
A lower bound of 1 + φ for truthful scheduling

mechanisms⋆

Elias Koutsoupias⋆⋆

and Angelina Vidali ⋆ ⋆ ⋆

Department of Informatics, University of Athens

Abstract. We give an improved lower bound for the approximation ra-
tio of truthful mechanisms for the unrelated machines scheduling prob-
lem. The mechanism design version of the problem which was proposed
and studied in a seminal paper of Nisan and Ronen is at the core of
the emerging area of Algorithmic Game Theory. The new lower bound
1 + φ ≈ 2.618 is a step towards the final resolution of this important
problem.

1 Introduction

We study the classical scheduling problem on unrelated machines [15,
21, 16] from the mechanism-design point of view. There are n machines
and m tasks each with different execution times on each machine. The
objective of the mechanism is to schedule the tasks on the machines to
minimize the makespan, i.e. to minimize the time we have to wait until all
tasks are executed. In the mechanism-design version of the problem, the
machines are selfish players that want to minimize the execution time of
the tasks assigned to them. To overcome their “laziness” the mechanism
pays them. With the payments, the objective of each player/machine
is to minimize the time of its own tasks minus the payment. A loose
interpretation of the payments is that they are given to machines as an
incentive to tell the truth. A mechanism is called truthful when telling
the truth is a dominant strategy for each player: for all declarations of
the other players, an optimal strategy of the player is to tell the truth.
A classical result in mechanism design, the Revelation Principle, states
that for every mechanism, in which each player has a dominant strategy,
there is a truthful mechanism which achieves the same objective. The
Revelation Principle allows us to concentrate on truthful mechanisms (at
least for the class of centralized mechanisms).

⋆ Supported in part by IST-15964 (AEOLUS) and the Greek GSRT.
⋆⋆ Email: elias@di.uoa.gr

⋆ ⋆ ⋆ Email: avidali@di.uoa.gr



A central question in the area of Algorithmic Mechanism Design is
to determine the best approximation ratio of mechanisms. This question
was raised by Nisan and Ronen in their seminal work [23] and remains
wide open today. The current work improves the lower bound on the
approximation to 1 + φ ≈ 2.618, where φ is the golden ratio.

A lower bound on the approximation ratio can be of either computa-
tional or information-theoretic nature. A lower bound is computational
when it is based on some assumption about the computational resources of
the algorithm, most commonly that the algorithm is polynomial-time. It
is of information-theoretic nature when the source of difficulty is not com-
putational but is imposed by the restrictions of the mechanism framework
and more specifically by the truthfulness condition. Our lower bound is
entirely information-theoretic: No (truthful) mechanism—including expo-
nential and even recursive algorithms—can achieve approximation ratio
better than 2.618.

When we consider the approximation ratio of a mechanism, we ignore
the payments and care only about the allocation part of the mechanism.
A natural question then arises: Which scheduling (allocation) algorithms
are part of truthful mechanisms? There is an elegant and seemingly simple
characterization of these mechanisms: Monotone Algorithms. The charac-
terizing property of these algorithms, the Monotonicity Property, implies
that when we increase the time of some tasks on a specific machine, the
machine will not get any new tasks. Similarly when we decrease the time
of some tasks of a specific machine the machine can only get more tasks.
In a loose sense, the Monotonicity Property is a combination of these two
facts and can be expressed very succinctly. Despite its simplicity, we do
not know how to take full advantage of the Monotonicity Property and
in this work (as in all previous works on this problem) we apply a very
restricted variant of it (Lemma 1).

1.1 Related Work

The scheduling problem on unrelated machines is one of the most funda-
mental scheduling problems [15, 16]. The problem is NP-complete, it can
be approximated within a factor of 2, and it is known that no polynomial-
time algorithm can have approximation ratio better than 3/2, unless
P=NP [21].

Here we study its mechanism-design version and we improve the re-
sults of [8], where we (together with George Christodoulou) gave a lower
bound of 1+

√
2. The current work can be considered a continuation of it

as we use similar tools, in particular Lemma 1; this is essentially the only



known tool (used also in the seminal work of Nisan and Ronen [23]), and
from this perspective it is unavoidable that we use it again here. However,
our techniques are completely different and much more sophisticated than
the ones used in [8], where we used simple instances of 3 players and 5
tasks. In this work on the other hand, we use arbitrarily many players
and tasks and we obtain the bound of 1 + φ only as the limit when the
number of players tends to infinity.

Surprisingly, we are not using anything about the geometrical struc-
ture of the mechanism, even though it seemed as if the use of a geometric
lemma was a crucial part of the proof in [8]. The main connection between
the proof of the 2.61 and the 2.41 lower bound is the use of the second
part of Lemma 1 which, albeit being a very simple observation seems very
powerful.

Nisan and Ronen [23, 24], who introduced the problem and initi-
ated the algorithmic theory of Mechanism Design gave a truthful n-
approximate (polynomial-time) algorithm; they also showed that no mech-
anism (polynomial-time or not) can achieve approximation ratio better
than 2. They conjectured that there is no deterministic mechanism with
approximation ratio less than n.

Recent work by Lavi and Swamy [20] improves the upper bound for
a special case of the same problem—namely when the processing times
have only two possible values low or high—and devise a deterministic
2-approximation truthful mechanism.

Archer and Tardos [4] considered the variant of the problem for related
machines. In this case, for each machine there is a single value (instead
of a vector), its speed. They provided a characterization of all truthful
algorithms in this class, in terms of a monotonicity condition. Using this
characterization, they showed that there is an optimal algorithm which
is truthful (albeit exponential-time). They also gave a polynomial-time
randomized 3-approximation mechanism, which was later improved to a
2-approximation, in [2]. This mechanism is truthful in expectation. Andel-
man, Azar and Sorani [1] gave a 5-approximation deterministic truthful
mechanism, in the same framework, which was then improved by Kovacs
[18] to 3-approximation deterministic truthful mechanism, while finally
the ratio was reduced to 2.8.

For randomized mechanisms, Nisan and Ronen [23] gave a randomized
truthful mechanism for two players, that achieves an approximation ratio
of 7/4. Recently, Mu’alem and Schapira [22] extended this result and
showed a 7n/8 upper bound. They also proved a lower bound of 2− 1

n
for

any randomized truthful mechanism for n machines.



Very recently Koutsoupias, Christodoulou and Kovacs [12] gave a
more general result. They considered the fractional variant of the same
problem and showed a lower bound of 2− 1

n
(which naturally extends to

randomized algorithms). They also gave a n+1

2
fractional approximation

algorithm.
Related is also some work which has been done in the context of com-

binatorial auctions which is a generalization of the scheduling problem
(see for example [3, 6, 7, 10, 5, 11] and the references within). Saks and
Yu [25] proved that for convex domains the Monotonicity Property char-
acterizes the class of social choice functions implementable by truthful
mechanisms, generalizing results of [14, 19].

2 Problem definition

We recall here the definitions of the scheduling problem, of the concept
of mechanisms, as well as some fundamental properties of them (see [8]
for more details, references, and proofs).

Definition 1 (The unrelated machines scheduling problem) The
input to the scheduling problem is a nonnegative matrix t of n rows, one
for each machine-player, and m columns, one for each task. The entry
tij (of the i-th row and j-th column) is the time it takes for machine i to
execute task j. Let ti denote the times for machine i, which is the vector
of the i-th row. The output is an allocation x = x(t), which partitions
the tasks into the n machines. We describe the partition using indicator
values xij ∈ {0, 1}: xij = 1 iff task j is allocated to machine i. We should
allocate each task to exactly one machine, or more formally

∑m
j=1

xij = 1.

In the mechanism-design version of the problem we consider direct-
revelation mechanisms. That is, we consider mechanisms that work ac-
cording to the following protocol:

– Each player i declares the values in row ti, which is known only to
player i.

– The mechanism, based on the declared values, decides how to allocate
the tasks to the players.

– The mechanism, based on the declared values, and the allocation of
the previous step, decides how much to pay each player.

The mechanism consists of two algorithms, an allocation algorithm
and a payment algorithm. The cost of a player (machine) is the sum of
the times of the tasks allocated to it minus the payment. One way to think



of it is as if the players are lazy and don’t want to execute tasks, and the
mechanism pays them enough to induce them to execute the tasks. On
the other hand, the players know both the allocation and the payment
algorithm and may have an incentive to lie in the first step. The class
of mechanisms for which the players have no incentive to lie are called
truthful mechanisms. Here we consider the strictest version of truthfulness
which is the class of dominant truthful mechanisms: In these mechanism
truth telling is a dominant strategy, i.e., for every possible declaration
of the other players, an optimal strategy of a player is to reveal its true
values. This restricts significantly the set of possible algorithms.

On the other hand every mechanism can be turned into an equivalent
truthful mechanism. This fact, known in the literature as the Revelation
Principle, allows as to concentrate only on truthful mechanisms.

Here we care only about the approximation ratio of the allocation
part of the mechanisms. So when we refer to the approximation ratio of a
mechanism, we mean the approximation ratio of its allocation part. Since
payments are of no importance in this consideration, it would be helpful
if we could find a necessary and sufficient condition which characterizes
which allocations algorithms are ingredients of truthful mechanisms. For-
tunately such condition exists:

Definition 2 (Monotonicity Property) An allocation algorithm is cal-
led monotone if it satisfies the following property: for every two sets of
tasks t and t′ which differ only on some machine i (i.e., on the i-the row)
the associated allocations x and x′ satisfy

∑m
j=1

(xij − x′

ij)(tij − t′ij) ≤ 0,
which can be written more succinctly as a dot product:

(xi − x′

i) · (ti − t′i) ≤ 0.

The Monotonicity Property characterizes the allocation part of truth-
ful mechanisms. The fact that is necessary and sufficient was shown in
[23] and [25] respectively. Although this is a complete characterization, it
is not easy to use it and we don’t know how to take complete advantage
of it.

One fundamental open problem is to find a useful characterization of
truthful mechanisms for the scheduling problem. For the much more gen-
eral problem of mechanism design in arbitrary domains, there is simple
characterization by Roberts [17]: The only truthful mechanisms are gen-
eralized VCG mechanisms [26, 9, 13]. The scheduling problem is at the
other end of the spectrum, where the domain is restricted yet general
enough to allow for interesting mechanisms.



Not only we lack such a nice characterization as Roberts Character-
ization for the domain of the scheduling problem, but we also employ a
very specific way to apply the Monotonicity Property. In particular, the
only known way to take advantage of the Monotonicity Property is the
following lemma [8], which will be the main ingredient of our proof. For
completeness we also include the proof of this lemma.

Lemma 1. Let t be a matrix of processing times and let x = x(t) be the
allocation produced by a truthful mechanism. Suppose that we change only
the tasks of machine i and in such a way that t′ij > tij when xij = 0, and
t′ij < tij when xij = 1. The mechanism does not change the allocation to
machine i, i.e., xi(t

′) = xi(t). (However, it may change the allocation of
other machines).

Moreover for mechanisms with bounded approximation ratio, suppose
that there exists a task with ∞ processing time in all machines except
machine i. Suppose further that we change the processing time of this
task on machine i to some bounded value and the processing times of
the remaining tasks on machine i as above. Then again the allocation of
machine i is not affected.

Proof. By the Monotonicity Property, we have

m
∑

j=1

(tij − t′ij)(xij(t) − xij(t
′)) ≤ 0.

If a task can only be processed by machine i then we must have xij(t) =
xij(t

′) = 1 and consequently the corresponding term is 0.

For a task j with xij(t) = 0 we have xij(t) − x′

ij(t) ≤ 0 (whichever
the allocation xij(t

′) ∈ {0, 1} is). Raising the value of such a tasks means
tij − t′ij ≤ 0. On the other hand if xij(t) = 1 we have xij(t) − x′

ij(t) ≥ 0.
Lowering the value of such a task we get tij − t′ij ≥ 0.

In either case the corresponding product satisfies (xij(t)−x′

ij(t))(tij −
t′ij) ≥ 0. Every term of this sum is nonnegative and consequently the only
way to satisfy the inequality is with equality, by setting xij(t) = xij(t

′)
for all j.

To simplify the presentation, when we apply Lemma 1, we will in-
crease or decrease only some values of a machine, not all its values. The
understanding will be that the rest of the values increase or decrease
appropriately by a tiny amount which we omit to keep the expressions
simple.



3 A lower bound of 1 + φ for n → ∞ machines.

The main result of this work is

Theorem 1. There is no deterministic mechanism for the scheduling
problem with n → ∞ machines with approximation ratio less than 1 + φ.

We shall build the proof of the theorem around the instance















0 ∞ · · · ∞ ∞ 1 a · · · an−2

∞ 0 · · · ∞ ∞ a a2 · · · an−1

. . .

∞ ∞ · · · 0 ∞ an−2 an−1 · · · a2n−4

∞ ∞ · · · ∞ 0 an−1 an · · · a2n−3















,

where a ≥ 1 is a parameter and ∞ denotes an arbitrarily high value.
Eventually, we will set a = φ when n → ∞. We let however a to be a
parameter for clarity and for obtaining better bounds for finite n.

The lower bound will follow from the fact (which we will eventually
prove) that every truthful mechanism with approximation ratio less than
1 + a must allocate all n − 1 rightmost tasks to the first player. The
proof of this fact is by induction. However, the induction needs a stronger
induction hypothesis which involves instances of the form

T (i1, . . . , ik) =











0 ∞ · · · ∞ ai1 ai2 · · · aik

∞ 0 · · · ∞ ai1+1 ai2+1 · · · aik+1

...
. . .

...
. . .

...
∞ ∞ · · · 0 ai1+n−1 ai2+n−1 · · · aik+n−1











,

where 0 ≤ i1 < i2 < . . . < ik are natural numbers and k ≤ n − 1. We
allow these instances to have additional tasks for which some value is 0,
i.e., additional columns with at least one 0 entry in each one. This is only
for technical reasons and will play no significant role in the proof (and it
definitely does not affect the optimal cost).

We will call the first n tasks dummy. Observe that every mechanism
with bounded approximation ratio must allocate the i-th dummy task to
player i.

Remark 1. Notice that the optimal allocation has cost aik . Furthermore,
if i1, i2, . . . , ik are all successive natural numbers, then the optimal allo-
cation is unique and coincides with the diagonal assignment. Otherwise



there are more than one allocations with optimal cost. For example the
allocations indicated by stars:













0∗ ∞ ∞ ∞ ∞ 1 a a3∗
∞ 0∗ ∞ ∞ ∞ a a2∗ a4

∞ ∞ 0∗ ∞ ∞ a2∗ a3 a5

∞ ∞ ∞ 0∗ ∞ a3 a4 a6

∞ ∞ ∞ ∞ 0∗ a4 a5 a7













,













0∗ ∞ ∞ ∞ ∞ 1 a a3∗
∞ 0∗ ∞ ∞ ∞ a a2 a4

∞ ∞ 0∗ ∞ ∞ a2 a3∗ a5

∞ ∞ ∞ 0∗ ∞ a3∗ a4 a6

∞ ∞ ∞ ∞ 0∗ a4 a5 a7













both have the optimal cost a3.

We will now show the main technical lemma of the proof.

Lemma 2. Suppose that a truthful mechanism on T (i1, . . . , ik), does not
allocate all non-dummy tasks to the first player. Then we can find another
instance for which the approximation ratio is at least 1 + a.

Proof. Fix a truthful mechanism and suppose that the first player does
not get all non-dummy tasks. In the first part, we manipulate the tasks
(by changing their values and using the tools from the previous section)
in such a way that we obtain an instance with equal or fewer tasks for
which in the allocation of the mechanism

– the first player gets no non-dummy task, and

– every other player gets at most one non-dummy task.

In the second part, we show that instances which satisfy the above two
conditions, can be changed to obtain an instance with approximation
ratio at least 1 + a.

1st part: Suppose that the first of the above conditions is not satisfied.
That is, suppose that the first player gets some non-dummy task. We can
then decrease its value (for the first player) to 0. By the Monotonicity
Property and in particular by Lemma 1, the same set of tasks will be
allocated to the first player, so he still does not get all non-dummy tasks.

Suppose that the second condition is not satisfied, i.e., there is a player
in {2, . . . , n} who gets at least two tasks. We can then lower all the non-
zero values allocated to this player to 0 except for one. By the Mono-
tonicity Property and in particular by Lemma 1, the same tasks will be
allocated to the player. This guarantees that the first player still does not
get all non-dummy tasks.

By repeating the above operations, we decrease the number of non-
dummy tasks. We will end up with an instance in which the first player



gets no non-dummy task and every other player will get at most one
non-dummy task. This process will definitely stop when there is only one
non-dummy task left.

Notice that the tasks whose value was changed to 0 remain part of
the instance but they will play no particular role in the induction. This is
exactly the reason for which we allowed T (i1, . . . , ik) to have additional
tasks with at least one 0 entry.

2nd part: We can now assume that there is some T (i1, . . . , ik) for which
the above two conditions are satisfied, i.e, the mechanism allocates no
non-dummy task to the first player and at most one non-dummy task to
each of the other players.

The optimal cost is aik . Our aim is to find a task which is allocated
to some player j with value at least aik+1; we will then increase player
j’s dummy 0 value to aik . Then by Lemma 1, player j will get both tasks
with total value at least aik+1 + aik . If the optimal value is still aik , then
the approximation ratio is at least 1 + a. However, when we raise the
dummy 0 to aik we may increase the optimal value. The crux of the proof
is that there is always an allocated value of at least aik+1 for which this
bad case does not occur. To find such a value we consider two cases:

Case 1: The algorithm assigns a task with value at least aik+1 to one
of the last n − k players. This is the easy case, because we increase the
dummy 0 value of this player to aik and the optimum is not affected. The
reason is that we can allocate the non-dummy tasks to the first k players
with cost aik .

Example 1. Consider the following instance with n = 5 and k = 3. Sup-
pose that the mechanism has the allocation indicated by the stars.













0∗ ∞ ∞ ∞ ∞ 1 a a3

∞ 0∗ ∞ ∞ ∞ a a2 a4∗
∞ ∞ 0∗ ∞ ∞ a2∗ a3 a5

∞ ∞ ∞ 0∗ ∞ a3 a4∗ a6

∞ ∞ ∞ ∞ 0∗ a4 a5 a7













Then we can raise the dummy 0 of the 4-th player to a3. This does not
affect the optimum (which is a3) but raises the cost of the 4-th player to
a4 + a3.

Case 2: The value of all tasks assigned to the last n − k players
is at most aik . Consequently the indexes iℓs are not successive integers
(Remark 1). Let q be the length of the last block of successive indexes,
i.e., k − q is the maximum index where there is a gap in the iℓ’s. More



precisely, let k − q be the maximum index for which ik−q + 1 < ik−q+1.
Since player 1 gets no non-dummy task, there is a player p ∈ {q+1, . . . , n}
such that some of the last q tasks is allocated to p. We raise the dummy
0 value of player p to aik .

We have to show two properties: First that the allocated value to p
was at least aik+1 and that the optimum is not affected. Indeed, the first
property follows from the fact that p > q (and by the observation that
all values of the last q tasks for the players in {q + 1, . . . , n} are at least
aik+1). To show that the optimal solution is not affected consider the
allocation which assigns

– the ℓ-th from the end non-dummy task to the ℓ-player, for ℓ < p
– the ℓ-th from the end non-dummy task to the (ℓ+1)-player, for ℓ ≥ p

Notice that this allocation assigns no non-dummy task to the p-th player,
as it should. The p-th player is allocated the dummy task which was raised
from 0 to aik . Also, since there is a gap at the k− q position, all allocated
values are at most aik .

Example 2. Consider the following instance with n = 5, k = 3, and q = 2.
Suppose that the mechanism has the allocation indicated by the stars.













0∗ ∞ ∞ ∞ ∞ 1 a2 a3

∞ 0∗ ∞ ∞ ∞ a a3∗ a4

∞ ∞ 0∗ ∞ ∞ a2 a4 a5∗
∞ ∞ ∞ 0∗ ∞ a3∗ a5 a6

∞ ∞ ∞ ∞ 0∗ a4 a6 a7













Then p = 3, and we can raise the dummy 0 of the 3-rd player to a3. This
does not affect the optimum (which allocates the a3 values), but raises
the cost of the 4-th player to a5 + a3 ≥ a4 + a3.

With the above lemma, we can easily prove the main result:

Proof (Proof of Theorem 1). Consider the instance














0 ∞ · · · ∞ ∞ 1 a · · · an−2

∞ 0 · · · ∞ ∞ a a2 · · · an−1

. . .

∞ ∞ · · · 0 ∞ an−2 an−1 · · · a2n−4

∞ ∞ · · · ∞ 0 an−1 an · · · a2n−3















.

By the previous lemma, either the approximation ratio is at least 1+a
or all non-dummy tasks are allocated to the first player. In the latter case,



we raise the dummy 0 of the 1-st player to an−1. The optimal cost becomes
an while the cost of the first player is 1 + a + a2 + . . . + an−1.

The approximation ratio is at least

min{1 +
1

a
+

1

a2
+ . . . +

1

an−1
, a + 1}.

We select a so that

1 +
1

a
+

1

a2
+ . . . +

1

an−1
= 1 + a. (1)

For n → ∞, this gives
1

1 −
1

a

= 1 + a.

Thus a2 = 1 + a, and the solution to this equation is a = φ. So the
approximation ratio of any mechanism is at least 1+φ. For fixed number
of players n, the solution of Equation 1 determines a lower bound for the
approximation ratio. For small values of n, the approximation ratio is less
than 1 + φ but it converges to it rapidly, as shown in Table 1.

Table 1. The lower bound given by Theorem 1 for a small number of machines.

n 2 3 4 5 6 7 8 . . . ∞

1 + a 2 2.324 2.465 2.534 2.570 2.590 2.601 . . . 1 + φ

References

1. Nir Andelman, Yossi Azar, and Motti Sorani. Truthful approximation mechanisms
for scheduling selfish related machines. In 22nd Annual Symposium on Theoretical
Aspects of Computer Science (STACS), pages 69–82, 2005.

2. Aaron Archer. Mechanisms for Discrete Optimization with Rational Agents. PhD
thesis, Cornell University, January 2004.

3. Aaron Archer, Christos H. Papadimitriou, Kunal Talwar, and Éva Tardos. An
approximate truthful mechanism for combinatorial auctions with single parame-
ter agents. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 205–214, 2003.

4. Aaron Archer and Éva Tardos. Truthful mechanisms for one-parameter agents.
In 42nd Annual Symposium on Foundations of Computer Science (FOCS), pages
482–491, 2001.

5. Moshe Babaioff, Ron Lavi, and Elan Pavlov. Mechanism design for single-value
domains. In Proceedings, The Twentieth National Conference on Artificial Intel-
ligence and the Seventeenth Innovative Applications of Artificial Intelligence Con-
ference (AAAI), pages 241–247, 2005.

6. Yair Bartal, Rica Gonen, and Noam Nisan. Incentive compatible multi unit com-
binatorial auctions. In Proceedings of the 9th Conference on Theoretical Aspects
of Rationality and Knowledge (TARK), pages 72–87, 2003.



7. Patrick Briest, Piotr Krysta, and Berthold Vöcking. Approximation techniques for
utilitarian mechanism design. In Proceedings of the 37th Annual ACM Symposium
on Theory of Computing (STOC), pages 39–48, 2005.

8. George Christodoulou, Elias Koutsoupias, and Angelina Vidali. A lower bound
for scheduling mechanisms. In Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1163–1169, 2007.

9. E. Clarke. Multipart pricing of public goods. Public Choice, 8:1733, 1971.
10. Shahar Dobzinski, Noam Nisan, and Michael Schapira. Approximation algorithms

for combinatorial auctions with complement-free bidders. In Proceedings of the
37th Annual ACM Symposium on Theory of Computing (STOC), pages 610–618,
2005.

11. Shahar Dobzinski, Noam Nisan, and Michael Schapira. Truthful randomized mech-
anisms for combinatorial auctions. In Proceedings of the 38th Annual ACM Sym-
posium on Theory of Computing (STOC), pages 644–652, 2006.

12. Elias Koutsoupias George Christodoulou and Annamaria Kovacs. Mechanism de-
sign for fractional scheduling on unrelated machines. In to appear in ICALP’07,
2007.

13. T. Groves. Incentives in teams. Econometrica, 41:617631, 1973.
14. Hongwei Gui, Rudolf Müller, and Rakesh V. Vohra. Dominant strategy mecha-

nisms with multidimensional types. In Computing and Markets, 2005.
15. D.S. Hochbaum. Approximation algorithms for NP-hard problems. PWS Publish-

ing Co. Boston, MA, USA, 1996.
16. Ellis Horowitz and Sartaj Sahni. Exact and approximate algorithms for scheduling

nonidentical processors. J. ACM, 23(2):317–327, 1976.
17. Roberts Kevin. The characterization of implementable choice rules. Aggregation

and Revelation of Preferences, pages 321–348, 1979.
18. Annamaria Kovacs. Fast monotone 3-approximation algorithm for scheduling re-

lated machines. In Algorithms - ESA 2005: 13th Annual European Symposium,
pages 616–627, 2005.

19. Ron Lavi, Ahuva Mu’alem, and Noam Nisan. Towards a characterization of truthful
combinatorial auctions. In 44th Symposium on Foundations of Computer Science
(FOCS), pages 574–583, 2003.

20. Ron Lavi and Chaitanya Swamy. Truthful mechanism design for multi-dimensional
scheduling via cycle-monotonicity. In Proceedings 8th ACM Conference on Elec-
tronic Commerce (EC), 2007.

21. J.K. Lenstra, D.B. Shmoys, and É. Tardos. Approximation algorithms for schedul-
ing unrelated parallel machines. Mathematical Programming, 46(1):259–271, 1990.

22. Ah’uva Mu’alem and Michael Schapira. Setting lower bounds on truthfulness. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 1143–1152, 2007.

23. Noam Nisan and Amir Ronen. Algorithmic mechanism design (extended abstract).
In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Com-
puting (STOC), pages 129–140, 1999.

24. Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and Eco-
nomic Behavior, 35:166–196, 2001.

25. Michael E. Saks and Lan Yu. Weak monotonicity suffices for truthfulness on
convex domains. In Proceedings 6th ACM Conference on Electronic Commerce
(EC), pages 286–293, 2005.

26. William Vickrey. Counterspeculations, auctions and competitive sealed tenders.
Journal of Finance, 16:8–37, 1961.


