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Abstract. SafePILCO is a software tool for safe and data-efficient pol-
icy search with reinforcement learning. It extends the known PILCO al-
gorithm, originally written in MATLAB, to support safe learning. We
provide a Python implementation and leverage existing libraries that al-
low the codebase to remain short and modular, which is appropriate for
wider use by the verification, reinforcement learning, and control com-
munities.

1 Goals and design philosophy

Reinforcement learning (RL) is a well-known, widely-used framework that has
recently enjoyed breakthroughs using model-free methods based on deep neu-
ral networks [27IT412T]. Notable shortcomings of model-free deep RL algorithms
are their need for extensive training datasets, the lack of interpretability, and
the difficulty to verify their outcomes. It is data-efficient, which makes it ap-
pealing for applications involving physical systems. PILCO [13] (Probabilistic
Inference for Learning COntrol) represents a state-of-the-art model-based RL
method that relies on Gaussian processes (thus, not on deep neural networks).
So far, PILCO does not incorporate safety constraints and comes as a MATLAB
implementation. SafePILCO, based on [29], extends the original algorithm with
safety constraints embedded in the training procedure and as learning goals, and
comes as a concise, clean and efficient Python implementation.

SafePILCO is underpinned by an object-oriented architecture, enabling code
re-use by keeping the implementation short and modular, with the capability
to flexibly replace individual components. It takes advantage of available open
source libraries, both as building blocks of the core algorithm, and as predefined
tasks for evaluating the performance of the algorithm. It uses standard libraries
to implement specific sub-tasks and to facilitate extensions, e.g. the GPflow
library give access to an array of models with a consistent interface. Additionally,
by using standard scenarios for experimental evaluation, SafePILCO enables users
to employ it as a benchmark to easily compare their own methods against.



2 Polymenakos et al.

2 Description of the Software Tool

SafePILCO comes as an open source Python packagdﬂ To make reproduction of
the experiments easier we provide additional functionalities (such as logging, post
processing results and creating the plots in the paper) in a separate repositor

In a standard object-oriented fashion, the main components of the algorithm are
organised as objects, following a hierarchy of classes. The main components are:

— the Gaussian process model, providing short-term and long-term predictions;
— the policy or controller, which selects an action based on the state observation
at every time step;

the parametric reward function, which captures the performance of the al-
gorithm and is also tasked with enforcing safe behaviour;

— scenarios that capture environment dynamics specific to a case study.

Firstly, the environment the agent interacts with needs to be specified.
SafePILCO is designed to seamlessly interface with any environment following
the OpenAl gym API. Therefore, gym environments can be directly invoked, as
well as user-defined environments equipped with the necessary functionalities.
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Fig. 1: The basic structure of the SafePILCO implementation. Black arrows correspond
to object-attribute relationship, dashed lines to inheritance, and wide arrows to data
flow. Classes are represented by blue boxes and key functions by green boxes.
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The PILCO class is the central object of the package, encapsulating the GP
model, the controller, and the reward function as attributes. PILCO employs the

! Main package repository: https://github.com/nrontsis/PILCO
2 Experiments and figures reproduction repository: https://github.com/kyr-pol/
SafePILCO_Tool-Reproducibility
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model and the controller to predict a trajectory, calls the reward function to
evaluate it, and uses the gradients calculated through automatic differentiation
in combination with an external optimiser, to improve the controller parameters.
The SafePILCO subclass combines the common additive reward function com-
ponent used for performance, with a multiplicative component that encodes the
risk of violating the safety requirement over any time step of the episode (this
is used to enforce safety during training).

The mgpr class implements the multi-input, multi-output Gaussian process
regression that underpins the dynamical model. Specifically, mgpr combines sev-
eral, multi-input/single-output GP models. These GP models are provided by
GPflow, along with standard GP inference and prediction. Our code newly pro-
vides GP predictions for multiple output dimensions, when the inputs are multi-
dimensional and noisy. The mgpr class also allows defining priors for the GP
hyperparameters.

The policy (or the controller) defines how the agent selects appropriate ac-
tions at each time step. Policies are implemented as memory-less, deterministic
feedback controllers: the control input is thus directly dependent on the en-
vironment state that the agent observes at the current time step. The agent
implements a policy 7 of the form u = 7?(z), where # are the policy param-
eters. The package provides the controller class with two subclasses, one for
linear controllers, and one for controllers based on radial basis functions (RBF).
The only extra requirement from the controller is the ability to calculate, for a
Gaussian-distributed state (including the predicted states during the planning
phase), a similarly Gaussian-distributed control input, so that the state and in-
put are jointly Gaussian. The policies are parametric and optimising the values
of these parameters 6 constitutes the overall policy search objective.

The final part concerns the specification of the reward function. We note
that this is somewhat different from most of the RL literature: in SafePILCO,
much like for the original PILCO [I3] algorithm, the reward function is known
analytically a-priori. The reward class implements the standard reward, while
also encoding an adaptively weighted penalty that encourages constraint satis-
faction. Having an analytic expression for the reward function is necessary for
the GP model to estimate the reward of a proposed policy, without interacting
with the environment. The class provides, at any given state, scalar outputs that
capture the expected reward and the constraint violation probability. A compos-
ite reward function that is used to train the policy thus has one component that
evaluates the performance of the agent and one that evaluates the safety of the
policy. We further note that it is the choice of reward function, along with the
environment, that defines a task: indeed, we can design multiple tasks with a
shared environment by varying the reward function. This setup is therefore suit-
able for transfer learning, or for multi-task learning [10], since the same model
is valid across multiple tasks.
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Fig. 2: Snapshots of the Open-Al gym environments used in the case studies.

2.1 Libraries

The tool relies on other Python packages, allowing us to leverage their optimised
functionalities and to keep the codebase succinct. Furthermore, this allows users
to easily apply our algorithm to new tasks. We use Tensorflow [I] to obtain
automatic gradient computations (often referred to as auto-diff), which thus
simplifies the policy improvement stepﬁ GPflow [25] is a Python package for
Gaussian Process modelling built on Tensorflow. GPflow provides a full set of
basic GP functionalities, and gives access to many specialised models. Having
a Tensorflow back-end, gradients in all the GPflow models are also calculated
automatically. Additionally, GPflow allows the user to readily define priors and
to employ different optimisers or alternative implementations of sparse approx-
imations for GPs. Finally, our implementation is interfaced with the Open-Al
gym [4], a suite of RL tasks widely used in the community. Gym tasks have con-
sistent interfaces and detailed visualisation capabilities for a wide range of tasks
varying over different sorts of complexity: dimensionality, smoothness of dynam-
ics, length of episodes, and so on. Users can quickly prototype their algorithms
using easier tasks and move to more complex, time-consuming experiments, as
the project matures.

3 Case Studies

To evaluate the performance of the package we run a set of experiments on dif-
ferent tasks. The results reported are averaged over 10 random seeds, along with
standard deviations. To obtain a more accurate evaluation of the controller at
each iteration, for each random seed, we test it 5 times and take the mean (vari-
ance is not used). Visualisations of the environments used for the case studies
are shown in Figure

Details of the OpenAl gym tasks that are used with no modification are in [4]
or on the gym Websiteﬁ Notations and key sourcecode variables are presented in

3 By way of comparison, all gradient calculations in the PILCO Matlab implementa-
tion are hand-coded, thus extensions are laborious as any additional user-defined
controller or reward function has to include these gradient calculations too.

4 https://gym.openai.com/
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Fig. 3: Experimental results for different OpenAl gym tasks. Episode rewards on the
y-axis and iteration number on the x-axis (blue, mean and two standard deviations
around it). The performance of a random policy (red dashed line) is shown for com-
parison. For the swimmer we report both the average performance of 10 random seeds
at each iteration, and the best performance so far in all previous iterations of each
random seed.

Table[I] All hyperparameters used and key environment characteristics are sum-
marised in Table [3| Experiments are presented in order of increasing complex-
ity. As mentioned previously in Section [2| SafePILCO assumes a predetermined,
closed-form reward function. Most of the tasks we apply our method on come
with their own reward functions, that do not follow the analytical form that is
assumed. Thus we make the following distinction: the algorithm is evaluated on
the original reward function coming with the environments, but is trained with
a closed-from reward function of our design. Designing a reward function that
leads to a desired behaviour (in our case, behaviour that maximises accumulated
return measured with a different reward function), is thoroughly studied and can
prove challenging [28/24], but in our experience and for the environments used,
it was not too involved and did not require extensive hyperparameter searches
or particularly careful manual tuning.

3.1 Plain PILCO

We give specific information for each environment and the associated reward
functions. The mountain car experiment uses the MountainCarContinuous-v0
gym environment. Small negative rewards are given at those states where the
car is not at the top of the hill (goal state), whereas a large reward is given
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exclusively as the agent gets to the top. The goal state is the terminal state for
the environment and no further reward is obtained. This is easily captured with
a negative exponential reward, centered at the goal state.

Next, the OpenAl gym [4] InvertedPendulum-v2 environment is used. It is
a variant of the cart-pole stabilisation task, where a pendulum is attached to
a cart on a rail, and the controller applies a force to the cart. The pendulum
starts close the upright position and the controller’s task is to stabilise it by
moving the cart to the left or to the right on the rail. For this scenario, as well
as for the double inverted pendulum scenario (see below), the native reward
function provides a +1 reward when the pendulum angle is less than some given
threshold. Once out of this area the episode terminates, as the controller cannot
exert a stabilising input. An exponential reward centered at the upright position
is again used.

For the pendulum swing up task, we modify part of the default behaviour
of the gym Pendulum-vO environment: the initial starting state distribution of
the pendulum is too wide for a feasible unimodal planning. We restrict this
initial distribution to the pendulum starting close to the downward position.
The environment penalises an agent with negative rewards correlated to the
distance from the goal position, where the pendulum is upright. An exponential
reward is again employed.

For  the inverted double  pendulum  task we use the
InvertedDoublePendulum-v2. It is similar to InvertedPendulum-v2, ex-
cept the pendulum now consists of two links. We only apply force to the cart
and have to stabilise the system to the upright positions. We add a wrapper
to the default environment that is not modifying its behaviour, but changes
slightly the interface, replacing a state variable corresponding to an angle with
its sine and cosine values. This corresponds to an existing functionality from
PILCO [13] (see also [9]).

In the Swimmer-v2 from the OpenAl gym, a robot with two joints navigates
a 2-d plane by ”swimming” in a viscous fluid. Each joints are controlled by
an actuator, and the system is rewarded for moving in the direction of the x-
axis. This is a more challenging task, with an 8D state space, 2D control space,
and nonlinear dynamics. Furthermore, it requires coordination between the two
controllers for the robot to start moving towards the right direction: this makes
the acquisition of a reward signal at the early stages of training hard [23]. The
rewards are given for distance travelled in the positive direction of the x-axis,
based on the position of the root link (to the right of Figure . This position
variable however is not one of the state variables directly observed and, for this
task, there is no specific goal position. Thus we define a linear reward for PILCO,
based on the x-axis velocity of the agent. Also (even in the plain PILCO version)
we lightly penalise extreme angles at the joints, which leads to a smoother gait,
allowing the policy to generalise outside of the planning horizon.
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Notation Description Python Var.
- initial random rollouts J
N # training episodes per run N LinearCars BAS SafeSwimmer
- Type of Controller Linear/RBF|| Con. Viol.  0.0£0.0 0.0£0.0 0.440.49
dt sampling period SUBS Best return  -10.7+£2.7 1.24+0.9 11.6+8.2
H time steps per episode H Max Episodes 8 4 12
o initial state moean Minit Blocked Ep. 14415 040  1.1+1.3
X initial state variance Sinit € 0.05 0.05 0.2
maxiter optimiser iterations maxiter Table 2: SafePILCO results on con-
€ max tolerable risk th strained environments

Table 1: List of hyperparameters - nota-
tion, meaning and source-code variable

3.2 Safe PILCO

In this section we showcase the performance of the algorithm in environments
with constraints over the state space. The experimental structure is similar to
that in Section however we report metrics differently: we list the number of
constraint violations incurred during training and the best performance achieved
in episodes where the system has respected the constraints. Both these metrics
are averaged over multiple random seeds, and the results are presented in Table
We also report the average number of episodes (as blocked episodes) when the
safety check has prohibited interaction with the system.

Linear Cars This scenario is similar to the one in [29], where two cars are
approaching a junction, and the algorithm controls one of them by either braking
or accelerating. The goal is for the controlled car to cross the junction as soon as
possible, without causing a collision. The state space is 4-dimensional, with linear
dynamics. The input v has one dimension, proportional to the force applied to
the first car. To avoid a collision, the cars must not be simultaneously adjacent
to the junction (set at the origin (0,0)). This can be formulated as a constraint
of the form: |z!| > a OR |2®| > a over the position of the two cars. We want to
encourage the first car to cross the junction as soon as possible: a simple reward
could be —1 for every time-step where first car hasn’t crossed the junction, and
+1 otherwise. However, this is discontinuous and cannot be used by SafePILCO
directly, so we use instead a linear reward, proportional to the position of the
first car.

Building Automation Systems We consider a problem in the domain of
building automation systems. The environment is given by [6] (Case Study 2),
which has developed a simulatorﬂbased on real measurement data. The task is to
control the temperature in two adjacent rooms from a common heated air supply.
The original cost function is the quadratic error between the temperatures in
each of the two rooms and corresponding reference temperatures. For SafePILCO
we use the standard exponential reward function.

® Code for the BAS simulator: https://gitlab.com/natchi92/BASBenchmarks
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Variable Tasks
- MountainCar InvPend PendSwing DoublePend Swimmer SafeCars BAS
State dim 2 4 3 6 8 4 7
Control dim 1 1 1 1 2 1 1
J 2 5 4 5 15 5 4
N 4 3 8 10 10 8 3
Controller Type RBF RBF RBF RBF RBF RBF Linear
Basis Functions 25 5 30 40 40 40 -
SUBS 5 1 3 1 5 1 -
H 25 30 40 40 15 25 48
20 0.11 0.1I  0.01diag[1,5,1] 0.51 0.0051 0.11 0.21
maxiter 100 100 50 120 100 20 25

Table 3: List of hyperparameter values employed in the experiments

Safe Swimmer This case study is based on the Swimmer-v2 environment, but
we add the following constraints: we require that the angles at the two joints
remain below a certain threshold (95 deg). Constraints of this sort are common
in robotics, since pushing the joints to the edge of their functional ranges can
lead to accumulated damage to the joints, the motors, or the robot links.

3.3 Results

The results in Figure [3| and Table [2| show that SafePILCO is flexible and allows
to tackle a wide selection of RL problems, with good performance and data effi-
ciency. For reference, in [36] model-based methods are evaluated on gym tasks,
with the low-data regime having 200k data points and the high-data one 2 mil-
lion points, while for the Swimmer SafePILCO uses only 625 points from ~3000
interactions steps (also see Figure . Interestingly, [36] reports that PILCO has
managed to solve only easy tasks (mean return of ~0 on the Swimmer).

4 Extensions and Conclusions

The SafePILCO software tool is a framework for safe and data-efficient policy
synthesis, which are key features of the dynamics of physical systems. We have
evaluated the software performance in a variety of standard benchmarks, and
we have released a modular, extensible open-source implementation for repro-
ducibility and further use by the community. Possible extensions include learning
the reward function, joint training using a number of predicted trajectories, and
making planning more effective in highly uncertain settings (including partially
observed ones).
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A Related Work

The native PILCO algorithm [9/T3] is a policy search framework [I1], employing
Gaussian processes (GPs) [30] to learn the model dynamics and to maximise
data efficiency. Extensions have been proposed, taking constraints into account
[12029]. In [12], the constraints are incorporated as negative rewards, discour-
aging the system from visiting certain parts of the state space. However, these
rewards have to be hand-tuned to balance performance and safety. Instead in
[29] an automatic procedure is introduced to formally synthesise policies satis-
fying spatial constraints, whilst additionally retaining safety during training —
SafePILCO is a tool implementing this procedure.

Bayesian optimisation has also been used to train policy parameters [3IT53T],
towards data efficiency and (specific notions of) safety or invariance. Such meth-
ods also employ GPs, but do not learn system dynamics, instead mapping pa-
rameters to the loss/reward directly. This framework limits the number of policy
parameters that can be tuned effectively.

Other model-based RL approaches have been proposed recently, describing
the system dynamics through probabilistic models based on ensembles of deep
neural networks [8I35], or Gaussian Processes [733]. These methods provide vi-
able alternatives to PILCO, but have not been used in combination with safety
requirements encoded as spatial constraints. Other model-based approaches with
GPs either focus on stability [34] or take an approach [22] that provides more
conservative guarantees, but which restricts scalability by significantly increas-
ing computational demands. Our method is the only one that maintains PILCO’s
favourable analytic properties and combines them with explicit state-space con-
straints for safe learning and safety goals.

Finally, standard benchmarks are openly developed and maintained in the
RL community [@T4J32]. Our tool leverages some of these benchmarks and aims
to provide an efficient and easy-to-use software package.

B Background and Theory

B.1 Problem formulation

Our goal is to design a controller for an unknown system with general dynamics,
which attains optimal performance in terms of accumulated reward. Further, the
system trajectories must avoid unsafe regions of the state space. We assume the
following:

— a state space X C R";

— an input space U C R™;

— a dynamical system with a transition function x;11 = f(2¢, ut) + vy, where
vy is assumed to be an i.i.d. Gaussian noise;

— a reward function 7 : X — R;

— aset S C X of safe states and a corresponding set D = X \ S of unsafe
(dangerous) states; we assume that these constraints S are axis-aligned rect-
angles.
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Our task is to design a policy, 7% : X — U, with parameters 6, which max-
imises the expected total reward over an episode while keeping the probability
of violating the constraints low (e.g. lower than a given threshold). We further
require a minimal number of constraint violations during training. Since the sys-
tem is initially unknown, and we are taking a data-driven approach, we cannot
certify perfect compliance to all safety constraints without making further as-
sumptions [22]. Instead, we require the probability of the system to lie in safe
states to exceed a threshold € > 0. The sequence of states the system visits is
referred to as its trajectory x = (x1,...,xr). We require all z; € x to be safe,
implying that x; € S. We define an episode as a sequence of T transitions, or T’
time-steps, from some initial state x;.

B.2 Main algorithmic steps

In the following we provide a succinct presentation of the main algorithmic steps.
For more details see [OIT3129].

Model fit to data We model the transition function with a Gaussian Process
(GP) [30] that can provide predictions for a state x;, given the previous state
x¢—1 and the control input u;—1. At any point the transition function PDF is a
Gaussian distribution such that p(z¢|xe—1,us—1) = N(peg1, Xet1), where piyq
and X,y are predictive mean and (co)variance, respectively. Our approach uses
a squared exponential kernel with Automatic Relevance Determination [30]. The
kernel hyperparameters are trained based on maximum marginal likelihood.

Long-term trajectory predictions Whilst single-step predictions of ;i1
from x; are readily provided by standard GP methods, we wish to predict a
sequence of states, x1,...,xr, over an episode. These predictions are performed
iteratively, using the previous posterior prediction from the GP model as prior
for the next. However, since the inputs to the GP are now themselves distribu-
tions, the subsequent predictive distribution needs to be approximated. This is
performed by the computationally tractable means of Gaussian moment match-
ing [9120]. Hence, if x; ~ N (u, Xy), we write

p(@eyilpe, e, 0) = N (pey1, Zivr),
in which we have dropped the dependency on u;, since the policy is deterministic

and wu; is only dependent on x; and 6.

Evaluation of expected return and of safety We combine the model-based
prediction for the system trajectory with the reward function, which we assume
to have the following form:

r(z) = exp(—|z — xtarget|2/03)v (1)
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where o2 controls how rapidly the reward decays. Such a reward aims at driving
(and possibly stabilising) the system towards a target state Ziarget. Since the
state prediction at any time step is approximated by a Gaussian, the expected
reward can be written as:

EmWMHZLN@NWu&M% (2)

which can be calculated analytically, since both the reward function and the
predictive distribution over the states belong to the exponential family. We can
express the expected return over an episode as:

T

R7(6) =Y Eu[r(x))- 3)

t=1

We note that each x; is distributed according to p(x¢|ue—1, Xi—1,0), hence the
return depends on the policy 7? and its parameters 6.

Similarly, introducing Q™ as the probability of the system being in safe states
throughout the episode and under policy 7w, we can write:

Q’T(G)%/.../p(xl)p(xgml,21,9)...p(:17T|uT_1,ET_l,G)dxl...dzT, (4)
S S

thus:
T

@O~ [ [ M 5z = [ atwo). (5)

t=1

where ¢(z) is the probability of the system being in the safe parts of the state
at time step t:

q(ws) = /SN(Mt,Et)d% (6)

Safety estimation thus reduces to the calculation of the probability mass of the
Gaussian-distributed prediction at every state z;, marginalised over the safe set
S. As anticipated earlier, we consider constraints that define an upper and/or
lower bound for some of the state dimensions, as in I < 2% < ub®. The con-
straints can also come as conjunctive or disjunctive pairs, where for the system
to be safe we require % € C1' AND z% € C?, or z%* € C' OR z% € C?. For
simplicity, let us assume that there are independent upper and lower bounds for
each dimension, then we can write:

ub! ubP
q(xy) = / / p(act)dx% ...dx?,
Ibt 1bD

where D is the dimension of the state x;. Numerical approaches to compute this
quantity are proposed in [19].
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Policy improvement After evaluating the current policy, the algorithm pro-
poses a new candidate policy for evaluation. The new policy can have a higher
probability of respecting the constraints (making the policy safer) or an increase
in the expected return. As a secondary reward, evaluating and promoting safety,
we use a scaled version of the probability of respecting the constraints through-
out the episode.

The composite objective function, capturing both safety and performance (a
risk-sensitive criterion according to [I8]) is defined (£ is a hyperparameter) as:

JT(0) = RT(0) +£Q7(0). (7)

The specific design choices made in the model formulation, for the reward func-
tion and for the safety constraints, allow one to analytically calculate the gradient
of the objective function with respect to 6, as:

dJ7(0) _ dR7(6)  dQ"(6)

do do do

We refer the reader to [I3129] for more detailed derivations. We can then use
any gradient-based optimiser to seek an optimal policy, according to the cur-
rent model of the system dynamics. In particular, we employ L-BFGS-B [5], as
implemented in SciPy.

Safety check and iteration Having obtained a new candidate policy, which
is to be implemented on the real system, we wish to first verify that it is safe
enough, as it is possible for an unsafe policy to be optimal in terms of J (de-
pending on the relative magnitudes of R and @). We thus add the following
safety check: whenever the risk associated with the policy is higher than a pre-
determined risk threshold, it prohibits implementation of the policy; it increases
¢ by a multiplicative constant; and it restarts the policy optimisation process.
Further, we check whether the policy is too conservative. If the policy risk is
significantly lower than the risk threshold, we implement the policy but also
decrease &, allowing for a more performance-oriented optimisation at the next
iteration of the algorithm.

When the policy is implemented, we record new data from the real system.
If the task is performed successfully, the algorithm terminates. If not, we use the
newly available data to update the model, and to then repeat the overall process.
This adaptive tuning of the hyperparameter £ guarantees that only safe policies
(according to the current GP model of the system dynamics) are implemented,
and overcomes the otherwise hard choice of a good initial value of &.

C User Advice

C.1 Setting hyperparameter values and troubleshooting

In this section we provide practical advice to users who wish to solve new tasks
after successfully installing the package and working through the examples pro-
vided. There are several hyperparameters that need to be set in advance, but
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these (in general) are related to aspects of the problem at hand: early experimen-
tation can thus help to avoid exhaustive hyperparameter searches. We organise
the rest of this section around the major components of the framework and com-
ment on hyperparameter settings, as well as possible troubleshooting for each
major component in turn.

We note that although the model is a crucial component of the algorithm,
the associated hyperparameters do not need to be set in advance: indeed, signal
variance, signal noise, and length scales can all be optimised when training the
model. In a low data-regime, however, optimisation can result in extreme values
which lead to numerical instabilities. To avoid these issues we recommend:

— setting the signal noise to a fixed value (as done in the examples),

putting priors can be used to regularise hyperparameter values, such as the
Gamma priors on the lengthscale hyperparameters and signal variance,

— increasing the amount of data collected before the first run of the algorithm
— reducing the iterations of the optimisation runs.

The exponential reward function from , used for most experiments has
two hyperparameters, the target, Tiqrger and the weights, o2. The hyperparam-
eter values are not estimated from training data, so careful prior selection is
required. The target value should be the goal state to which a successful policy
should drive the system. Intuitively, the weight matrix, o2, defines how quickly
the reward is reduced as the distance between the current state and the goal
state increases. While the weight matrix can, in general, be any symmetric pos-
itive definite matrix, in all our test cases we use diagonal matrices. For diagonal
weight matrices, each value dictates how quickly the reward decays for a cor-
responding state variable. We recommend these weights should take reasonable
values between two extremes:

— high-magnitude values make the reward decay faster and make exploration
harder (the reward signal becomes sparser);

— low-magnitude values can make the reward gradient uninformative, or very
small in magnitude, slowing down learning.

Furthermore, the reward function needs to promote safety by taking the con-
straints into account. The weighting between the reward and constraint functions
is automated. However, a mismatch between the risk calculated and the con-
straints we have imposed can point to a model failure, or to a mistaken constraint
formalisation. RL agents are known to exploit the reward functions provided, an
issue often referred to as reward hacking or goal misalignment [2J16]. When that
happens, the agent consistently collects high reward, but its behaviour is far from
what a human would consider as solving the task. In such cases, reconsidering
the reward function hyperparameters (target and weight matrix) is advised.

Another issue we find can arise is that of learning being inhibited by a bad
controller initialisation. While we try to resolve this issue automatically, it can
still happen that the controller parameters are chosen so that the agent takes
no actions whatsoever, or that the policy function (u = 7%(x)) is approximately
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constant in relevant regions of the state space visited, resulting in (near) zero
gradients. In such scenarios, normalising the data (included in the functionality
of the package) can often help.

More extensive advice on troubleshooting, with examples and code, can be
found in a Jupyter notebook associated to the SafePILCO package.

C.2 Algorithm assumptions and restrictions

We delineate here some of the restrictions of the algorithm, for two purposes:
firstly, for users to easily assess whether the current version fits their application,
and secondly, to outline directions for future research.

A strong assumption of the PILCO algorithm is that the environment is fully
observable and Markovian. That means that the full state can be observed by
the agent at every time step, and that all information relevant for predicting
the next state is captured by the current state measurement and selection of
the present control input. Empirically we have seen that small amounts of noise
in the state measurements, despite violating this assumption, can be beneficial,
improving numerical stability, but performance deteriorates as the magnitude of
the noise increases (resulting in actual lack of observability). Since extensions
in the direction of partial observations exist for the original PILCO algorithm
[26], we expect they might as well apply to this setup, and would constitute a
relevant extension of this project.

The reward function is assumed to be predefined, in closed form, so that for
a Gaussian distributed state, the expectation of the reward can be efficiently
calculated. Reward shaping can mitigate this issue, however it is out of the
scope of this paper. In future work, the reward function can be approximated
with a Gaussian Mixture Model, which would maintain Gaussian features for
noisy states. Learning the reward function from observations has been used in
other model-based RL approaches [I7].

Our model is based on GPs with squared exponential kernels, which are
underpinned by an assumption of universal smoothness and differentiability of
the system dynamics. This assumption does not necessarily hold for all envi-
ronments, e.g. whenever contact dynamics need to be modelled, or under hy-
brid/switching dynamics. This is a significant challenge for the kind of model we
propose, hence replacing this component would require rethinking and replacing
the moment matching approximation used for multi-step planning. Work in this
direction [33], replacing moment matching by numerical quadrature, can be a
promising approach.

A final consideration is that the planning step is based on Gaussian-
distributed predictions. This assumption can be limiting in several cases, partic-
ularly when the task at hand has high initial uncertainty, e.g. when each episode
starts from an arbitrary state. Then, the unimodal, Gaussian-distributed trajec-
tory prediction is uninformative, and PILCO often fails to estimate useful gra-
dients of the objective function with respect to the policy parameters. Training
from multiple distinct initial states can help to mitigate this issue [9].
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