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1. Introduction

The k-server problem [Manasse et al. 1988; 1990] is defined on a metric space

Z, which is a (possibly infinite) set of points with a symmetric distance function

d (nonnegative real function) that satisfies the triangle inequality: For all

points x, y, and z

d(x, x) = o

d(x, y) = d(.Y,.X)

d(x, y) < d(x, z) + d(z, y).

On the metric space .%’, k servers reside that can move from point to point. A

possible position of the k servers is called a configuration; that is, a configura-
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tion is a multiset of k points of ~%. We use capital letters for configurations;

we also use D( X, Y) for the minimum distance to move the servers from

configuration X to configuration Y. We always assume that the k servers are

initially at a fixed configuration A”. For a multiset X and a point a, we use

X + a for X U {a} and X – a for X – {a}. Finally, we use C(X) for the sum

of all distances of all pairs of points in X.

The reader may be wondering why we need to consider configurations to be

multisets instead of sets, since it seems reasonable to assume that no two

servers occupy the same point simultaneously. As a matter of fact, one can

rewrite the proofs in this paper by considering configurations to be sets. The

reason we have chosen to use multisets is to be able to use algebraic

expressions of the form ~ – a + b, which would necessitate a case analysis in

the framework of sets. Other than this, there is no concrete reason for using

multisets, and it may be convenient for the reader to consider configurations to

be simply sets.

A request sequence p is a sequence of points of the metric space JZZ to be

serviced by the k servers; servicing a request entails moving some server to the

point of request. In particular, if p = rl rz “”. r. is a request sequence, then the

k servers service p by passing through configurations xl ~, A ~, A ~,. . . . A. with

r, G Al. At step j, the cost of servicing request r, is the cost of moving the k

servers from A,. ~ to A,; that is, ll(A1 _ ~, Al). The cost for servicing p is the

sum of the cost for all steps.

Since an on-line algorithm cannot base its decisions on future requests, our

choice of A, must depend only on A” and the subsequence of requests

r, rz . . . rj. on the other hand, an off-line algorithm would know the whole

request sequence in advance and, consequently in this case, A, depends on A ~,

and rl rz “”. r,,. Let opt (A ~, p) denote the optimal off-line cost for servicing a

request sequence p starting at the initial configuration A ~. Similarly, let

cost( A ~~.p) denote the cost for servicing p of some on-line algorithm. The

competitive ratio of the on-line algorithm is roughly the worst case ratio

cost(A(), p)/opt(AO, p) [Sleator and Tarjan 1985]. In order to remove any

dependency on the initial configuration a more careful definition is necessary:

The competitive ratio of the on-line algorithm is the infimum of all c such that

for all initial configurations A ~ and for all request sequences p

cost(A{), p) < c.opt(Afl, p) + C,

where C may depend on the initial configuration A (I but not on the request

sequence p. An on-line algorithm with competitive ratio c is called c-competi-

tiLe.

In metric spaces .%’ with k or fewer points, an on-line algorithm can initially
cover all points with its servers; it never again moves them and therefore, its

competitive ratio is 1. The problem becomes interesting for metric spaces with

at least k + 1 points. In Manasse et al. [1988], it was shown that no on-line

algorithm can have a competitive ratio less that k and the following conjecture

was posed:

CONJECTURE 1.1 (THE k-SERVER CONJECTURE), For elley metric space there

is an on-line algorithm with competitive ratio k.

It was also shown that the conjecture holds for two special cases: when k = 2

and when the metric space has exactly k + 1 points, The paging problem—the
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special case when all distances are the same—had already been shown to have

a k-competitive algorithm in Sleator and Tarjan [1985]. The k-server conjec-

ture attracted much interest because of its simplicity, its elegance and its

apparent centrality in the study of on-line problems.

For some time, it was open whether any finite competitive ratio at all was

possible for all metric spaces. It was shown in Fiat et al. [1990] that indeed

there is an algorithm with a finite competitive ratio for all metric spaces.

Unfortunately, the competitive ratio of the algorithm in Fiat et al. [1990]

increases exponentially with k: It is @((k!) s). This was improved somewhat in

Grove [1991], where it was shown that a natural memoryless randomized

algorithm, the harmonic algorithm, has a competitive ratio 0(k2k ). Using the

derandomization technique of Ben-David et al. [1994], this establishes that

there exists a deterministic algorithm with competitive ratio 0(kz4~). The

result of Grove [1991] was improved slightly in Y. Bartal and E. Grove (private

communication) to 0(2~ log k), establishing a deterministic competitive ratio

of 0(4~ logzk), which was the best known competitive ratio for the general

case before this paper. Specifically for the 3-server problem, the best-known

upper bound was an 1l-competitive algorithm for any metric space [Chrobak

and Larmore 1994].

The lack of significant progress towards the k-server conjecture led to the

study of special cases of the problem. One of the first results in this area

[Berman et al. 1990] was a proof that the harmonic algorithm for 3 servers is

competitive (although with a terribly high competitive ratio; this result pre-

ceded the work of Fiat et al. [1990] and Grove [1991]). Attacking the problem

in special metric spaces led to a k-competitive algorithm for the line [Chrobak

et al. 1991], which was extended to trees [Chrobak and Larmore 1991a]. Finally,

an O(ks) competitive deterministic algorithm for the circle was presented in

Fiat et al. [1994].

One of the problems with the known competitive algorithms for the k-server

problem is that they are not space-efficient (the algorithm proved (2k – 1)

competitive in this paper is no exception). In order to address this problem,

Coppersmith et al. [1993] considered memoryless randomized algorithms and

showed a competitive ratio of k for the special class of resistive metric spaces.

By derandomization, this results in a O(k 2) deterministic competitive ratio for

resistive or approximately resistive metric spaces (one of them is the circle).

Especially for the 2-server problem, Irani and Rubinfeld [1991] and Chrobak
and Larmore [1991b] gave a 10-competitive and a 4-competitive efficient

deterministic algorithm respectively and Chrobak and Larmore [1992a] showed

that the harmonic algorithm is 3-competitive. We should also mention a series

[Blum et al. 1992; Karlin et al. 1994; Karloff et al. 1994] of lower-bound results

for the randomized version of the k-server problem against an obliuious

ad~lersary and the absence of any interesting upper bound for this case.

In this paper, we come very close to proving the k-server conjecture: We

establish an upper bound of 2k – 1 (Theorem 4.3). Previous attacks on this

and other on-line problems involved a potential function, a numerical invariant

that enables the inductive proof. (lur technique is based on more complex
invariants, which provide valuable information about the structure of the

reachable work functions. There are two invariants that proved crucial. A

quasicorwexity property of the work functions, and a duality condition. Actually,

quasiconvexity is used only in the proof of duality, and the main result follows
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from a potential function and the duality condition. We believe that these

concepts may be of some general value and applicability. For example, using a

similar technique but a different potential the exact k-server conjecture was

proved for the special case of metric spaces with k + 2 points [Koutsoupias

1994; Koutsoupias and Papadimitriou in preparation].

2, The Work Function Algorithm

The algorithm we employ is the work function algorithm, a rather natural idea

for this problem that was first made explicit in the work of Chrobak and

Larmore [1992b] and discovered independently by Fortnow, Karloff, and Vish-

wanathan and by McGeogh and Sleator. It has already been successfully

applied to other problems [Burley 1993; Chrobak et al. 1993]. In Chrobak and

Larmore [1992b], it was shown that the Work Function Algorithm is 2-competi-

tive for k = 2. One of the ingredients of our technique is the notion of the

extended cost, a concept very similar to the pseudocost of Chrobak and

Larmore [1992b].

Consider an optimal off-line algorithm B servicing a request sequence

p = pl p.. After servicing the request sequence pl the k servers of algorithm B

occupy some position X. The cost of servicing p can be divided into two parts:

the cost of servicing the request sequence PI starting at the initial configura-

tion and ending up at X and the cost of servicing p2 starting at X. An on-line

algorithm A that knows algorithm B cannot know the position X, because X
may depend on the future request sequence p?. However, algorithm A can

compute the cost of servicing p, of any possible optimal off-line algorithm. In

particular, algorithm A can compute the optimal cost of servicing PI starting at

AO and ending up at configuration Y, for every possible configuration Y. This

leads to the following definition:

Definition 2.1 (Work Function). Fix a metric space J? and an initial configu-

ration A”. For a request sequence p define the work function WP from

configurations to the nonnegative real numbers: WP(X ) is the optimal cost of

servicing p starting at AO and ending up at configuration X.

We usually omit the subscript p from W. when it is obvious from the context.

Furthermore, for a work function w = w~ we refer to w’ = WP, as the resulting

work function after request r, when p and r are understood from the context.

Intuitively, the importance of work functions stems from the almost obvious

fact that they encapsulate all the useful information about the past; what an

on-line algorithm needs to remember is WP, not p, because any other algorithm

can be transformed to one with this property without deteriorating its competi-

tiveness.
The initial work function We(X) of a configuration X is merely the cost of

moving the servers from the initial configuration A” to the configuration X:

w,(X) = D(AO, X).

The value WP,(X) for some configuration X can be computed as follows:

Clearly, if r = X, then w~, (X) = wj(X). Otherwise, if r G X, some server

moved from r to some point x = X and therefore WP,.(X) = WP,(X – x + r) +

d(r, x) = WP(X – x + r) + d(r, x). Combining the two cases, we get:

Fact 1. Let w be a work function; then the resulting work function w’ after
request r is

w’(X) = min{w(X –x + r) + d(r, x)}.
XE.Y
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We also get:

Fact 2. If w is a work function and r is the most recent request, then for

all configurations X

w(X) = ~ei:{w(X–x + r) + d(r, x)}.

Recall that in the definition of w(X) we require that servers end up at

configuration X; this can be done by moving first to configuration Y and then

to X. So we have:

r.

Fact 3. For a work function w and two configurations X, Y

w(x) s W(Y) +D(X, Y).

Consider a work function w and the resulting work function w’ after request

By Fact 3, we get

w’(X) = min{w(X–x + r) + d(r, .x)} > w(X),
XEX

which translates to:

Fact 4. Let w be a work function and let w’ be the resulting work function

after request r. Then, for all configurations X: w’(X) > W(X).

Consider a request sequence p and let A be the configuration of some

on-line algorithm after servicing p. Presumably, the most natural on-line

algorithm for the k-server problem is the greedy algorithm, which moves the

closest server to a request; that is, it moves its servers to a new configuration

A’, with r e A’, that minimizes D(A, A’). It is easy to see that the greedy

algorithm, being too conservative, has no bounded competitive ratio. At the

other end of the spectrum lies the ret,rospectizle algorithm: It moves its servers to

a configuration A’, with r c A’, that minimizes WP,(A’ ). The idea is that the

off-line algorithm that has its servers at A’ seems the best so far. It appears

that a combination of these two algorithms may be a good idea; the work

function algorithm combines the virtues of both of them:

Definition 2.2 (Work Function Algon7hm). Let p be a request sequence and

let A be the configuration of an on-line algorithm after servicing p. The work

function algorithm services a new request r by moving its servers to a

configuration A’, with r c A’, that minimizes WP,(A’) + D( A, A’).

As usual, let w = WP and w’ = WP,. Notice that since r = A’ we can replace

WP, (A’) with w(A’) in the above definition. Moreover, because of the triangle
inequality we can assume that A’ = A – a + r for some a = A; A’ = A – a + r

minimizes w(A’) + D(A, A’). Using this, we see that w’(A) = rein, . ~{w(A –

x + r) + d(x, r)} = w(A’) + d(a, r).

The cost of the work function algorithm to service request r is simply da, r).

In order to bound the competitive ratio of the work function algorithm, we

must also consider the cost of an c)ptimal off-line algorithm. Instead, it has
proved convenic.mt to define the off-line pseztdocost, a simple and surprisingly

accurate estimate of the off-line cost. The off-line pseudocost of the move from

configuration A to A’ is defined to be w’(A’ ) – w(A). It is easy to see that, by

summing over all moves, the total off-line pseudocost is equal to the total

off-line cost (in the worst case, the final configuration of the on-line algorithm
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k the same with the final configuration of the optimal off-line algorithm; if this

is not the case, by extending the request sequence with requests in the final

configuration of the off-line algorithm, the off-line cost remains unaffected

while the on-line cost increases).

Consider now the sum of the off-line pseudocost and the on-line cost:

W’(A’) – W(A) + d(a, r),

which is equal to w’(A) – w(A). This quantity is bounded by its maximum

over all possible configurations. Therefore, the off-line pseudocost plus the

on-line cost is bounded above by

max{w’(X) – w(X)}.
x

We call this quantity the extended cost of a move. The total extended cost is the

sum of the extended cost of all moves. We say that the extended cost occurs on

a configuration A when A maximizes the auantitv in the extended cost.

Clea~y, by the definition of the competitive ratio, we have:

Fact 5. If the total extended cost is bounded above by c

off-line cost plus a constant, then the work function algorithm is

The extended cost is an overestimation of the actual on-line

+ 1 times the

c-competitive.

cost (plus the

optimal off-line cost). It was first introduced in Chrobak and Larmore [1992b]

in a somehow different form (they called it on-line pseuciocost). The advantage

of using extended cost instead of real cost is that we don’t have to deal at all

with the configuration of the on-line servers. Instead, in order to prove that the

work function algorithm is competitive, we only have to show that a certain

inequality holds for all work functions. Its disadvantage, of course, is that it

may overestimate the cost of the work function algorithm (although in view of

our main result, the overestimation factor cannot be more than two).

3. Quasicorwexiy and Dllaiily

Facts 2 and 3 provide some properties of the work functions. Unfortunately,

other functions can satisfy both of them; that is, there are functions that satisfy

them and are different from WP for all request sequences p (and for all initial

configurations A ~). In order to study the behavior of the work function

algorithm, it is important to understand better the properties of work func-

tions. One very useful property is that all work functions are qZLasiconL)ex:

Definition 3.1. A function w is called quasiconvex if for all configurations
A, B, there exists a bijection h: A - B such that for all bipartitions of A into
X, Y:

w(A) + w(B) > w(XU h(Y)) + wOZ(X) U Y). (1)

It is perhaps useful to visualize quasiconvexity as a discrete variant of

convexity, in that the inequality above recalls the definition of convex functions

(O <x < 1): w(A) + w(B) > W(X A) + w((1 –x) “B). In the same way that
convexity guarantees that all optimal solutions lie in a compact set, (iterated

application of) quasiconvexity implies that optimal configurations are trans-
formable into one another via sequences of swaps. Notice that the union ( U )

in the definition denotes the union of multisets.



On the k- Semer Conjecture 977

Before we show that all work functions are quasiconvex, we need the

following lemma, which provides a stronger form of the quasiconvexity condi-

tion by restricting the set of possible bisections.

LEMMA 3.2. If there exists a bijection h that satisfies the conditions in Dej?ni-

tion 3.1, then there exists a bzjection h’ that satisfies the same conditions and
h’(x) = x for allx G A f’ B.

PROOF. Let h be a bijection from A to B that satisfies the conditions of

the definition above and maps the maximum number of elements in A n B to

themselves. Assume that, for some a = A n B, we have h(a) # a. Define a

bijection h’ that agrees with h everywhere except that

h’(a) = a and /l’(h- *(a)) = h(a)

(h’ interchanges the values of h on a and h- ‘(a)).
Consider now a bipartition of A into X and Y and assume (without loss of

generality) that h-’ (a) =X. If a = X, then h(X) = h’(X) and h(Y) = M(Y)

and (1) holds for h’. Otherwise, when a @ X, we derive the quasiconvexity

condition for X and Y from the quasiconvexity condition for X’ = X + a and

Y’ = Y – a as follows:

Since, h(Y’) = h’(Y’) and h(X’) = h’(X’), we have that X’ u h(Y’) = X’ U

h’(Y’) = (X+ a) U h’(Y – a) = X U h’(Y) and similarly h(X’) U Y’ = h’(X)

U Y. From these, we get

w(A) + w(B) > w(X’ (J h(Y’)) + w(h(X’) U Y’)

= w(X{J h’(Y)) + w(h’(X) U Y).

Therefore, h’ satisfies the quasiconvexity condition. Because h’ maps at least

one more element in A n B to itself than h, it contradicts the assumption that

h maps the maximum number of elements in A n B to themselves.

We conclude that h(a) = a for all a = A n B, and the lemma holds. ❑

We are now in a position to show the following important lemma:

LEMMA 3.3 (@JASICONVEXITY LEMMA). All work jitnctions are quasiconL’ex.

PROOF. We use induction on the number of requests.

Recall that the initial work function WC(X) of a configuration X is equal to

D( AC), X), where A ~ is the initial co fifiguration. So we have

w(A) + w(B) = D(AO, A) +D(AO, B).

Fix two matchings M(xl”, A) and M(AO, B) that realize the minima of

D(AfJ, A) and D (Ao, B). Each point Xj in AO is matched to some point a~ in

A and bj in B. Consider the bijection h: A ~ B that maps each a~ to bj. For

any bipartition of A into X and Y, w(X + h(Y)) + WI(h(X) + Y) is equal to

the sum of two minima matchings between Af), X + h(Y) and A [I, h(X) + Y.

Since we can rearrange the matchings M( A ~, ,4) and M( A (l, B) to obtain two

matchings (not necessarily minima) between A,,, X + h(Y) and A”, h(X) + Y,

itfollows that w(A) + w(B) > w(X + h(Y)) + w(h(X) + Y).
For the induction step, assume that w is quasiconvex. We want to show that

the resulting w’ after request r is also quasiconvex,

Fix two configurations A and B. IJsing Fact 1 to express w’ in terms of w,

we get that w’(A) = w(A – a + r) + d(r, a) for some a G A; similarly w’(B)
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= W( B – b + r) + d( r, b) for some b = 1?. The induction hypothesis is that w

is quasiconvex, so there exists a bijection h from A – a + r to B – b + r that

satisfies the quasiconvexity condition. Furthermore, Lemma 3.1 allows us to

assume that h(r) = r.

Consider now a bijection h’: A ~ B that agrees with h everywhere, except

that h’(a) = b. We show that h’ satisfies the requirements of the quasiconvex-

ity condition of w’. Consider a bipartition of ~ into X and Y and without loss

of generality assume that a = X. We have:

w’(A) + w’(B)

=w(A–a+r)+w(B–b+r) +a!(r, a)+d(r, b)

=W((X-a+r)UY)+w (B- b+r)+d(r, a)+d(r, b)

> w((X– a + r) U h(Y)) + w(h(X - a + r) U Y)

+ d(r, a) + d(r, b)

= w’((X-a +r) Uh’(Y)) + w((h’(X) – b +r) U Y)

+ d(r, a) + d(r, b)

> W’(xu h’(Y)) + W’(h’(x) u Y),

where the first inequality is based on the quasiconvexity of w and the second

one on Fact 1. So, w’ is quasiconvex and the lemma follows. ❑

Now we use the quasiconvexity condition to prove the next two lemmata. In

fact, we use the weaker condition:

Va~A3b~B: w(A) +w(B)>w(A–a+b) +w(B–b+ a).

We need a definition first:

Definition 3.4. A configuration A is called a minimizer of a point a with

respect to WI, if A minimizes the expression W(X) – Z,. ~ d( a, x), that is

( )w(A) – ~ d(a, x) = min w(X) – ~ d(a, x) .
X=,1 x .rEx

LEMMA 3.5. Let w be a work function. Consider a new request at r and the

resLLlting work fanction w’. If A is a minimizer of r with respect to w, then A is also

a minimizer of r with respect to w’.

PROOF. It suffices to show that for all configurations B:

w’(B) – ~ d(r, b) > w’(A) – ~ d(r, a)
h~B OEA

or equivalently:

w’(B) – ~ d(r, b) +w(A) ZW’(A) – ~ d(r, a) +w(A).
b EB LIEA

In order to show this we need the following: From Fact 1, we get that there

exists b’ = B such that

w’(B) = w(B) +d(r, b’).

Using quasiconvexity, we get that there exists a’ = A such that

w(B–b’+r)+w(A)>w(B –b’+a’)+w(A–a’+ r).
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Finally, since A is a minimizer of r, we have that

wJ(B-b’+d- ~ d(r, b) > W(A) - ~ d(r, a).
bEB–b’+a’ UEA

Putting all these together:

W’(B) + W(A) – ~ d(r, b)

bEB

= W(B –~’ +r) +~(r,~’) + w(/1) – ~ d(r, b)

hGB

=w(B-b’+r)+ w(A)- ~ d(r, b)
h= B–b’+T

>w(B–b’ +a’)+w(A– a’+ r)– ~ d(r, b)
bEB–br I_r

=w(B–b’ +a’)+w(A– a’+ r)+a!(r, a’)– ~ d(r, b)
bEB–b’~a’

> w(~) + w(zl –LZ’ +7) +d(r, a’) – ~ d(r, a)

CICA

> w(A) + w’(~) – ~ ~(~,u)

a E .4

where the last inequality is based on Fact 1. The lemma follows. ❑

The following lemma has the same premises with Lemma 3.5, but a different

conclusion:

LEMMA 3.6. Let w be a work function. Consider a new request at r and the

resulting work function w’. If A is a minimizer of r with respect to w, then the

extended cost occurs at A, that is

w’(A) – w(A) = m~{w’(X) – w(X)}.

PROOF. The proof is rather similar to the proof of Lemma 3.5. Notice first

that h suffices to show that for all configurations B:

w’(A) + w(B) > w’(B) + w(A).

By Fact 1, we get that there exists a’ = A such that

w’(A) = w(A -- a’ +r) +d(r, a’).

Using quasiconvexity, we also get that there exists b’ = B such that

w(A–a’+ r)+w(B)>w(A– a’+b’)+w(ll-b’+r).

Finally, since A is a minimizer of r with respect to w:

w(A -a’ + b’) - ~ d(r, a) > w(A) - ~ d(r, a),
ueA—c[’tfJ’ aEA

which is equivalent to

w(A –a’ +b’) +d(r, a’) > w(A) +d(r, b’).
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Combining all these we get:

W’(A) + W(B) = W(A –a’ +r) +d(r, a’) + W(B)

>W(A –L?’+ b’) +d(r, a’) +W(B –b’+r)

2 W(A) +d(/’, b’) +W(l?-b’+r)

> W(A) +Pv’(l?).

Again, the last inequality is based on Fact 1. ❑

Lemmata 3.5 and 3.6 can be combined into the following

characterizes where the extended cost occurs.

result, which

LEMMA 3.7 (DUALITY LEMMA). Let w be a work function and let w’ be the

resulting work function after request r. Then any minimizer A of r with respect to w

is also a minimizer of r with respect to w’, and the extended cost of serl)icing the

request r occurs on A.

We call this the “duality lemma” because it relates to maximum (extended

cost) to a minimum (minimizer).

4. A Potential for (2k – l)-CompetitiL’en ess

We are now ready for the last act of the proof, the definition of an appropriate

potential. For configurations U = {ul, ..., Uk} and B, = {b,,, ..., bl~}, i =

1,..., k, let

Let 0(w) denote its minimum value over all configurations U and B,, i =

1. . . . . k; M w ) is called the potential of the work function w.1

The next two lemmata provide some properties of Q(w).

LEMMA 4.1. For any work jimction w, the minimum ualue O(w) of

@(w, U, BI, ..., B~ ) is achieved for some U that contains the most recent request r.

PROOF. By Fact 2, for some i = 1 “”. k:

w(U) = w(U– u, + r) + d(r, u,).

If we substitute this to W w, U, BI,, . ,, B~ ), using the k triangle inequalities

d(r, u,) – d(u,, b,,) > –d(r, b,, ) we get

W(W, U, B1, ..., 13k) >T(W, U-LL1 +r,131, . . ..Bk)

and the lemma follows since r = U – Lil + r. ❑

The next lemma estimates the potential of the initial work function.

LEMMA 4.2. For the initial work fanction w,(X) = II(AO, X):

@( W,) = –2C(AO).

‘ Our potential differs from what is usually termed as “potential function” in the literature of
on-line problems by a constant multlple of the optimal off-line cost.



On the k-Server Conjecture 981

PROOF. It is not hard to see that the lemma follows if the minimum value

@(we) of W(w, u, B*, . . ., Bk ) is achieved when U = AO and B] = #l. for
j=l ,..., k. Consider a point u, = U, In the minimum matching D( A., U), u,

is matched to some point a ● AO. By using the k triangle inequalities d(ul, blj)

< d( a, u,) + d(a, d,,), we see that we can replace LL, with a without increasing
the value of T(w, U, Bl, . . . . B~). Therefore, the minimum @(wc) of

~(w, U, B1,. ... BL) is achieved for U = Ao. Similarly, we can show that Bi = AO

fori= l,..., k and the lemma follows. ❑

We are now ready to prove our main result:

THEOREM 4.3. The competitit~e ratio of the Work Function Algorithm is at

most (2k – 1).

PROOF. Consider a work function w and let w’ be the resulting work

function after request r.

According to Lemma 4.1, the minimum value @(w’) of W(w’, U, BI, . . . . B~)

is achieved for Ui = r, for some i. Let A be a minimizer of r with respect to w.

Then, by Lemma 3.7, A is also a minimizer of r with respect to w’ and it is not

difficult to see that the minimum value of q(w’, U, BI,.. ., B~ ) is unaffected if

we fix B, = A. Fix the remaining points UJ and b,[, where V(w’, U, BI, ..., B~)

achieves its minimum. Let ~,,,,, WW denote the values of II! on these points with

respect to w’ and w. From the definition of O(w) we get that O(w) s WW.

Obviously, then,

@()’V’) – m(w) > T,vr – Ww. (2)

Consider now the expression ~W, – W,V. All distances appearing in the defini-

tion of Ww,, also appear in the definition of ‘VW,, because they are defined on

the same set of configurations U, Bj, j = 1,.. ., k. Therefore, they cancel out.

By Fact 4, w’(U) > w(U) and WI’(BJ) > W(BJ). j = 1,..., k. From this we get:

TM,, – q., > w’(A) – w(A). (3)

Putting (2) and (3) together:

O(d) – @(w) > w’(A) – w(A).

According to Lemma 3.7, the extended cost is w’(A) – W(A), because A is a

minimizer of r with respect to w. Thus, we conclude that the extended cost to

service request r is bounded above by @(w’) – O(w). Summing over all moves,

we get that total extended cost is bounded above by @(wP) – @(we), were w<

and WP are the initial and the final work functions, respectively.

Let AO and A. be the initial and final configurations (recall that without

loss of generality the off-line algorithm ends up in some configuration with the

on-line algorithm). We have

= 2kwP(A,1) – 2C(An)

< 2kwP(A,l).

The value of @(w~) is given by Lemma 3.5, @(w,) = – 2C(AO). Therefore, the

extended cost is at most 2kwP(A,, ) +- 2C( AO). Because the off-line cost is
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WJ AH ), the total extended cost is bounded above by 2k times the off-line cost

plus a constant depending only on the initial configuration. Using Fact 5, we

conclude that the Work Function Algorithm is (2k – 1)-competitive. ❑

5. Research Directions

We believe that the k-server conjecture is true (and that in fact the work-func-

tion algorithm is k-competitive); however, it now seems that substantial exten-

sion of our proof will be needed for its precise settlement. A possible research

direction that would achieve potentially interesting partial results would extend

the special cases of metric spaces for which the k-server conjecture holds. One

such special case (metric spaces with k + 2 points [Koutsoupias and Papadim-

itriou, in preparation] was, in fact, a precursor of the present proof.

Finally, much work remains to be done on bridging the gap between the

performance of on-line algorithms and the computational processes (such as

paging algorithms) that they are supposed to model. Two extensions of compet-

itive analysis that make some progress in this direction are proposed and

explored in Koutsoupias and Papadimitriou [1994].
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