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Outline of the lecture
This lecture will teach you how to fit nonlinear functions by using
bases functions and how to control model complexity. The goal is for
you to:

 Learn how to derive ridge regression.
 Understand the trade-off of fitting the data and regularizing it.
 Learn polynomial regression.
 Understand that, if basis functions are given, the problem of
learning the parameters is still linear.
 Learn cross-validation.
 Understand model complexity and generalization.



Regularization



Derivation



Ridge regression as constrained optimization



Regularization paths

[Hastie, Tibshirani & Friedman book]

Asd increases, t(d) decreases and each qi goes to zero.
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Ridge regression and Maximum a Posteriori
(MAP) learning



Ridge regression and Maximum a Posteriori
(MAP) learning



Going nonlinear via basis functions

We introduce basis functions Á(¢) to deal with nonlinearity:

y(x) = Á(x)µ + ²

For example, Á(x) = [1; x; x2],



Going nonlinear via basis functions

y(x) = Á(x)µ + ²

Á(x) = [1; x1; x2; x2
1; x

2
2]Á(x) = [1; x1; x2]



Effect of data when we have the right model

yi = q0 + xi q1 + xi
2 q2 + N ( 0 , s 2 )



Effect of data when the model is too simple

yi = q0 + xi q1 + xi
2 q2 + N ( 0 , s 2 )



Effect of data when the model is very complex

yi = q0 + xi q1 + xi
2 q2 + N ( 0 , s 2 )





Example: Ridge regression with a polynomial of degree 14

y(xi ) = 1 q0 + xi q1 + xi
2 q2 + . . . + xi
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F = [ 1 xi xi
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14 ]

J(q) = ( y - F q ) T ( y - F q ) + d2 q T q
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Kernel regression and RBFs
We can use kernels or radial basis functions (RBFs) as features:

Á(x) = [·(x;¹1; ¸); : : : ; ·(x;¹d; ¸)]; e:g: ·(x;¹i; ¸) = e(¡ 1
¸kx¡¹ik

2)

y(xi ) = f (xi ) q = 1q0 + k(xi , m1 , l) q1 + . . . + k(xi , md , l) qd







Kernel regression in Torch



Kernel regression in Torch



Kernel regression in Torch



We can choose the locations m of the basis functions to be the inputs.
That is, mi = xi . These basis functions are the known as kernels.
The choice of width l is tricky, as illustrated below.

Too small l

Right l

Too large l

kernels



The big question is how do we
choose the regularization coefficient,

the width of the kernels or the
polynomial order?



Simple solution: cross-validation



K-fold crossvalidation

The idea is simple: we split the training data into K folds; then, for each
fold k 2 f1; : : : ; Kg, we train on all the folds but the k'th, and test on the
k'th, in a round-robin fashion.

It is common to use K = 5; this is called 5-fold CV.

If we set K = N , then we get a method called leave-one out cross
validation, or LOOCV, since in fold i, we train on all the data cases
except for i, and then test on i.



Example: Ridge regression with polynomial of degree 14



Where cross-validation fails) (K-means)



Next lecture

In the next lecture, we delve into the world of optimization.

Please revise your multivariable calculus and in particular the
definition of gradient


