ and modular making it both extendible
and portable.

Related work. There exist only a few tools that can handle (classes of) shs.
Of much inspiration for this contribution, faust2 [28] generates abstractions for
uncountable-state discrete-time stochastic processes, natively supporting shs mod-
els with a single discrete mode and finite actions, and performs verification of
reachability-like properties and corresponding synthesis of policies. faust2 is
näıvely implemented in matlab and lacks in scalability to large models. The
modest toolset [18] allows to model and to analyse classes of continuous-time
shs, particularly probabilistic hybrid automata (pha) that combine probabilis-
tic discrete transitions with deterministic evolution of the continuous variables.
The tool for stochastic and dynamically coloured petri nets (sdcpn) [13] sup-
ports compositional modelling of pha and focuses on simulation via Monte Carlo
techniques. The existing tools highlight the need for a new software that allows
for (i) straightforward and general shs modelling construction and (ii) scalable
automated analysis.

Contributions. The StocHy tool newly enables

– formal verification of shs via either of two abstraction techniques:
• for discrete-time, continuous-space models with additive disturbances,

and possibly with multiple discrete modes, we employ formal abstrac-
tions as general Markov chains or Markov decision processes [28]; StocHy
improves techniques in the faust2 tool by simplifying the input model
description, by employing sparse matrices to manipulate the transition
probabilities and by reducing the computational time needed to generate
the abstractions.

• for models with a finite number of actions, we employ interval Markov
decision processes and the model checking framework in [22]; StocHy pro-
vides a novel abstraction algorithm allowing for efficient computation of
the abstract model, by means of an adaptive and sequential refining of
the underlying abstraction. We show that we are able to generate sig-
nificantly smaller abstraction errors and to verify models with up to 12
continuous variables.

– control (strategy, policy) synthesis via formal abstractions, employing:
• stochastic dynamic programming; StocHy exploits the use of symbolic

kernels.
• robust synthesis using interval Markov decision processes; StocHy auto-

mates the synthesis algorithm with the abstraction procedure and the
temporal property of interest, and exploits the use of sparse matrices;
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– simulation of complex stochastic processes, such as shs, by means of Monte
Carlo techniques; StocHy automatically generates statistics from the sim-
ulations in the form of histograms, visualising the evolution of both the
continuous random variables and the discrete modes.

This contribution is structured as follows: Sec. 2 crisply presents the theoreti-
cal underpinnings (modelling and analysis) for the tool. We provide an overview
of the implementation of StocHy in Sec. 3. We highlight features and use of
StocHy by a set of experimental evaluations in Sec. 4: we provide four differ-
ent case studies that highlight the applicability, ease of use, and scalability of
StocHy. Details on executing all the case studies are detailed in this paper and
within a Wiki page that accompanies the StocHy distribution.

2 Theory: Models, Abstractions, Simulations

2.1 Models - Discrete-time Stochastic Hybrid Systems

StocHy supports the modelling of the following general class of shs [1, 4].

Definition 1. A shs [4] is a discrete-time model defined as the tuple

H = (Q, n,U , Tx, Tq), where (1)

– Q = {q1, q2, . . . , qm}, m ∈ N, represents a finite set of modes (locations);
– n ∈ N is the dimension of the continuous space Rn of each mode; the hybrid

state space is then given by D= ∪q∈Q{q} × Rn;
– U is a continuous set of actions, e.g. Rv;
– Tq : Q × D × U → [0, 1] is a discrete stochastic kernel on Q given D × U ,

which assigns to each s = (q, x) ∈ D and u ∈ U , a probability distribution
over Q : Tq(·|s, u);

– Tx : B(Rn) × D × U → [0, 1] is a Borel-measurable stochastic kernel on Rn
given D × U , which assigns to each s ∈ D and u ∈ U a probability measure
on the Borel space (Rn,B(Rn)) : Tx(·|s, u).

In this model the discrete component takes values in a finite set Q of modes
(a.k.a. locations), each endowed with a continuous domain (the Euclidean space
Rn). As such, a point s over the hybrid state space D is pair (q, x), where q ∈ Q
and x ∈ Rn. The semantics of transitions at any point over a discrete time
domain, are as follows: given a point s ∈ D, the discrete state is chosen from
Tq, and depending on the selected mode q ∈ Q the continuous state is updated
according to the probabilistic law Tx. Non-determinism in the form of actions
can affect both discrete and continuous transitions.

Remark 1. A rigorous characterisation of shs can be found in [1], which intro-
duces a general class of models with probabilistic resets and a hybrid actions
space. Whilst we can deal with general shs models, in the case studies of this
paper we focus on special instances, as described next. ut
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Remark 2 (Special instance). In Case Study 2 (see Sec. 4.2) we look at models
where actions are associated to a deterministic selection of locations, namely
Tq : U → Q and U is a finite set of actions. ut

Remark 3 (Special instance). In Case Study 4 (Section 4.4) we consider non-
linear dynamical models with bilinear terms, which are characterised for any q ∈
Q by xk+1 = Aqxk+Bquk+xk

∑v
i=1Nq,iui,k+Gqwk, where k ∈ N represents the

discrete time index, Aq, Bq, Gq are appropriately sized matrices, Nq,i represents
the bilinear influence of the i−th input component ui, and wk = w ∼ N (·; 0, 1)
and N (·; η, ν) denotes a Gaussian density function with mean η and covariance
matrix ν2. This expresses the continuous kernel Tx : B(Rn)×D × U → [0, 1] as

N (·;Aqx+Bqu+ x

v∑
i=1

Nq,iui + Fq, Gq). (2)

In Case Study 1-2-3 (Sec. 4.1-4.3), we look at the special instance from [22],
where the dynamics are autonomous (no actions) and linear: here Tx is

N (·;Aqx+ Fq, Gq), (3)

where in Case Studies 1, 3 Q is a single element. ut

Definition 2. A Markov decision process (mdp) [5] is a discrete-time model
defined as the tuple

H = (Q,U , Tq), where (4)

– Q = {q1, q2, . . . , qm}, m ∈ N, represents a finite set of modes;
– U is a finite set of actions;
– Tq : Q×Q × U → [0, 1] is a discrete stochastic kernel that assigns, to each
q ∈ Q and u ∈ U , a probability distribution over Q : Tq(·|q, u).

Whenever the set of actions is trivial or a policy is synthesised and used (cf.
discussion in Sec. 2.2) the mdp reduces to a Markov chain (mc), and a kernel
Tq : Q×Q → [0, 1] assigns to each q ∈ Q a distribution over Q as Tq(·|q).

Definition 3. An interval Markov decision process ( imdp) [26] extends the syn-
tax of an mdp by allowing for uncertain Tq, and is defined as the tuple

H = (Q,U , P̌ , P̂ ), where (5)

– Q and U are as in Definition 2;
– P̌ and P̂ : Q × U × Q → [0, 1] is a function that assigns to each q ∈ Q

a lower (upper) bound probability distribution over Q : P̌ (·|q, u) (P̂ (·|q, u)
respectively).

For all q, q′ ∈ Q and u ∈ U , it holds that P̌ (q′|q, u) ≤ P̂ (q′|q, u) and,∑
q′∈Q

P̌ (q′|q, u) ≤ 1 ≤
∑
q′∈Q

P̂ (q′|q, u).

Note that when P̌ (·|q, u) = P̂ (·|q, u), the imdp reduces to the mdp with P̌ (·|q, u) =
P̂ (·|q, u) = Tq(·|q, u).
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2.2 Formal Verification and Strategy Synthesis via Abstractions

Formal verification and strategy synthesis over shs are in general not decid-
able [4, 29], and can be tackled via quantitative finite abstractions. These are
precise approximations that come in two main different flavours: abstractions
into mdp [4, 28] and into imdp [22]. Once the finite abstractions are obtained,
and with focus on specifications expressed in (non-nested) pctl or fragments
of ltl [5], formal verification or strategy synthesis can be performed via proba-
bilistic model checking tools, such as prism [21], storm [12], iscasMc [17]. We
overview next the two alternative abstractions, as implemented in StocHy.

Abstractions into Markov decision processes Following [27], mdp are gen-
erated by either (i) uniformly gridding the state space and computing an ab-
straction error, which depends on the continuity of the underlying continuous
dynamics and on the chosen grid; or (ii) generating the grid adaptively and se-
quentially, by splitting the cells with the largest local abstraction error until a
desired global abstraction error is achieved. The two approaches display an in-
tuitive trade-off, where the first in general requires more memory but less time,
whereas the second generates smaller abstractions. Either way, the probability to
transit from each cell in the grid into any other cell characterises the mdp matrix
Tq. Further details can be found in [28]. StocHy newly provides a c++ imple-
mentation and employs sparse matrix representation and manipulation, in order
to attain faster generation of the abstraction and use in formal verification or
strategy synthesis.

Verification via mdp (when the action set is trivial) is performed to check the
abstraction against non-nested, bounded-until specifications in pctl [5] or co-
safe linear temporal logic (csltl) [20].

Strategy synthesis via mdp is defined as follows. Consider, the class of determin-
istic and memoryless Markov strategies π = (µ0, µ1, . . . ) where µk : Q → U . We
compute the strategy π? that maximises the probability of satisfying a formula,
with algorithms discussed in [28].

Abstraction into Interval Markov decision processes (imdp) is based on
a procedure in [11] performed using a uniform grid and with a finite set of actions
U (see Remark 2). StocHy newly provides the option to generate a grid using
adaptive/sequential refinements (similar to the case in the paragraph above) [27],
which is performed as follows: (i) define a required minimal maximum abstraction
error εmax; (ii) generate a coarse abstraction using the Algorithm in [11] and
compute the local error εq that is associated to each abstract state q; (iii) split
all cells where εq > εmax along the main axis of each dimension, and update the
probability bounds (and errors); and (iv) repeat this process until ∀q, εq < εmax.

Verification via imdp is run over properties in csltl or bounded-LTL (bltl) form
using the imdp model checking algorithm in [22].

Synthesis via imdp [11] is carried out by extending the notions of strategies of
mdp to depend on memory, that is on prefixes of paths.
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2.3 Analysis via Monte Carlo simulations

Monte Carlo techniques generate numerical sampled trajectories representing
the evaluation of a stochastic process over a predetermined time horizon. Given
a sufficient number of trajectories, one can approximate the statistical properties
of the solution process with a required confidence level. This approach has been
adopted for simulation of different types of shs. [19] applies sequential Monte
Carlo simulation to shs to reason about rare-event probabilities. [13] performs
Monte Carlo simulations of classes of shs described as Petri nets. [8] proposes
a methodology for efficient Monte Carlo simulations of continuous-time shs. In
this work, we analyse a shs model using Monte Carlo simulations following the
approach in [4]. Additionally, we generate histogram plots at each time step,
providing further insight on the evolution of the solution process.

3 Overview of StocHy

Installation StocHy is set up using the provided get dep file found within
the distribution package, which will automatically install all the required depen-
dencies. The executable run.sh builds and runs StocHy. This basic installation
setup has been successfully tested on machines running Ubuntu 18.04.1 LTS
GNU and Linux operating systems.

Input interface The user interacts with StocHy via the main file and must
specify (i) a high-level description of the model dynamics and (ii) the task to
be performed. The description of model dynamics can take the form of a list of
the transition probabilities between the discrete modes, and of the state-space
models for the continuous variables in each mode; alternatively, a description can
be obtained by specifying a path to a matlab file containing the model descrip-
tion in state-space form together with the transition probability matrix. Tasks
can be of three kinds (each admitting specific parameters): simulation, verifica-
tion, or synthesis. The general structure of the input interface is illustrated via
an example in Listing 1.1: here the user is interested in simulating a shs with
two discrete modes Q = {q0, q1} and two continuous variables evolve according
to (3). The model is autonomous and has no control actions. The relationship
between the discrete modes is defined by a fixed transition probability (line 1).
The evolution of the continuous dynamics are defined in lines 2-14. The initial
condition for both the discrete modes and the continuous variables are set in
lines 16-21 (this is needed for simulation tasks). The equivalent shs model is
then set up by instantiating an object of type shs t<arma::mat,int> (line 23).
Next, the task is defined in line 27 (simulation with a time horizon K = 32, as
specified in line 25 and using the simulator library, as set in line 26). We combine
the model and task specification together in line 29. Finally, StocHy carries out
the simulation using the function performTask (line 31).

Modularity StocHy comprises independent libraries for different tasks, namely
(i) faust2, (ii) imdp, and (iii) simulator. Each of the libraries is separate and
depends only on the model structure that has been entered. This allows for
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1 arma::mat Tq = { {0.4, 0.6},{0.7,0.3}}; // Transition probabilities

2 // Evolution of the continuous variables for each discrete mode

3 // First model

4 arma::mat Aq0 = {{0.5, 0.4},{0.2,0.6}};

5 arma::mat Fq0 = { {0},{0}};

6 arma::mat Gq0 = {{0.4,0},{0.3, 0.3}};

7 ssmodels_t modelq0(Aq0, Fq0, Gq0);

8 // Second model

9 arma::mat Aq1 = {{0.6, 0.3},{0.1,0.7}};

10 arma::mat Fq1 = { {0},{0}};

11 arma::mat Gq1 = {{0.2,0},{0.1, 0}};

12 ssmodels_t modelq1(Aq1,Fq1, Gq1);

13 std::vector<ssmodels_t> models =

14 {modelq1,modelq2};

15 // Set initial conditions

16 // Initial state q_0

17 arma::mat q_init = arma::zeros<arma::mat>(1,1);

18 // Initial continuous variables

19 arma::mat x1_init = arma::ones<arma:mat>(2,1);

20 exdata_t data(x1_init,q_init);

21 // Build shs

22 shs_t<arma::mat,int> mySHS(Tq,models,data);

23 // Time horizon

24 int K = 32;

25 // Task definition (1 = simulator, 2 = faust^2, 3 = imdp)

26 int lb = 1;

27 taskSpec_t mySpec(lb,K);

28 // Combine

29 inputSpec_t<arma::mat,int> myInput(mySHS,mySpec);

30 // Perform task

31 performTask(myInput);

Listing 1.1: Description of main file for simulating a shs consisting of two discrete
modes and two continuous variables evolving according to (2).

 

Input

generated

User Model description

 

Transition Probabilities

 

State space model for mode 1

 

State space model for mode n

 

. . .

 

Build SHS

User Task Specification

 

Combine

Run

seamless extensions of individual sub-modules with new or existing tools and
methods. The function performTask acts as multiplexer for calling any of the
libraries depending on the input model and task specification.

Data structures StocHy makes use of multiple techniques to minimise com-
putational overhead. It employs vector algebra for efficient handling of linear
operations, and whenever possible it stores and manipulates matrices as sparse
structures. It uses the linear algebra library Armadillo [24, 25], which applies
multi-threading and a sophisticated expression evaluator that has been shown
to speed up matrix manipulations in c++ when compared to other libraries.
faust2 based abstractions define the underlying kernel functions symbolically
using the library GiNaC [6], for easy evaluation of the stochastic kernels.

Output interface We provide outputs as text files for all three libraries, which
are stored within the results folder. We also provide additional python scripts
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for generating plots as needed. For abstractions based on faust2, the user has
the additional option to export the generated mdp or mc to prism format,
to interface with the popular model checker [21] (StocHy prompts the user this
option following the completion of the verification or synthesis task). As a future
extension, we plan to export the generated abstraction models to the model
checker storm [12] and to the modelling format jani [9].

4 StocHy: Experimental Evaluation

We apply StocHy on four different case studies highlighting different models and
tasks to be performed. All the experiments are run on a standard laptop, with
an Intel Core i7-8550U CPU at 1.80GHz × 8 and with 8 GB of RAM.

4.1 Case Study 1 - Formal Verification

We consider the shs model first presented in [2]. The model takes the form of (1),
and has one discrete mode and two continuous variables representing the level
of CO2 (x1) and the ambient temperature (x2), respectively. The continuous
variables evolve according to

x1,k+1 = x1,k +
∆

V
(−ρmx1,k + %c(Cout − x1,k)) + σ1wk, (6)

x2,k+1 = x2,k +
∆

Cz
(ρmCpa(Tset − x2,k) +

%c
R

(Tout − x2,k)) + σ2wk,

where ∆ the sampling time [min], V is the volume of the zone [m3], ρm is
the mass air flow pumped inside the room [m3/min], %c is the natural drift air
flow [m3/min], Cout is the outside CO2 level [ppm/min], Tset is the desired
temperature [oC], Tout is the outside temperature [ ◦C/min], Cz is the zone
capacitance [Jm3/ ◦C], Cpa is the specific heat capacity of air [J/ ◦C], R is the
resistance to heat transfer [ ◦C/J ], and σ(·) is a variance term associated to the
noise wk ∼ N (0, 1).

We are interested in verifying whether the continuous variables remain within
the safe set Xsafe = [405, 540]× [18, 24] over 45 minutes (K = 3). This property
can be encoded as a bltl property, ϕ1 := �≤KXsafe, where � is the “always”
temporal operator considered over a finite horizon. The semantics of bltl is
defined over finite traces, denoted by ζ = {ζj}Kj=0. A trace ζ satisfies ϕ1 if
∀j ≤ K, ζj ∈ Xsafe, and we quantify the probability that traces generated by
the shs satisfy ϕ1.

When tackled with the method based on faust2 that hinges on the compu-
tation of Lipschitz constants, this verification task is numerically tricky, in view
of difference in dimensionality of the range of x1 and x2 within the safe set Xsafe

and the variance associated with each dimension Gq0 = [ σ1 0
0 σ2

] = [ 40.096 0
0 0.511 ].

In order to mitigate this, StocHy automatically rescales the state space so all
the dynamics evolve in a comparable range.
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Case study 1: Listings explaining task specification for (a) faust2 and (b) imdp

1 // Dynamics definition

2 shs_t<arma::mat,int>

myShs(’../CS1.mat’);

3 // Specification for FAUST^2

4 // safe set

5 arma::mat safe =

{{405,540},{18,24}};

6 // max error

7 double eps = 1;

8 // grid type

9 // (1 = uniform, 2 = adaptive)

10 int gridType = 1;

11 // time horizon

12 int K = 3;

13 // task and property type

14 // (1 = verify safety , 2 =

verify reach-avoid,

15 // 3 = safety synthesis, 4 =

reach-avoid synthesis)

16 int p = 1;

17 // library (1 = simulator, 2 =

faust^2, 3 = imdp)

18 int lb = 2;

19 // task specification

20 taskSpec_t

mySpec(lb,K,p,safe,eps,gridType);

Listing 1.2: (a) faust2

// Dynamics definition

shs_t<arma::mat,int>

myShs(’../CS1.mat’);

// Specification for IMDP

// safe set

arma::mat safe

{{405,540},{18,24}};

// grid size for each dimension

arma::mat grid =

{{0.0845,0.0845}};

// relative tolerance

arma::mat reft = {{1,1}};

// time horizon

int K = 3;

// task and property type

// (1 = verify safety , 2 =

verify reach-avoid,

// 3 = safety synthesis, 4 =

reach-avoid synthesis)

int p = 1;

// library (1 = simulator, 2 =

faust^2, 3 = imdp)

int lb = 3;

// task specification

taskSpec_t

mySpec(lb,K,p,safe,grid,reft);

Listing 1.3: (b) imdp

Implementation StocHy provides two verification methods, one based on faust2

and the second based on imdp. We parse the model from file cs1.mat (see line 2
of Listings 1.2(a) and 1.3(b), corresponding to the two methods). cs1.mat sets
parameter values to (6) and uses a ∆ = 15 [min]. As anticipated, we employ
both techniques over the same model description:

– for faust2 we specify the safe set (Xsafe), the maximum allowable error,
the grid type (whether uniform or adaptive grid), the time horizon, together
with the type of property of interest (safety or reach-avoid). This is carried
out in lines 5-21 in Listing 1.2(a).

– for the imdp method, we define the safe set (Xsafe), the grid size, the relative
tolerance, the time horizon and the property type. This can be done by
defining the task specification using lines 5-21 in Listing 1.3 (b).

Finally, to run either of the methods on the defined input model, we com-
bine the model and the task specification using inputSpec t<arma::mat,int>

myInput(myShs,mySpec), then run the command performTask(myInput). The
verification results for both methods are stored in the results directory:
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– for faust2, StocHy generates four text files within the results folder:
representative points.txt contains the partitioned state space; tran-
sition matrix.txt consists of the transition probabilities of the generated
abstract mc; problem solution.txt contains the sat probability for each
state of the mc; and e.txt stores the global maximum abstraction error.

– for imdp, StocHy generates three text files in the same folder: stepsmin.txt
stores P̌ of the abstract imdp; stepsmax.txt stores P̂ ; and solution.txt
contains the sat probability and the errors εq for each abstract state q.

Tool Impl. |Q| Time Error
Method Platform [states] [s] εmax

faust2 matlab 576 186.746 1
faust2 c++ 576 51.420 1
imdp c++ 576 87.430 0.236

faust2 matlab 1089 629.037 1
faust2 c++ 1089 78.140 1
imdp c++ 1089 387.940 0.174

faust2 matlab 2304 2633.155 1
faust2 c++ 2304 165.811 1
imdp c++ 2304 1552.950 0.121

faust2 matlab 3481 7523.771 1
faust2 c++ 3481 946.294 1
imdp c++ 3481 3623.090 0.098

faust2 matlab 4225 10022.850 0.900
faust2 c++ 4225 3313.990 0.900
imdp c++ 4225 4854.580 0.089

Table 1: Case study 1: Comparison of
verification results for ϕ1 when using
faust2 vs imdp.

Fig. 1: Case study 1: Lower bound
probability of satisfying ϕ1 gener-
ated using imdp with 3481 states.

Outcomes We perform the verification task using both faust2 and imdp, over
different sizes of the abstraction grid. We employ uniform gridding for both
methods. We further compare the outcomes of StocHy against those of the
faust2 tool, which is implemented in matlab [28]. Note that the imdp con-
sists of |Q|+ 1 states, where the additional state is the sink state qu = D\Xsafe.
The results are shown in Table 1. We saturate (conservative) errors output that
are greater than 1 to this value. We show the probability of satisfying the for-
mula obtained from imdp for a grid size of 3481 states in Fig. 1 – similar prob-
abilities are obtained for the remaining grid sizes. As evident from Table 1,
the new imdp method outperforms the approach using faust2 in terms of the
maximum error associated to the abstraction (faust2 generates an abstraction
error < 1 only with 4225 states). Comparing the faust2 within StocHy and the
original faust2 implementation (running in matlab), StocHy offers computa-
tional speed-up for the same grid size. This is due to the faster computation
of the transition probabilities, through StocHy’s use of matrix manipulations.
faust2 within StocHy also simplifies the input of the dynamical model descrip-
tion: in the original faust2 implementation, the user is asked to manually input
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Fig. 2: Case study 2: (a) Gridded domain together with a superimposed sim-
ulation of trajectory initialised at (−0.5,−1) within q0, under the synthesised
optimal switching strategy π∗. Lower probabilities of satisfying ϕ2 for mode q0
(b) and for mode q1 (c), as computed by StocHy.

the stochastic kernel in the form of symbolic equations in a matlab script.
This is not required when using StocHy, automatically generates the underlying
symbolic kernels from the input state-space model descriptions.

4.2 Case Study 2 - Strategy Synthesis

We consider a stochastic process with two modes Q = {q0, q1}, which continu-
ously evolves according to (3) with

Aq0 =

[
0.43 0.52
0.65 0.12

]
, Gq0 =

[
1 0.1
0 0.1

]
, Aq0 =

[
0.65 0.12
0.52 0.43

]
, Gq1 =

[
0.2 0
0 0.2

]
, Fqi =

[
0
0

]
,

and i ∈ {0, 1}. Consider the continuous domain shown in Fig.2a over both
discrete locations. We plan to synthesise the optimal switching strategy π? that
maximises the probability of reaching the green region, whilst avoiding the purple
one, over an unbounded time horizon, given any initial condition within the
domain. This can be expressed with the ltl formula, ϕ2 := (¬purple) U green,
where U is the “until” temporal operator, and the atomic propositions {purple,
green} denote regions within the set X = [−1.5, 1.5]2 (see Fig. 2a).

Implementation We define the model dynamics following lines 3-14 in List-
ing 1.1, while we use Listing 1.3 to specify the synthesis task and together with
its associated parameters. The ltl property ϕ2 is over an unbounded time hori-
zon, which leads to employing the imdp method for synthesis (recall that the
faust2 implementation can only handle time-bounded properties, and its ab-
straction error monotonically increases with the time horizon of the formula).
In order to encode the task we set the variable safe to correspond to X the
grid size to 0.12 and the relative tolerance to 0.06 along both dimensions (cf.
lines 5-10 in Listing 1.3). We set the time horizon K = -1 to represent an un-
bounded time horizon, let p = 4 to trigger the synthesis engine over the given
specification and make lb = 3 to use imdp method (cf. lines 12-19 in List-
ing 1.3). This task specification partitions the set X into the underlying imdp via
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uniform gridding. Alternatively, the user has the option to make use of the
adaptive-sequential algorithm by defining a new variable eps max which charac-
terise the maximum allowable abstraction error and then specify the task using
taskSpec t mySpec(lb,K,p,boundary,eps max,grid,rtol);. Next, we define
two files (phi1 .txt and phi2.txt) containing the coordinates within the grid-
ded domain (see Fig.2a) associated with the atomic propositions purple and
green, respectively. This allows for automatic labelling of the state-space over
which synthesis is to be performed. Running the main file, StocHy generates a
Solution.txt file within the results folder. This contains the synthesised π?

policy, the lower bound for the probabilities of satisfying ϕ2, and the local errors
εq for any region q.

Outcomes The case study generates an abstraction with a total of 2410 states,
a maximum probability of 1, a maximum abstraction error of 0.21, and it requires
a total time of 1639.3 [s]. In this case, we witness a slightly larger abstraction
error via the imdp method then in the previous case study. This is due the non-
diagonal covariance matrix Gq0 which introduces a rotation in X within mode
q0. When labelling the states associated with the regions purple and green,
an additional error is introduced due to the over- and under-approximation of
states associated with each of the two regions. We further show the simulation
of a trajectory under π? with a starting point of (−0.5,−1) in q0, within Fig.2a.

4.3 Case Study 3 - Scaling in Continuous Dimension of Model

We now focus on the continuous dynamics by considering a stochastic process
with Q = {q0} (single mode) and dynamics evolving according to (3), charac-
terised by Aq0 = 0.8Id, Fq0 = 0d and Gq0 = 0.2Id, where d corresponds to the
number of continuous variables. We are interested in checking the ltl specifica-
tion ϕ3 := �Xsafe, where Xsafe = [−1, 1]d, as the continuous dimension d of the
model varies. Here “�” is the “always” temporal operator and a trace ζ satisfies
ϕ3 if ∀k ≥ 0, ζk ∈ Xsafe. In view of the focus on scalability for this Case Study
3, we disregard discussing the computed probabilities, which we instead covered
in Section 4.1.

Implementation Similar to Case Study 2, we follow lines 3-14 in Listing 1.1
to define the model dynamics, while we use Listing 1.3 to specify the verification
task using the imdp method. For this example, we employ a uniform grid having
a grid size of 1 and relative tolerance of 1 for each dimension (cf. lines 5-10 in
Listing 1.3). We set K = -1 to represent an unbounded time horizon, p = 1 to
perform verification over a safety property and lb = 3 to use the imdp method
(cf. lines 12-19 in Listing 1.3). In Table 2 we list the number of states required for
each dimension, the total computational time, and the maximum error associated
with each abstraction.

Outcomes From Table 2 we can deduce that by employing the imdp method
within StocHy, the generated abstract models have manageable state spaces,
thanks to the tight error bounds that is obtained. Notice that since the num-
ber of cells per dimension is increased with the dimension d of the model, the
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Dimensions
2 3 4 5 6 7 8 9 10 11 12

[d]

|Q|
4 14 30 62 126 254 510 1022 2046 4094 8190

[states]

Time taken
0.004 0.06 0.21 0.90 4.16 19.08 79.63 319.25 1601.31 5705.47 21134.23

[s]

Error
4.15e-5 3.34e-5 2.28e-5 9.70e-5 8.81e-6 1.10e-6 2.95e-6 4.50e-7 1.06e-7 4.90e-8 4.89e-8

(εmax)

Table 2: Case study 3: Verification results of the imdp-based approach over ϕ3,
for varying dimension d of the stochastic process.

associated abstraction error εmax is decreased. The small error is also due to
the underlying contractive dynamics of the process. This is a key fact leading
to scalability over the continuous dimension d of the model: StocHy displays
a significant improvement in scalability over the state of the art [28] and al-
lows abstracting stochastic models with relevant dimensionality. Furthermore,
StocHy is capable to handle specifications over infinite horizons (such as the
considered until formula).

4.4 Case Study 4 - Simulations

For this last case study, we refer to the CO2 model described in Case Study 1
(Sec. 4.1). We extend the CO2 model to capture (i) the effect of occupants leaving
or entering the zone within a time step (ii) the opening or closing of the windows
in the zone [2]. ρm is now a control input and is an exogenous signal. This can be
described as a shs comprising two-dimensional dynamics, over discrete modes in
the set {q0 = (E,C), q1 = (F,C), q2 = (F,O), q3 = (E,O)} describing possible
configurations of the room (empty (E) or full (F), and with windows open (O)
or closed (C)). A mc representing the discrete modes and their dynamics is in
Figure 3a. The continuous variables evolve according to Eqn. (6), which now
captures the effect of switching between discrete modes, as

x1,k+1 = x1,k +
∆

V
(−ρmx1,k + %o,c(Cout − x1,k)) + 1FCocc,k + σ1wk, (7)

x2,k+1 = x2,k +
∆

Cz
(ρmCpa(Tset − x2,k) +

%o,c
R

(Tout − x2,k)) + 1FTocc,k + σ2wk,

where the additional terms are: %(·) is the natural drift air flow that changes
depending whether the window is open (%o) or closed (%c) [m3/min]; Cocc is the
generated CO2 level when the zone is occupied (it is multiplied by the indicator
function 1F ) [ppm/min]; Tocc is the generated heat due to occupants [ ◦C/min],
which couples the dynamics in (7) as Tocc,k = vx1,k + ~.

Implementation The provided file cs4.mat sets the values of the parameters
in (7) and contains the transition probability matrix representing the relation-
ships between discrete modes. We select a sampling time ∆ = 15 [min] and
simulate the evolution of this dynamical model over a fixed time horizon K = 8
hours (i.e. 32 steps) with an initial CO2 level x1 ∼ N (450, 25) [ppm] and a
temperature level of x2 ∼ N (17, 2) [ ◦C]. We define the initial conditions us-
ing Listing 1.4. Line 2 defines the number of Monte Carlo simulations using by
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Fig. 3: Case study 4: (a)
mc for the discrete modes
of the CO2 model and (b)
input control signal.

1 // Number of simulations

2 int monte = 5000;

3 // Initial continuous variables

4 arma::mat x_init =

arma::zeros<arma::mat>(2,monte);

5 // Initialise random generators

6 std::random_device rand_dev;

7 std::mt19937 generator(rand_dev());

8 // Define distributions

9 std::normal_distribution<double>

d1{450,25};

10 std::normal_distribution<double> d2{17,2};

11 for(size_t i = 0; i < monte; ++i)

12 {

13 x_init(0,i) = d1(generator);

14 x_init(1,i) = d2(generator);

15 }

16 // Initial discrete mode q_0 = (E,C)

17 arma::mat q_init =

arma::zeros<arma::mat>(1,monte);

18 // Definition of control signal

19 // Read from .txt/.mat file or define here

20 arma::mat u =readInputSignal("../u.txt");

21 //Combining

22 exdata_t data(x_init,u,q_init);

Listing 1.4: Case study 4: Definition of intial
conditions for simulation

the variable monte and sets this to 5000. We instantiate the initial values of
the continuous variables using the term x init, while we set the initial discrete
mode using the variable q init. This is done using lines 4-17 which defines inde-
pendent normal distribution for each of the continuous variable from which we
sample 5000 points for each of the continuous variables and defines the initial
discrete mode to q0 = (E,C). We define the control signal ρm in line 20, by
parsing the u.txt which contains discrete values of ρm for each time step (see
Fig. 3b). Once the model is defined, we follow Listing 1.1 to perform the sim-
ulation. The simulation engine also generates a python script, simPlots.py,
which gives the option to visualise the simulation outcomes offline.

Outcomes The generated simulation plots are shown in Fig. 4, which depicts:
(i) a sample trace for each continuous variable (the evolution of x1 is shown in
Fig. 4a, x2 in Fig. 4b) and for the discrete modes (see Fig. 4c); and (ii) histograms
depicting the range of values the continuous variables can be in during each time
step and the associated count (see Fig. 4d for x1 and Fig. 4e for x2); and a
histogram showing the likelihood of being in a discrete mode within each time
step (see Fig. 4f). The total time taken to generate the simulations is 48.6 [s].
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Fig. 4: Case study 4: Simulation single traces for continuous variables (a) x1, (b)
x2 and discrete modes (c) q. Histogram plots with respect to time step for (d)
x1, (e) x2 and discrete modes (f) q.

5 Conclusions and Extensions

We have presented StocHy, a new software tool for the quantitative analysis of
stochastic hybrid systems. There is a plethora of enticing extensions that we are
planning to explore. In the short term, we intend to: (i) interface with other
model checking tools such as storm [12] and the modest toolset [16]; (ii)
embed algorithms for policy refinement, so we can generate policies for mod-
els having numerous continuous input variables [15]; (iii) benchmarking the
tool against a set of shs models [10]. In the longer term, we plan to extend
StocHy such that (i) it can employ a graphical user-interface; (ii) it can allow
analysis of continuous-time shs; and (iii) it can make use of data structures such
as multi-terminal binary decision diagrams [14] to reduce the memory require-
ments during the construction of the abstract mdp or imdp.
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