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Résumé en français

0.1 Introduction

Motivation et contexte scientifique

Les deux dernières décennies ont été marquées par une explosion du nombre et de
la complexité des systèmes embarqués. De plus en plus de tâches critiques dans les
domaines de l’industrie, du transport, de la production d’énergie et de la médecine, par
exemple, sont confiées à des systèmes informatiques : la sécurité des personnes et des
biens dépend de leur bon fonctionnement. La validation de ces systèmes devient donc
un enjeu considérable et les méthodes de vérification formelle automatique gagnent de
l’importance.

Ces systèmes embarqués sont des systèmes de contrôle réactifs dans lesquels des
programmes informatiques sont en interaction permanente avec leur environnement
physique par l’intermédiaire des capteurs et des actionneurs. Nous considérons des pro-
grammes écrits dans les langages synchrones comme Lustre [CPHP87] qui sont conçus
pour la programmation des systèmes temps-réel. Ces programmes impliquent des vari-
ables booléennes et numériques. Ainsi, nous appelons ces systèmes logico-numériques.
Un contrôleur avec son environnement physique constitue un système hybride, i.e., un
système ayant des comportements discrets et continus par rapport au temps.

Notre objectif est de vérifier des propriétés de sûreté qui expriment que « quelque
chose de mauvais n’arrive jamais ». Ces propriétés peuvent être vérifiées par le calcul
de toutes les configurations possibles dans les exécutions du système.

Nos techniques de vérification s’inscrivent dans le cadre de l’interprétation abstraite
[CC77], une méthode d’analyse algorithmique de programmes, qui permet une analyse
de systèmes d’états infinis avec terminaison garantie. Toutefois, comme le problème
de la vérification générale est indécidable pour les programmes logico-numériques, ces
propriétés sont acquises au prix de sur-approximations, ce qui rend le problème semi-
décidable : l’analyseur répond « oui, propriété prouvée » ou « je ne sais pas ».

Problématique et objectifs

Cette thèse aborde les aspects suivants de la vérification des systèmes embarqués :

Le problème d’explosion de l’espace d’états : les techniques d’interprétation ab-
straite classiques ne traitent que des variables numériques. Dans le cas de programmes
logico-numériques elles ont recours à l’énumération des états booléens. Cette énuméra-
tion devient inapplicable déjà pour les programmes petits et moyens.

Nous prenons en compte cette préoccupation en suivant l’approche de Jeannet
[Jea00] qui a proposé une méthode d’interprétation abstraite basée sur un domaine ab-
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strait qui gère symboliquement les variables booléennes et qui utilise le partitionnement
de l’espace d’états pour améliorer le compromis entre la précision et l’efficacité.

La perte de précision due à l’extrapolation : l’interprétation abstraite numérique
utilise un opérateur d’extrapolation (l’« élargissement ») pour forcer la convergence de
l’analyse, souvent entrâınant une perte considérable de précision. Des méthodes di-
verses ont été proposées pour enrayer ce problème. Dans cette thèse nous considérons
l’accélération abstraite [GH06], qui exploite la régularité du comportement de certaines
opérations numériques dans les boucles du programme pour effectuer une extrapolation
précise dans le domaine abstrait de polyèdres convexes. Nous étudierons une deuxième
méthode, l’itération de max-stratégies [GS07a], qui calcule la meilleure approximation
de l’espace d’état atteignable dans le domaine abstrait des polyèdres gabarits à l’aide
de la programmation mathématique.

Notre objectif est d’améliorer la précision des analyses logico-numériques en adaptant
ces méthodes au cadre logico-numérique.

La vérification des langages de programmation de haut niveau pour les sys-
tèmes hybrides : le succès des outils industriels de modélisation et simulation comme
Simulink montre la nécessité d’avoir des langages de haut niveau dans la conception
de systèmes embarqués. Cependant, la vérification de systèmes hybrides se fonde sur
l’automate hybride [ACH`95], un modèle de bas niveau.

Notre objectif est de rendre accessibles les méthodes d’interprétation abstraite à ces
langages de simulation hybrides par une compilation vers les automates hybrides qui
surmonte ce décalage conceptuel.

Développement d’outil : nous devons mettre en œuvre nos méthodes de vérification
pour évaluer leur efficacité et leur précision, ce qui est difficile à faire par des moyens
théoriques.

Notre objectif est de développer un outil extensible qui est capable de se connecter
à des langages de programmation et d’intégrer des méthodes d’analyse diverses pour
pouvoir automatiser des comparaisons expérimentales. Nous baserons notre outil sur la
bibliothèque des domaines abstraits Apron [JM09].

Plan

La thèse se divise en trois parties :

La première partie présente des contributions par rapport à la vérification des pro-
grammes numériques qui comprennent des extensions de l’accélération abstraite.

La deuxième partie traite la vérification des programmes logico-numériques : nous
présentons des méthodes qui généralisent l’accélération abstraite et l’itération de max-
stratégies aux programmes logico-numériques.

La troisième partie porte sur la modélisation et la vérification des systèmes hybrides :
nous décrivons une traduction d’un langage flot de données hybride en automates hy-
brides logico-numériques et nous montrons comment étendre les méthodes existantes
d’analyse de systèmes hybrides à de tels automates.

Finalement, nous décrivons notre outil de vérification, ReaVer, qui implémente les
méthodes proposées.

x



xi 0.2. Spécification et vérification des systèmes critiques

0.2 Spécification et vérification des systèmes critiques

Nous considérons des programmes écrits dans des langages synchrones comme Lustre
par exemple. Nous modélisons ces programmes comme des systèmes de transition dis-

crets de la forme

"
Ipsq
s1 “ fps, iq où I définit les valeurs initiales des variables d’états s

et f est la fonction de transition calculant la valeur suivante de s en fonction de l’état
actuel et des entrées i. Une exécution d’un tel système est une suite (infinie) d’états

s0
i0ÝÑ s1

i1ÝÑ . . . sk
ikÝÑ . . .

Propriétés et observateurs

Dans le contexte de langages synchrones une propriété de sûreté peut être spécifiée
à l’aide d’un observateur synchrone [HLR93], qui est un programme écrit dans le
même langage, composé de façon synchrone en parallèle avec le programme à vérifier.
L’observateur a une sortie booléenne qui est vraie si le préfixe courant de l’exécution
satisfait la propriété. Un observateur synchrone permet d’exprimer toute propriété de
sûreté par l’invariant « la sortie de l’observateur est toujours vraie ».

Un invariant peut être vérifié en calculant l’ensemble d’états accessibles. Pour cette
analyse d’accessibilité nous utilisons l’interprétation abstraite.

Analyse d’accessibilité par interprétation abstraite

L’ensemble d’états accessibles est défini par le plus petit point fixe de l’équation S “
I Y postpSq, i.e., un état est accessible s’il se trouve dans l’ensemble initial I ou s’il est
accessible par un pas d’exécution postpSq “ ts1 | Ds P S, Di : s1 “ fps, iqu.

L’idée de l’interprétation abstraite est de calculer ce point fixe dans un espace de pro-
priétés plus simple, le domaine abstrait, d’une façon qu’il soit garanti de sur-approximer
l’ensemble d’états accessibles concrets.

Un exemple d’un domaine abstrait numérique est les polyèdres convexes qui sont
des conjonctions de contraintes linéaires Ax ď b (où A est une matrice constante, x
est le vecteur des variables d’états et b est un vecteur constant). Les opérations sur
les domaines abstraits incluent par exemple l’union \, l’intersection [ et la projection,
i.e., la quantification existentielle d’une variable.

La méthode classique du calcul de point fixe repose sur l’itération de Kleene et un
opérateur d’élargissement qui garantit la terminaison dans le cas général.

Comme l’élargissement est souvent cause de perte importante de précision, nous
considérons ci-après des méthodes d’accélération qui améliorent la précision de l’analyse.

0.3 Vérification de systèmes numériques

Les méthodes d’accélération [BW94, FO97, BFLP03] visent à calculer l’ensemble ex-
act des états accessibles dans les systèmes de transition numériques. Contrairement à
l’interprétation abstraite, qui surmonte le problème d’indécidabilité en calculant une ap-
proximation conservatrice, l’accélération identifie des classes de systèmes pour lesquelles
l’accessibilité est décidable et peut être résolue exactement. L’idée est d’accélérer les
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relations de transition τ associées aux cycles dans la structure de contrôle d’un pro-
gramme en calculant l’effet de leur fermeture réflexive et transitive τ˚ “

Ť
kě0 τ

k sur
un ensemble d’états X.

Gonnord et al. [GH06, Gon07] ont proposé le concept de l’accélération abstraite qui
intègre l’idée d’accélération dans le cadre d’interprétation abstraite avec des polyèdres
convexes : les boucles simples (« self loops ») sont accélérées dans le domaine abstrait
quand c’est possible, et dans les autres cas (boucles imbriquées, transitions trop ex-
pressives) on recourt à l’élargissement pour garantir la convergence du calcul de point
fixe.

L’accélération abstraite considère des transitions sous forme de commandes gardées :
τ : Ax ď blooomooon

garde

Ñ x1 “ Cx ` dloooooomoooooon
commande

.

De telles transitions sont considérées accélérables si xC˚, ¨y est un monöıde fini, i.e.,
l’ensemble C˚ “ tCk | kě0u est fini.

Gonnord et al. fournissent des accélérations abstraites pour les cas de translations
(C “ I) et de translations avec resets (C est diagonale avec des coefficients P t0, 1u).
Les autres cas de transitions accélérables (« ultimement périodiques ») sont ramenés à
ces deux cas par un changement de base.

0.3.1 Extensions de l’accélération abstraite

Nous étendons l’accélération abstraite aux systèmes avec des entrées numériques, et
nous formulons aussi l’accélération abstraite en arrière.

Accélération abstraite avec des entrées numériques

Les programmes réactifs, tels que les programmes Lustre, interagissent avec leur en-
vironnement : à chaque pas de calcul ils prennent en compte les valeurs des variables
d’entrée. Les variables d’entrée booléennes peuvent être codées dans la structure de
contrôle par des choix non-déterministes finis. Les variables d’entrée numériques ξ, par
contre, exigent un traitement plus spécifique.

Nous considérons des transitions de la forme

τ :

ˆ
A L
0 J

˙ ˆ
x

ξ

˙
ď

ˆ
b

k

˙

looooooooooooomooooooooooooon
Ax`Lξďb ^ Jξďk

Ñ x1 “
`
C T

˘ ˆ
x

ξ

˙
` u

loooooooooomoooooooooon
Cx`Tξ`u

Le défi posé par l’ajout des entrées se montre par le fait que toute transformation
affine générale Ax ď b Ñ x1 “ Cx ` d peut être exprimée par un reset à une entrée
pAx ď b ^ ξ “ Cx ` dq Ñ x1 “ ξ. Comme l’accélération de transformations affines
générales, même sans entrées, est hors de portée de l’état de l’art actuel, il n’y a aucun
espoir d’obtenir une accélération précise pour ces transitions.

Néanmoins, nous pouvons accélérer les transitions avec des entrées si les variables
d’état et les entrées ne sont pas liées dans la garde, i.e., la garde est de la forme
Ax ď b ^ Jξ ď k. Nous proposons une accélération abstraite dans le cas de ces
gardes dites « simples ». Dans le cas de gardes « générales » nous relaxons, i.e.,
sur-approximons, la garde afin d’obtenir des gardes simples : G “ pDξ : Gq ^ pDx : Gq.

Dans le cas de gardes simples nous réécrivons la translation τ avec des entrées par
une translation τ : G Ñ x1 “ x ` D sans entrées mais où D est un polyèdre. Cela

xii



xiii 0.3. Vérification de systèmes numériques

s’explique par le fait que à chaque pas d’exécution x est translaté par T ξ ` u où ξ

est inclus dans le polyèdre Jξ ď k et donc T ξ ` u est un polyèdre également. Nous
pouvons accélérer cette transition en calculant τbpXq “ X \ τ

`
pX [ Gq Õ D

˘
, i.e.,

nous intersectons l’ensemble de départ X avec la garde G, puis nous y additionnons D
un nombre α P Rě0 de fois en utilisant l’opérateur de « passage de temps » [HPR97],
ce qui est une opération triviale dans le domaine de polyèdres convexes ; et finalement,
nous appliquons la transition τ une dernière fois et nous calculons l’union avec X.

L’accélération de translations avec resets suit la même idée mais avec la différence
qu’il faut distinguer les variables translatées des variables réinitialisées dans le calcul.

Nous prouvons la correction de nos formules d’accélération et nous montrons la na-
ture des approximations impliquées. En outre, nous comparons l’accélération abstraite
à des autres approches basées sur l’interprétation abstraite.

Accélération abstraite en arrière

Nous fournissons une accélération abstraite en arrière pour les translations et les transla-
tions avec resets. Bien que l’inverse d’une translation soit une translation, la différence
est que l’intersection avec la garde survient après la translation (inversée). Le cas
des translations avec resets est plus compliqué que dans l’accélération en avant. La
relaxation des gardes générales aux gardes simples s’applique de la même manière à
l’accélération en arrière.

0.3.2 Généralisation de l’accélérabilité linéaire

Jusqu’à présent, nous n’avons considéré que les translations et les resets. Cependant,
nos expériences ont montré que d’autres types de transitions sont aussi fréquents dans
les programmes synchrones : les échanges de variables (x1

1 “ x2; x1
2 “ x1 par ex-

emple) et les retards (x1
1 “ x2; x1

2 “ x3 par exemple) sont des transformations (ul-
timement) périodiques; par conséquent, nous savons comment les accélérer en suivant
l’approche de Gonnord et al. Cependant, les dépendances des variables non-modifiées
(x1

1 “x1`x2; x1
2 “x2 par exemple) ne sont pas considérés accélérables dans la théorie

de l’accélération exacte. Néanmoins, intuitivement, nous devrions être capables de les
accélérer parce que la variable x2 est constante pendant les itérations de la boucle. Cette
observation nous a conduit à réexaminer le concept de l’accélérabilité linéaire.

Une transition τ est linéairement accélérable si sa fermeture réflexive et transitive
τ˚ peut être réécrite en τ˚ “ λX.

Ť
itAix`kbi | k ě 0,x P Xu, i.e., elle peut être

représentée par une union finie de transformations linéaires et de translations.
Le critère classique d’accélération exacte d’une transformation affine x1 “ Cx`d se

fonde uniquement sur la matrice C (xC˚, ¨y avec C˚ “ tCk | kě0u est un monöıde fini).

Nous considérons ici un critère qui se base sur la forme homogène linéaire

ˆ
x1

χ1

˙
“

ˆ
C d

0 1

˙ ˆ
x

χ

˙
(avec χ ” 1) d’une transformation affine.

Nous montrons par décomposition en forme de Jordan qu’une transformation linéaire
est linéairement accélérable si
– les blocs de Jordan de taille 1 sont associés à des valeurs propres qui sont soit 0 soit

des racines complexes de l’unité ;
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– les blocs de Jordan de taille 2 sont associés à des valeurs propres qui sont soit 0 soit
des racines complexes de l’unité et dans ce dernier cas la variable correspondant à la
deuxième dimension d’un tel bloc a un nombre fini de valeurs dans l’ensemble initial
(dans la base de Jordan) ; et

– les blocs de Jordan d’une taille arbitraire strictement supérieure à 2 sont associés à
la valeur propre 0.

Ce critère est plus général que celui du monöıde fini, qui restreint les blocs de Jordan
de taille 2 à des valeurs propres 0 et 1, et dans le dernier cas, la variable correspondant
à la deuxième dimension d’un tel bloc doit valoir 1 dans l’ensemble initial.

Nous proposons des formules d’accélération abstraite pour les cas non-couverts par
le critère du monöıde fini, qui correspondent aux transitions avec des dépendances des
variables non-modifiées ou périodiques.

0.4 Vérification de systèmes logico-numériques

L’approche classique de l’application des méthodes numériques comme l’accélération
abstraite aux programmes flot de données logico-numériques repose sur l’énumération
de l’espace d’états booléen pour générer un graphe de contrôle purement numérique.

Par contraste, nous utilisons des analyses fondées sur des domaines abstraits logico-
numériques qui permettent de traiter les variables booléennes ainsi que les variables
numériques d’une manière symbolique. Ces domaines peuvent être construits en com-
binant des domaines abstraits Booléens et numériques afin de construire des domaines
du type « produit » (A ˆ B) ou « puissance » (A Ñ B). Nous considérons les do-
maines ℘pBmq ˆ N pRnq [Jea00] et Bm Ñ N pRnq [BCC`03, Jea] où la partie booléenne
est représentée d’une manière exacte et le domaine N est par exemple les polyèdres
convexes.

En plus, nous utilisons le partitionnement de l’espace d’états pour générer un graphe
de contrôle, ce qui permet d’améliorer la précision en associant une valeur abstraite à
chaque place du graphe. Le choix de la partition influence donc la précision et l’efficacité
de l’analyse.

Nous dénotons s “
ˆ

b

x

˙
resp. i “

ˆ
β

ξ

˙
les vecteurs de variables d’état resp.

d’entrées composés des sous-vecteurs booléen et numérique. Nous utilisons des représen-
tations symboliques faisant usage de diagrammes de décisions binaires (Bdd) pour
représenter les programmes logico-numériques et les domaines abstraits dédiés à leur
analyse.

0.4.1 Accélération abstraite logico-numérique

Nous proposons une méthode pour analyser un programme logico-numérique à l’aide de
l’accélération abstraite sans recourir à l’énumération d’états booléens, et une méthode
de partitionnement efficace.

Accélération abstraite logico-numérique

L’accélération numérique peut être appliquée à des boucles où l’état numérique évolue
tandis que l’état booléen reste constant, i.e., la partie booléenne de la fonction de
transition est l’identité. Cependant, il pourrait n’y avoir aucune boucle de cette sorte
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xv 0.4. Vérification de systèmes logico-numériques

dans le programme, tandis qu’en abstrayant légèrement le comportement des boucles
nous pourrions bénéficier de techniques d’accélération précises plutôt que de compter
sur l’élargissement qui risque de perdre beaucoup plus d’informations à la fin.

Nous considérons des boucles simples (« self-loops ») dont la transition est de la

forme τ : gps, iq Ñ
ˆ

b1

x1

˙
“

ˆ
f bps, iq
apx, ξq

˙
tel que gps, iq “ gbpb,βq ^ gxpx, ξq, et

x1 “ apx, ξq soit une transformation accélérable. Cette forme peut être obtenu par une
factorisation de gardes des fonctions de transitions.

Notre accélération abstraite logico-numérique repose sur le découplage des parties
booléennes et numériques de la fonction de transition :

τb : gps, iq Ñ
ˆ

b1

x1

˙
“

ˆ
f bps, iq
λps, iq.x

˙
and τx : gps, iq Ñ

ˆ
b1

x1

˙
“

ˆ
λps, iq. b
apx, ξq

˙
.

Nous montrons que nous pouvons sur-approximer τ˚ dans le domaine abstrait logico-
numérique « produit » comme suit : nous accélérons d’abord la partie numérique τx en
utilisant l’accélération abstraite numérique. Nous obtenons ainsi Xb. Puis, nous itérons
la partie booléenne partiellement évaluée sur Xb jusqu’à la convergence : τbpB,Xq “`
pτb rXbsq˚ pBq , Xb

˘
.

Au premier coup d’œil les approximations induites par ce découplage partiel semblent
plutôt grossières. Toutefois, cela n’est pas grave pour les raisons suivantes : Première-
ment, les corrélations entre les variables booléennes et numériques qui sont perdues par
notre méthode ne sont souvent pas représentable dans le domaine abstrait de toute
façon, et deuxièmement, nous allons appliquer cette méthode à un graphe de contrôle
obtenu par un partitionnement approprié, décrit ci-après.

Partitionnement par les modes numériques

L’idée est de regrouper dans une place ces états booléens qui impliquent le même com-
portement numérique (les « modes numériques ») et donc, le découplage des parties
booléennes et numériques de la fonction de transition n’affectera probablement pas la
précision.

Algorithmiquement, nous générons une telle partition efficacement en décomposant
d’une manière adaptée les Bdds (diagrammes de décisions binaires) représentant les
fonctions de transitions.

Résultats expérimentaux

Pour évaluer la précision et le passage à l’échelle de nos techniques nous avons effectué
une comparaison avec les outils NBac [Jea03] et Aspic [Gon]. Notre outil ReaVer
est souvent en mesure de prouver les propriétés recherchées que les deux autres outils
ne réussissent pas à montrer. Notre méthode de partitionnement génère des graphes
de contrôle qui sont dix fois plus petits que ceux obtenus par l’énumération de l’espace
d’états booléen (restreint aux états accessibles). Cela nous permet d’analyser de plus
grands systèmes tout en étant suffisamment précis grâce à l’accélération abstraite logico-
numérique.

L’accélération abstraite améliore la précision en réduisant le besoin de l’élargissement.
Dans le chapitre suivant nous considérons les méthodes d’itération de strategies qui ne
necéssitent pas d’opérateur de l’élargissement du tout.
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0.4.2 Itération de max-stratégies logico-numérique

Les méthodes d’itération de stratégie résolvent les (in)équations de point fixe associées
à l’analyse d’accessibilité par une séquence de calculs de point fixe sur des systèmes plus
simples. Elles peuvent être appliquées à des domaines gabarits (templates) avec des
formes de contraintes finies et a priori fixées, comme par exemple les polyèdres gabarits,
i.e., des contraintes de la forme Txďd. Les bornes constantes d sont déterminées lors
de l’analyse à l’aide de la programmation linéaire.

Itération de max-stratégies numérique

Nous considérons l’itération de max-stratégies [GS07a] pour les programmes affines, qui
est une méthode de résolution de systèmes de point fixe d’inéquations sémantiques (sur
les variables de bornes de polyèdres gabarits). Une stratégie contient exactement une
inéquation par variable. Le point fixe du système est approché par les points fixes
des stratégies successivement améliorées (en remplaçant une inéquation par une autre)
jusqu’à ce que le point fixe du système soit atteint. Il est garanti que ce point fixe est
le plus petit.

Itération de max-stratégies logico-numérique

Nous proposons un algorithme qui permet d’appliquer l’itération de stratégie numérique
à des programmes logico-numériques, mais en comparaison avec une tentative précédente
[SJVG11] qui necéssite de l’élargissement, notre méthode calcule toujours le plus petit
point fixe dans le domaine logico-numérique.

Notre analyse se base sur l’alternance (1) d’une itération de Kleene tronquée dans
un domaine abstrait logico-numérique avec des polyèdres gabarits et (2) l’itération de
max-stratégies numériques.

L’itération de Kleene tronquée (propagation) explore le système jusqu’à ce que, pour
tous les point de contrôle, l’ensemble des états accessibles booléens ne change pas quelle
que soit la transition que nous prenons. L’idée sous-jacente est de découvrir un sous-
système, dans lequel les variables booléennes sont stables pendant plusieurs itérations.
Dans un tel sous-système, les variables numériques peuvent évoluer pendant que les
transitions booléennes restent à l’intérieur du système, i.e., elles ne « découvrent » pas
de nouveaux états booléens, jusqu’à ce que des conditions numériques soient remplies
qui fassent que les variables booléennes « quittent » le sous-système.

On utilise l’itération de max-stratégies (phase (2)) pour calculer le point fixe pour les
variables numériques pour un tel sous-système. Puis, l’itération de Kleene (phase (1))
continue à explorer un autre sous-système temporairement stable. L’algorithme se ter-
mine en un nombre fini d’étapes dès que l’itération de Kleene de la phase (1) a atteint
un point fixe.

Résultats expérimentaux

Pour évaluer la précision et l’efficacité de nos techniques nous avons effectué une com-
paraison entre l’itération de max-stratégies numériques basée sur l’énumération des
booléens et notre méthode logico-numérique. Les résultats montrent que, grâce à
l’approche logico-numérique, nous gagnons un ordre de grandeur en temps de calcul
tout en étant aussi précis.
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En comparaison avec l’accélération abstraite il faut remarquer que bien que l’itération
de max-strategies soit capable de calculer le plus petit point fixe, elle ne le peut que
sur des formes de polyèdres donnés, tandis que l’accélération abstraite est en mesure de
« découvrir » des nouvelles contraintes d’invariants.

Jusqu’à présent nous n’avons considére que des systèmes discrets. Dans la suite nous
allons étendre les concepts logico-numériques aux contrôleurs discrets en interaction avec
leur environnement physique continu, i.e., les systèmes hybrides.

0.5 Modélisation et vérification de systèmes hybrides

Le modèle classique pour la vérification de systèmes hybrides est l’automate hybride
[ACH`95], qui combine un système de transition discret avec des équations différen-
tielles.

En revanche, pour la modélisation en industrie, les outils et langages de simula-
tion numériques comme Simulink [Sim] sont le plus largement utilisés. Pourtant, leur
sémantiques ont quelques particularités.

Le langage de programmation hybride synchrone Zelus [BBCP11b] aborde ces ques-
tions. Sa sémantique est basée sur l’analyse non-standard [Rob96, Lin88], ce qui permet
de spécifier une sémantique déterministe du système hybride indépendamment des ques-
tions d’intégration numérique. De plus, elle s’intègre bien avec les langages synchrones.

0.5.1 Traduction des langages flot de données hybrides vers les auto-
mates hybrides logico-numériques

Notre objectif est de vérifier les systèmes hybrides écrits dans des langages de simulation
comme Simulink ou Zelus. Cependant, il y a un décalage conceptuel entre ces langages
de haut niveau et les automates hybrides, la représentation adaptée pour la vérification :
dans les premiers, les transitions discrètes sont déclenchées par des zéro-crossings – des
événements survenant lorsqu’une fonction passe du négatif au positif – tandis que dans
les derniers les comportements discrets sont dirigés par des combinaisons d’invariants
de place et les gardes des transitions discrètes – dans un automate hybride les variables
continues peuvent évoluer aussi longtemps que l’invariant de place est satisfait et une
transition discrète peut être prise pendant que la garde est satisfaite.

Notre objectif est de formaliser la traduction d’un formalisme flot de données hy-
bride, qui nous sert comme une base commune afin d’abstraire des constructions de
haut niveau de langages comme Simulink ou Zelus, vers les automates hybrides logico-
numériques, qui permettent une représentation compacte sans exiger l’énumération de
l’espace d’états discret.

Formalisme flot de données hybride

Ce formalisme étend les systèmes de transition discrets par des équations différentielles

ordinaires (EDO) et des zéro-crossings:

$
&

%

Ipsq"
9x “ f cps, iq
s1 “ fdps, iq

où s “
ˆ

b

x

˙
, et 9x est la dérivée de x par rapport au temps. Les modes continus
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(dans f c) sont gardés par des variables discrètes
´
par exemple, 9x “

"
x if b
´x if $b

¯
,

et les transitions discrètes (dans fd) sont gardées par des zéro-crossings (par example,
x1 “ y if uppzq, uppzq étant la condition de franchissement du 0).

La sémantique est (comme celle de Zelus) inspirée par le mode de fonctionnement
d’un simulateur numérique, qui, après l’initialisation, intègre les EDOs jusqu’à ce qu’un
zéro-crossing ait été activé. Puis les transitions discrètes sont effectuées, avant de repren-
dre l’intégration.

Automates hybrides logico-numériques

Nous étendons les automates hybrides par des variables discrètes booléennes (et nu-
mériques). Les relations de transitions continues, qui définissent les comportements
continus et qui sont associées à des places de l’automate, ont donc la forme V pb,x, 9xq.
Les relations associées aux transitions discrètes ont la forme Rpb,x, b1,x1q.

Si nous éliminons toutes les variables booléennes en codant leurs valeurs en des
places, la sémantique d’un tel automate est égale à celle d’un automate hybride standard
qui ne traite que des variables numériques.

Traduction

La question principale dans la traduction est la question des zéro-crossings : la dif-
férence fondamentale entre le concept de zéro-crossings utilisé dans le langage d’entrée
et la combinaison d’invariants de place et de gardes dans le langage de sortie est que
l’activation d’un zéro-crossing dépend de l’histoire (c’est-à-dire une partie de la trajec-
toire antérieure) tandis que la satisfaction d’invariants de place et de gardes ne dépend
que de l’état actuel.

Donc, le principe de notre traduction consiste à ajouter des états discrets pour
mémoriser l’historique de l’évolution continue. Nous discutons trois choix naturels pour
la sémantique de zéro-crossing, et nous montrons comment traduire des zéro-crossings
sans et avec des entrées, des combinaisons logiques de zéro-crossings et les zéro-crossings
déclenchés par des transitions discretes.

Dans tous les cas, en raison des limitations du modèle d’automates hybrides, la
traduction ajoutera des comportements qui ne sont pas présents dans le programme
original. Par conséquent, la traduction entrâıne une sur-approximation en termes de
traces et d’états accessibles. Nous discutons la nature et l’ampleur de ces approxima-
tions.

La traduction vers les automates hybrides nous permet d’utiliser les outils actuels
de vérification hybrides tels que HyTech [HHWT97], PHaver [Fre05] et SpaceEx
[FGD`11]. Cependant, ces outils nécessitent de coder les états booléens explicitement
en des places, ce qui peut causer une explosion de la taille de l’automate hybride. Pour
éviter ce problème, nous appliquons le concept d’analyse logico-numérique aux méthodes
d’analyse hybride dans le chapitre suivant.

0.5.2 Analyse des automates hybrides logico-numériques

En plus du calcul des transitions discrètes, l’analyse d’accessibilité des automates hy-
brides logico-numériques doit tenir compte des transitions continues. Le calcul de
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cette évolution continue ressemble à l’accélération de boucles dans les systèmes dis-
crets. Toutefois, par rapport à l’accélération abstraite logico-numérique, il est en fait
plus simple, parce que seulement les variables continues (numériques) évoluent dans une
transition continue, tandis que les variables discrètes (booléennes et numériques) restent
constantes. Par conséquent, aucun découplage des variables booléennes et numériques
n’est nécessaire comme nous avions dû le faire dans le cadre de l’accélération abstraite
logico-numérique.

Analyse

Nous proposons une technique qui calcule à la volée des relations de transitions contin-
ues, convexes et spécialisées à l’état courant qui peuvent être traitées par des méthodes
existantes d’accessibilité continue numérique.

Nous montrons comment appliquer cette technique à trois méthodes d’analyse hy-
brides d’horizon de temps non-borné : le passage de temps polyédrique [HPR97],
l’itération de max-stratégies pour les systèmes hybrides affines [DG11a] et les abstrac-
tions relationnelles [ST11], une méthode qui abstrait les transitions continues par des
boucles discrètes.

Partitionnement par les modes continus

Les relations continues des automates hybrides logico-numériques peuvent regrouper de
nombreux comportements continus distincts, et donc l’analyse ne serait pas très précise.

Nous proposons deux méthodes de partitionnement pour découvrir des modes conti-
nus : pour détecter les modes définis par les états booléens nous appliquons la technique
proposée dans le contexte de l’accélération abstraite logico-numérique aux relations de
transitions continues. La deuxieme méthode se fonde sur une analyse disjonctive pour
trouver les modes continus caractérisés par les états numériques discrets.

0.6 Implémentation

Nous avons mis en œuvre les méthodes de vérification développées tout au long de cette
thèse dans un outil appelé ReaVer, REActive system VERifier.

Afin de rendre l’outil le plus générique et extensible possible, nous avons séparé
l’implémentation en (1) un « framework » qui définit des concepts génériques (graphe
de contrôle, domaine abstrait, analyse, etc) et fournit des fonctions auxiliaires, et (2)
les implémentations de ces concepts qui composent l’outil. Le framework se base sur
la librarie de domaines abstraites BddApron [Jea]. Les implémentations peuvent en
outre appeler d’autres bibliothèques, comme des solveurs LP et SMT.

L’outil accepte les formats d’entrée suivants:
– Le format NBac [Jea00], qui est une description textuelle d’un système dynamique

discret avec la spécification d’une propriété. Nous l’avons étendu au format Hybrid
NBac en ajoutant des équations différentielles et un opérateur de zéro-crossing.

– Le langage Lustre, qui peut être analysé après transformation au format NBac à
l’aide de l’outil Lus2NBac [Jea00].

– Un sous-ensemble de Zelus (resp., Lucid Synchrone), en se basant sur la partie
amont du compilateur Zelus [BBCP11a].
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Les programmes hybrides sont traduits vers les automates hybrides. Puis, les pro-
grammes sont partitionnés selon les modes numériques par exemple. Parmi les méth-
odes d’analyse disponibles, il y a l’analyse standard sans ou avec accélération abstraite,
l’itération des max-stratégies (basée sur le solveur de [DG11a]), ainsi que leurs versions
logico-numériques et hybrides.

0.7 Conclusions et perspectives

Dans le contexte de la vérification de propriétés de sûreté des systèmes embarqués, nous
avons poursuivi l’objectif d’améliorer la précision des propriétés inférées tout en amélio-
rant le passage à l’échelle vis-à-vis de la combinatoire booléenne. En plus, nous avons
considéré l’analyse de systèmes embarqués modélisés dans les langages de simulation
hybrides.

Notre approche se fonde sur des méthodes d’analyse logico-numériques, c’est-à-dire
des méthodes d’interprétation abstraite qui sont capables de manipuler des variables
booléennes de manière implicite à l’aide de domaines abstraits logico-numériques, et sur
des méthodes de partitionnement de l’espace d’états.

Dans ce cadre, nous avons adapté des méthodes permettant d’améliorer la précision
du contexte numérique au contexte logico-numérique.

En ce qui concerne les langages de simulation hybrides, nous avons proposé une
traduction vers les automates hybrides logico-numériques, et nous avons montré que
notre approche d’analyse logico-numérique s’applique également à de tels systèmes.

Nos expériences ont démontré que ces méthodes permettent d’améliorer l’efficacité
des analyses par au moins un ordre de grandeur en comparaison aux approches purement
numériques, tout en améliorant la précision des invariants calculés.

Perspectives. Nous pensons que le potentiel d’accélération abstraite numérique est
loin d’être entièrement exploité. Ce travail est un premier pas vers la généralisation
de ce concept. Des recherches plus poussées seront nécessaires afin de permettre le
calcul d’approximations polyédriques qui sont en mesure de découvrir des invariants
complexes, par exemple pour les transformations linéaires générales.

Notre itération de max-stratégies logico-numérique est basée sur un algorithme sim-
ple et générique. Il serait souhaitable de développer un solveur de max-stratégies logico-
numérique plus intégrée afin d’améliorer les performances de cette approche.

Nous n’avons pas encore effectué une évaluation approfondie expérimentale de nos
méthodes d’analyse de systèmes hybrides. À notre connaissance, il n’y a pas d’autres
outils de vérification avec horizon de temps non-borné pour les systèmes hybrides logico-
numériques. Cependant, nous pourrions comparer la version numérique avec la version
logico-numérique des méthodes d’analyse hybride que nous avons choisies.

La version actuelle de notre outil ne prend qu’un sous-ensemble restreint du langage
Zelus comme entrée. Nous devrions pousser notre développement vers une prise en
compte plus complète. En outre, une intégration plus étroite avec la partie amont sera
nécessaire pour mettre en œuvre une approche plus pratique de retour au programme
source.

Finalement, il serait intéressant de considérer des applications de nos méthodes,
par exemple dans l’analyse de systèmes échantillonnés, la synthèse de contrôleurs et
paramètres, la génération de cas de test et le débogage.
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Chapter 1

Introduction

1.1 Motivation

The last two decades were shaped by an explosion in number and complexity of comput-
erized systems. Computers get embedded almost everywhere and integrate a multitude
of functions: home appliances and entertainment, mobile phones, portable computers,
MP3 players, digital cameras, navigation assistants, electronic books, wearable fitness
devices, electronic identification, ticketing and payment devices, a.s.o. This development
of embedded systems is even more remarkable in applications where the presence of com-
puters is less perceived by the users: a middle-class car for instance contains nowadays
around fifty computers! In these applications more and more safety-critical tasks like
braking, steering and engine control are automated and entrusted to computer systems:
the safety of life and property depends on their correct operation. Safety-critical systems
are mainly encountered in the following areas:

• In industry, manufacturing lines and process control, e.g., in chemical plants, are
traditionally subject to automation.

• In transport systems, mechanics and humans are more and more replaced by com-
puters: avionics, automotive, automatic urban trains, railway and road signaling.

• Energy production systems such as nuclear power plants and the control of energy
distribution networks involve high environmental and financial risks.

• In military systems they are omnipresent e.g., in transport and weapon systems,
combat jets, cruise missiles, missile defense and unmanned aerial vehicles.

• Space applications have extreme requirements on fault tolerance: spacecrafts,
satellites, autonomous space vehicles and life support systems for spacemen.

• Building automation comprises applications like heating and air-conditioning, el-
evators, and security and safety systems (e.g., access control and fire detectors).

• Medicine is an expanding field for safety-critical applications like medical imaging,
intensive care, radiotherapy, automated medication dispensing devices, implants
(e.g., pacemakers), prostheses, and remote surgery.

All these embedded systems are reactive control systems (Fig. 1.1) in which com-
puter systems (“controllers”) are in permanent interaction (feedback loops) with their
physical environment (“plant”) via sensors and actuators. Physical systems comprise,
inter alia, electronics, mechanics, and hydraulics. These controllers are subject to real-
time constraints and resource constraints (energy, weight, memory, processing power).
The resource consumption and reaction time must be bounded statically (at compile

1
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computer system
“controller”

physical system
“plant”

sensors

actuators

Figure 1.1: Embedded system

time). Systematic engineering processes (e.g., V-model) support the development of
such systems in order to detect conceptual errors as early as possible. In several appli-
cation areas there are norms on the quality assurance regarding the system and software
development and maintenance process, e.g., DO-178B for avionics, and ISO/IEC-61508
for critical systems. Often certification by an authority is required before commissioning.

The validation process, i.e., checking compliance between intended and actual be-
havior, becomes increasingly expensive and a huge challenge for industry. There are
two general approaches to validation: testing and formal verification.

Testing can detect errors and increase the level of confidence in software, but it is
not exhaustive in general and therefore it cannot guarantee the absence of errors.

Formal verification mathematically proves the absence of errors. Formal verification
methods come in two flavors: Theorem proving is a semi-automatic approach which
requires a human to interact with a proof assistant tool. Algorithmic methods are
implemented in fully automatic tools. They are widespread in industry, e.g., in circuit
verification, but they are still limited regarding software verification. The industrial
need for automatic verification is confirmed by the success of tools like PolySpace1

andAstrée [CCF`05], which can prove the absence of runtime errors in large embedded
C programs.

Model-based design methods iterate refinement-validation phases in a top-down man-
ner. Software synthesis enables to automate such refinements and, thus, systems are
correct by construction. Actually, the methods used for synthesis and verification are
closely related and face similar difficulties, because they are somehow inverse operations:
verification checks the compliance of a behavior with a specification, whereas synthesis
determines the behavior compliant with a specification.

In this thesis we will concentrate on algorithmic verification methods for embedded
systems.

1.2 Scientific Context

Embedded systems are modeled as discrete or hybrid, i.e., discrete and continuous,
dynamical systems involving Boolean and numerical variables. Thus, we call such sys-
tems logico-numerical. Our goal is to check so-called safety properties which express
that “something bad never happens”. Such properties can be checked by computing the
possible configurations of the system for any execution.

Synchronous languages. Synchronous languages were designed for programming
reactive control systems, i.e., embedded controllers. Examples for such languages are
Lustre [CPHP87], Esterel [BC85] and Signal [BGJ91]. Their development was mo-
tivated by the fact that reactive systems are parallel systems by nature, but languages,

1http://www.mathworks.fr/products/polyspace
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like assembler or C, are not adapted to dealing with the complexity of parallel systems.
Hence, programming in such low-level languages is error-prone and programmers have
to struggle with problems of non-determinism, race conditions and deadlocks. Moreover,
these issues make the program analysis difficult.

In synchronous languages, parallel computations execute in lockstep in a sequence
of synchronized reactions (synchronous paradigm). Hence, determinism and deadlock-
freedom are guaranteed by construction. They abstract away all architectural and hard-
ware issues of distributed, embedded systems so that the programmer can concentrate
on the functionality. The link to real time and the execution platform is established by
a worst-case reaction time (WCRT) analysis, which guarantees that the compiled code
is schedulable under given application constraints.

Synchronous languages have been successfully used in avionics, railway and space ap-
plications, notably using the Scade [Sca] tool from Esterel Technologies which provides
a DO-178B level A certified compiler.

Hybrid systems. A computer system together with its physical environment makes
up a hybrid system: The controller is formalized as a discrete-time transition system and
the plant is modeled using (continuous-time) differential equations. Hybrid automata
[Hen96] are a classical formal model for hybrid systems that enable the modeling of the
controller, the plant and their interactions in a single formalism. Simulation tools for
hybrid systems, like Simulink/Stateflow [Sim], are widely used within a model-based
design flow, for example, in automotive applications.

While control theorists design continuous-time controllers that perform the desired
control task, we have to deal with event- or time-triggered discrete implementations of
these controllers. Our focus is clearly on the discrete part of the system: we will target
systems where the complexity of the discrete part largely exceeds the complexity of the
continuous environment.

Static analysis by abstract interpretation. Abstract interpretation [CC77] is
an algorithmic program analysis method, which enables unbounded (time) analysis of
infinite state systems with guaranteed termination.

However, since the verification problem is undecidable for general logico-numerical
programs, these properties are purchased for the price of over-approximations that make
the problem semi-decidable: the analyzer either replies “yes, property proved” or “don’t
know”. Hence, such algorithms cannot find counter-examples and falsify properties.

Numerous academic and industrial tools have been developed within the abstract
interpretation framework, inter alia, the above citedAstrée and PolySpace analyzers.

1.3 Problems and Objectives

This thesis addresses the following aspects of the verification of embedded systems:
(1) State space explosion problem: Classical abstract interpretation techniques deal only

with numerical variables. In the case of logico-numerical programs, they enumerate
first the Boolean states and encode them into program control points. It is well-
known from model checking of Boolean systems that explicitly enumerating states
becomes intractable already for medium-sized programs.

(2) Precision loss due to extrapolation: Numerical abstract interpretation uses an ex-
trapolation operator (“widening”) in order to force convergence of the analysis. How-
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ever, termination is dearly bought by a hard-to-predict loss of precision.
(3) Verification of high-level programming languages: Verification methods are generally

based on automata-based formal models. Yet, it is cumbersome to program real
systems in such low-level formalisms lacking any programming language concepts.

We detail these three aspects:

State space explosion. We will take into account this challenge by following the
approach of Jeannet et al. [JHR99, Jea00, Jea03], who proposed an abstract interpre-
tation method for logico-numerical programs based on an abstract domain that handles
symbolically both Boolean and numerical variables, and state space partitioning which
enables trading precision for efficiency.

Precision loss due to extrapolation. Various methods have been proposed to stem
the precision loss by extrapolation operators in (numerical) abstract interpretation. In
this thesis we consider abstract acceleration, introduced by Gonnord et al. [GH06,
Gon07], which exploits the regularity of the behavior of certain numerical operations
in loops of the program to perform a precise extrapolation in the abstract domain of
convex polyhedra. A second method that we consider ismax-strategy iteration, proposed
by Gawlitza et al. [GS07a, GS07b, Gaw09], which computes the best approximation of
the reachable state space in the abstract domain of template polyhedra with the help
of mathematical programming.

Our goal is to improve the precision of logico-numerical analyses by adapting the
above methods from the numerical to the logico-numerical setting.

Verification of high-level hybrid programming languages. The success of in-
dustrial modeling and simulation tools like Simulink [Sim] makes apparent that there
is a need for high-level languages in the design of embedded systems, which serve as a
common basis for simulation, code generation and verification. However, hybrid sys-
tem verification is based mostly on the low-level representation of hybrid automata
[ACH`95].

Our goal is to make abstract interpretation methods amenable to hybrid program-
ming languages by a compilation into hybrid automata that copes with these conceptual
discrepancies.

The efficiency and precision of verification methods is hard to evaluate by theoretical
means. Therefore, the proposed techniques need to be implemented in order to enable
experimental evaluation and comparison:

Tool development. Our goal is to develop a tool that, apart from implementing
our methods, enables the integration of available and future abstract interpretation
methods and the connection to actual programming languages. This should make it
easier to automatize experimental comparisons: for some of the numerous abstract
interpretation methods proposed every year, academic prototypes are available, however,
it is laborious to compare the efficiency and precision because often benchmarks have to
be transformed in the proprietary input formats, and the tool output must be re-parsed
in order to automatize comparisons.
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1.4 Contributions

The first objective of this thesis is to provide methods that allow us to improve the
precision while dealing with the state space explosion problem. To this end, we want
to make numerical analysis methods, which are known to improve the precision, ap-
plicable in the logico-numerical context. We will consider two such methods: abstract
acceleration and max-strategy iteration.

Verification of numerical programs. Before tackling logico-numerical programs
we have to settle a minor deficiency of abstract acceleration: it is not yet ready to handle
numerical input variables, which are, e.g., used to model inputs from sensors. Thus, we
extend abstract acceleration to numerical inputs (published in [SJ10, SJ12a]).

Moreover, we provide an extension of abstract acceleration to backward analysis, i.e.,
co-reachability analysis [SJ12a]. As a side effect, these contributions include detailed
proofs for the abstract acceleration methods originally proposed by Gonnord et al.

Furthermore, we revisit the notion of linear accelerability and provide a more general
characterization of linearly accelerable transitions.

Verification of logico-numerical programs. Now, we are prepared to apply
abstract acceleration to logico-numerical programs [SJ11], a method based on decoupling
Boolean and numerical transition functions and a partitioning technique for detecting
“numerical modes”, i.e., states with the same numerical behavior. Moreover, we provide
experimental results that demonstrate the efficiency and precision of the approach.

As a second method, we present an algorithm for applying max-strategy iteration
to logico-numerical programs [SS13]. Our experiments show that this is a promising
approach.

The remaining contributions to theory concern the translation of high-level hybrid
languages and their verification:

Modeling and verification of hybrid systems. We want to verify programs
written in high-level programming languages for hybrid systems, e.g., Zelus [BBCP11a,
BBCP11b]. To this end, we present a translation of a hybrid data-flow language to logico-
numerical hybrid automata [SJ12b], which addresses the problem of zero-crossings – an
issue left open in existing translation attempts which raises tricky semantical issues.
Moreover, the target formalism of the translation, logico-numerical hybrid automata,
takes into account the state space explosion problem.

At last, we describe how to extend hybrid system analysis methods to logico-numerical
hybrid automata. We present partitioning methods for detecting continuous modes and
propose principles for adapting existing numerical hybrid system analysis methods to
logico-numerical hybrid systems.

Implementation. On the practical side, we have developed a verification tool,
ReaVer2 (§14) based on the Apron library [JM09], a widely accepted API for numer-
ical abstract domains. Besides the methods we propose, it implements several existing
techniques and it is easily extensible. Besides a low-level input format it supports a
subset of the Zelus language.

2http://pop-art.inrialpes.fr/people/schramme/reaver/
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1.5 Outline

The organisation of the thesis is illustrated in Fig. 1.2.
We start with an introduction to formal program models and analysis methods:

§2 explains how we formally represent discrete programs and specify the properties we
want to verify. §3 gives a detailed presentation of the state of the art in reachability
analysis by abstract interpretation.

The following three parts of the thesis deal with our contributions in the three areas
of (I) numerical programs, (II) logico-numerical programs and (III) hybrid systems.

Part I deals with numerical program analysis: We first recall the concepts of acceler-
ation and abstract acceleration §4 before we present our contributions w.r.t. extending
(§5) and generalizing (§6) abstract acceleration.

Part II is dedicated to logico-numerical analysis of discrete programs: We start
with a detailed presentation of the state of the art in logico-numerical program analysis
in §7. Then, §8 and §9 explain our contributions concerning logico-numerical abstract
acceleration and logico-numerical max-strategy iteration respectively.

Part III deals with the modeling and analysis of hybrid systems: We give first an
introduction to hybrid system modeling and the Zelus language (§10). §11 details our
translation from Zelus to logico-numerical hybrid automata. Then, we give an overview
of the state of the art in hybrid system verification (§12). Finally, §13 presents some
methods for partitioning and analyzing logico-numerical hybrid automata.

The last two chapters are dedicated to the implementation of our tool ReaVer
(§14) and to the conclusions and perspectives (§15).
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programs and properties §2

reachability analysis by abstract
interpretation §3

verification of numerical systems (I)

acceleration and
abstract acceleration

§4

extending abstract
acceleration

§5

revisiting acceleration
§6

verification of logico-numerical systems (II)

logico-numerical
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§7

logico-numerical
abstract acceleration

§8

logico-numerical
max-strategy

iteration
§9

modeling and verification of hybrid systems (III)
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§10
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§12

hybrid data flow to
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§11
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logico-numerical
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§13

implementation: the tool ReaVer §14

conclusions and perspectives §15

Figure 1.2: Organization of the thesis: state of the art (shaded) and contributions.
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Chapter 2

Programs and Properties

Safety-critical embedded systems consist of reactive programs in interaction with their
environment. Reactive programs can be modeled as discrete transition systems (§2.1).

Synchronous languages (§2.2) like Lustre [CPHP87] and Lucid Synchrone [CP96]
are high-level programming languages for reactive systems, which combine data-flow and
synchronous paradigms and which can be compiled to discrete transition systems.

Safety properties express statements about a system of the form “something bad
never happens”. In the context of synchronous languages such properties can be specified
by synchronous observers (§2.3).

2.1 Program Models

We model reactive programs as discrete transition systems (§2.1.1), possibly considering
their control flow graphs (CFGs, §2.1.2).

2.1.1 Discrete Transition Systems

We will model reactive programs as discrete (input/output) transition systems (discrete
dynamical systems):

Definition 2.1 (Discrete transition system) A discrete transition system is defined
by xΣ,Υ, R,Iy where

• Σ and Υ are the state and input spaces,
• R Ď Σ ˆ Υ ˆ Σ is the transition relation and
• I Ď Σ is the set of initial states.

W.l.o.g. we can assume that the output of a system equals its state.

Definition 2.2 (Semantics) An execution of such a system is a sequence

s0
i0ÝÑ s1

i1ÝÑ . . . sk
ikÝÑ . . .

such that s0 P I and @kě0 : psk, ik, sk`1q P R.

A discrete transition system is deterministic iff the transition relation is a function,
i.e., R Ď pΣ ˆ Υ Ñ Σq, in other words: iff for each initial state and sequence of input
valuations there is a unique execution trace.

9



Chapter 2. Programs and Properties 10

Numerical and logico-numerical transition systems. We will mostly deal with
deterministic transition systems over state and input spaces Σ and Υ represented as"

Ipsq
s1 “ fps, iq where s and i are the vectors of state and input variables respectively,

and f is the vector of transition functions. The transition relation R is obtained by
tps, i, s1q | s1 “ fps, iqu.

Depending on the state and input spaces we can instantiate different types of discrete
transition systems: Numerical transition systems with Σ “ Rn and Υ “ Rm are finite-
difference equations. We denote the state and input vectors x and ξ respectively.

Example 2.1 (Numerical transition system) A simple example for a numerical
transition system with Σ “ R and Υ “ R is the program that memorizes the maximum
positive integer in the input sequence. On the right-hand side we give the beginning of a

possible execution:

$
&

%

I “ px“0q

x1 “
"
ξ if ξąx
x else

k 0 1 2 3 4 . . .

ξ 2 ´3 4 1 4 . . .
x 0 2 2 4 4 . . .

Boolean transition systems with Σ “ Bn and Υ “ Bm are Mealy machines for instance.
Logico-numerical transition systems have state and input spaces of the form BnˆNm,

where N can be any cartesian product of numerical sets; usually we assume N “ Rm.
We denote the state and input vectors consisting of Boolean and numerical components
pb,xq and pβ, ξq respectively. We will provide a detailed presentation of logico-numerical
programs in §7.

Remark 2.1 (Number representations) Discrete transition systems are idealized
versions of actual programs assuming unbounded integers instead of machine integers
and real numbers instead of floating point numbers. In practice, verification tools of-
ten represent machine integers as arbitrary-sized integers and floating point numbers as
arbitrary precision rationals resulting in sets of the form Zp ˆ Qq.

Remark 2.2 (Continuous dynamical systems) Continuous dynamical systems have
exactly the same form as discrete numerical dynamical systems, except that time is
continuous and the dynamics is specified by differential equations instead of difference

equations: @tě0 :
!

xp0q P I
9xptq “ fpxptq, ξptqq

2.1.2 Control Flow Graphs

The transition relation of a discrete transition system has a complex structure, e.g.,
involving conditionals (if-then-else), which makes it hard to understand for humans. In
program analysis it can be favorable to make this control structure explicit by encoding
it into a control flow graph:

Definition 2.3 (Control flow graph) A control flow graph (CFG) xΣ,Υ, L,!,Σ0y
is a directed graph where

• Σ and Υ are the state and input spaces,
• L is the set of locations (the vertices of the graph),
• !Ď L ˆ R ˆ L defines arcs (the edges of the graph) between the locations. The

arcs are labeled with a transition relation R P R “ pΣ ˆ Υ ˆ Σq.

10



11 2.2. Synchronous Languages

3

0 1 2 5 6

4

x1 “y1 “0 yě0
xď4

xą4

y1 “y`1

y1 “y´1

x1 “x`1

yă0

Figure 2.1: CFG for the program in Ex. 2.2.

• Σ0 : L Ñ Σ defines for each location the set of initial states.

Definition 2.4 (Semantics) An execution of a CFG is a sequence

p'0, s0q i0ÝÑ p'1, s1q i1ÝÑ . . . p'k, skq ikÝÑ . . .

such that for any kě0 : Dp'k, R, 'k`1q P!: psk, ik, sk`1q P R.

Imperative programs, e.g., C programs, can be translated directly into a CFG rep-
resentation by associating control points with programming constructs as if-then-else or
while:

Example 2.2 (CFG of an imperative program) The CFG of the following C pro-
gram (cf. [GR07]) is depicted in Fig. 2.1. The numbers in double parentheses are the
control points.

pp0qq x=0; y=0;

pp1qq while(y>=0) {

pp2qq if(x<=4) pp3qq y++;

else pp4qq y--;

pp5qq x++; } pp6qq

For any discrete transition system xΣ,Υ, R,Iy we can easily obtain the trivial control
flow graph representation xΣ,Υ, t'0u, tp'0, R, '0qu, t'0 Ñ Iuy.

In Ex. 2.2, a detailed CFG is extracted from the imperative program source by syn-
tactical criteria. In §7.3 we will discuss state space partitioning techniques for generating
CFGs of arbitrary granularity from discrete transition systems.

Remark 2.3 (Hybrid automata) Hybrid automata [Hen96] (see §10.2) are CFGs
where, in addition, locations are labeled by differential equations. That way, discrete
and continuous dynamical systems are modeled in a single formalism. An execution
of such a hybrid system is an alternation of discrete transitions between locations and
continuous evolutions while staying in a location.

2.2 Synchronous Languages

Synchronous languages [Hal93b, Hal98, BCE`03] were developed for programming re-
active systems. These languages apply the synchronous principle of digital hardware

11



Chapter 2. Programs and Properties 12

circuits to software: parallel computation steps are executed in lockstep. Such steps
(called reactions) are triggered by a (logical) clock. This computation model guarantees
deterministic concurrency, i.e., synchronous programs can be composed in parallel by
their synchronous product [HLR93] (no interleavings as in the asynchronous case).

A large number of synchronous languages have been developed with different flavors.
Generally, we distinguish languages that have an imperative language syntax like Es-
terel [BC85] from those with a data-flow syntax like Lustre [CPHP87]. We will focus
on the verification of synchronous data-flow languages, but the methods apply also to
imperative programs after having compiled them into a data-flow representation.

2.2.1 Lustre

Lustre was designed as a synchronous version of the data-flow language Lucid [AW85]
for programming real-time systems (hence the name (in French) LUcid Synchrone Temps
RÉel) [CPHP87]. By combining data-flow and synchronous paradigms, it has a seman-
tics that is surprisingly simple and easy to understand.

In Lustre variables represent streams of values. Operators, e.g., if then else

or +, are lifted to streams and applied point-wise to the elements of their operand
streams. The previous value operator pre delays a stream by one clock tick:

ppre sqpkq “
"

uninitialized for k“0
spk´1q for ką0

The initialization operator -> is used to initialize a stream:

ps0 -> sqpkq “
"

s0p0q for k“0
spkq for ką0

A program is structured in nodes, i.e., program blocks that have inputs and outputs,
and encapsulate their internal state. Nodes can be called (instantiated) by other nodes;
each instantiation has its own internal state. A node contains exactly one equation for
each state and output variable sj of the form sj “ fjps, iq.

Example 2.3 (Lustre program) The following program outputs at each clock tick the
maximum value encountered so far in its integer input stream:
node max(xi:int) returns (x:int);

let

x = xi -> if xi > pre x then xi else pre x;

tel

Equations like x = y + 1; y = 2*x are forbidden because of the instantaneous
causality cycle they induce: we need to know y in order to compute x and vice versa.
The language semantics does not resolve such cycles by computing fixed points, but
it requires each cyclic dependency to be cut by a delay operator pre, otherwise the
program is rejected by the compiler.

Accessing an uninitialized value of a stream, like in the equation x = pre x + 1,
leads to a runtime error.

Compilation to a discrete transition system. We can easily obtain the form of a
discrete transition system (§2.1.1) by

12



13 2.2. Synchronous Languages

– inlining the instantiated nodes (involves a renaming of the state variables in order to
make them unique);

– adding a finite number of variables p (called “memories”) for memorizing the delayed
values and their initialization, and replacing the delay operators by these variables,
e.g., y=2*(0 -> (pre (x+1))) becomes y “ 2p and we have the transition function
p1 “ x`1 with the initial value p“0; and

– replacing the variables s occurring on the left-hand sides of the equations by the left-
hand side of the equations defining s. For example, z=y+1 with the above definition of
y becomes z “ 2 ˚ p ` 1. This rewriting terminates because dependencies are acyclic.

The result consists of transition functions for the state variables p of the discrete tran-
sition system, their initial values, and the equations defining the outputs (which we are
not interested in).

Example 2.4 (Lustre to discrete transition system) For the program computing
the Fibonacci numbers

node fibonacci (dummy:bool) returns (x:int);

let

x = 1 -> pre(x + (0 -> pre x))

tel

we obtain the discrete transition system

I “ pp1“1 ^ p2“0q
"

p1
1 “ p1 ` p2

p1
2 “ p1

where the output x of the node has the value of p1.

We have seen in §2.1.2 that the trivial CFG of such a program consists of a single
location with a self-loop.

2.2.2 Lucid Synchrone

Lucid Synchrone [CP96, Pou02, CGHP04, CPP05, Pou06, CHP08] combines the
synchronous data-flow language Lustre with the features of a functional language like
ML [MTH90]. From the former it inherits the data-flow operators, from the latter, inter
alia, the syntax and the type inference.

Lucid Synchrone brings a lot of new features to synchronous languages – we will
only give a small selection here. For an exhaustive presentation we refer to the user
manual [Pou06]. All the features presented in the following are mere syntactical sugar
in order to lift programming to higher level. Such programs can still be reduced to a
discrete dynamical system as explained above.

The initialized delay operator fby initializes a stream by the first value of its first
operand and continues with the second operand delayed by one clock tick. Thus,
s0 fby s is equivalent to s0 -> pre s.

Unlike Lustre V4, the Lucid Synchrone compiler features an initialization anal-
ysis that checks if all accessed stream elements have actually been initialized.

While LustreV4 offers only a sampling (when) and a projection (current) operator
for dealing with multi-clocked systems, Lucid Synchrone provides also the oversam-
pling operator merge for combining streams with complementary clocks. Furthermore
it comes with an automatic clock inference based on a dependent type system.

13
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Figure 2.2: Scade diagram of the program in Ex. 2.3.

Hierarchical automata. Since programming state machines in a data-flow language
is tedious, Lucid Synchrone includes also hierarchical automata. They consist of a
list of locations with associated equations and a list of outgoing transitions:

Example 2.5 (Automata) We give an example (cf. [Pou06]) of an automaton with
two locations; the initial location is implicitly the first location declared:

let node triangle () = x where rec

automaton

| Up ->

do

x = 0 -> last x + 1

until (x >= 9) continue Down

| Down ->

do

x = last x - 1

until (x <= 1) continue Up

end

There are transitions with weak preemption (until) where the transition guard
is checked after executing the equations associated with the location, and transitions
with strong preemption (unless) where the transition can be taken before executing the
equations at all. The target locations of a transition can be entered by reset (then), i.e.,
as if it was the initial instant, or by history (continue), i.e., with the values the streams
had the last time the location was visited. Communication between the locations of an
automaton is handled via shared variables (last x). Moreover, automata can be nested
(hierarchy).

Automata are translated to data-flow using multi-clocking: equations associated to
locations are subsampled by the clock taking the values of the respective location labels
and the streams for the shared variables are then merged over this multi-valued clock.

Scade. The commercial tool Scade [Sca] (Software Critical Application Development
Environment) extends Lustre with several features of Lucid Synchrone, like fby,
merge and automata. It provides a graphical, block diagram representation, i.e., data
flow graphs, of programs. Fig. 2.2 shows the Scade diagram of the program of Ex. 2.3.

2.3 Properties and Observers

The goal of formal verification is to prove the compliance of a program to its specifica-
tion. The specification consists of a set of properties.

Safety and liveness properties. One distinguishes two types of properties [Lam77]:
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A realistic

i Program s Observer

G correct

Figure 2.3: Verification of a synchronous program with the help of a synchronous
observer

– Safety properties state that nothing bad happens. Many important properties in
practice fall into this category: state properties (invariants) such as the absence of
runtime errors (e.g., overflows and division-by-zero) and mutual exclusion, and trace
properties like deadlock freedom or guarantees w.r.t. response times and deadlines.
The violation of safety properties can be shown by a finite execution trace (counterex-
ample).

– Liveness properties state that something good eventually happens, i.e., a desirable
action is eventually executed. Examples for such properties are termination or fair
choice. Such properties cannot be violated by finite execution traces.

We will consider only safety properties.
An example for a specification language of properties is linear temporal logic (LTL)

[Pnu77]. In LTL, invariants are of the form GG meaning that a “predicate G holds
globally”: for all execution traces s0 Ñ s1 Ñ . . . we have @kě0 : Gpskq.

Synchronous observers. In the context of synchronous languages a safety property
can be specified with the help of a synchronous observer [HLR93], i.e., a program
written in the same language, synchronously composed in parallel with the program
under verification and with a Boolean output which is true iff the current prefix of the
execution satisfies the property. A synchronous observer allows any safety property to
be expressed as the invariant “the output of the observer is always true”.

In practice, we have to take into account hypotheses about the environment, i.e.,
which input values (in dependency of the current system state) are considered realistic.
Thus, one actually needs two observers: one for the assumption (or assertion) about
the environment Aps, iq and one to specify the program behavior considered correct,
i.e., the actual property Gpsq which shall be guaranteed if the assertion is satisfied:
GA ñ GG. Fig. 2.3 illustrates this verification schema.

Example 2.6 (Observer) Lustre provides an assert statement which can be used
to specify A. For G, we define a Boolean output variable ok.

node program(xi:int) returns (x:int);

let

x = 1 -> pre x*xi;

tel

node property(x,xi:int) returns (ok:bool);

var t:int;

let

t = 1 -> pre t + 1;

ok = true -> pre ok and ((t<=8) => (1<=x and x<=16*t));

tel

15



Chapter 2. Programs and Properties 16

node system(xi:int) returns (ok:bool);

var x:int;

let

x = program(xi);

assert 1<=xi and xi<=2;

ok = property(x,xi);

tel

A static analyzer actually truncates the traces at the point whereA ceases to hold. If
G holds along all these (partial) traces, the property is satisfied: GpA^Gq_pA^GqU$A.
This formula is equivalent to GA ñ GG under the condition that the assertion observer
does not block the program under verification [HLR93], i.e., for every sk in a program
execution Dsk`1Di : Rpsk, i, sk`1q ^ Apsk, iq.
To put everything together, a discrete transition system with observers has the form

$
&

%

Ipsq
Aps, iq Ñ s1 “ fps, iq
Gpsq

,
.

- with A Ď pΣ Ñ ℘pΥqq and G Ď Σ.

Property specification with observers can be used for all synchronous representations
of discrete and hybrid systems (see Rem. 2.3 and §10).

Remark 2.4 (Assume/guarantee) Another possible observer semantics comes from
assume/guarantee reasoning: GpA ñ Gq, i.e., the property is considered to be satisfied
if for all configurations the satisfaction of A implies the satisfaction of G. We have the
following relationship w.r.t. the above semantics: GpA ñ Gq ùñ pGA ñ GGq.

16



Chapter 3

Reachability Analysis by
Abstract Interpretation

Static analysis is the umbrella term for automatic program analysis methods that infer
properties about a program without actually executing it.

Reachability analysis (§3.1) is a static analysis that computes the states reachable
by all possible program executions. Hence, it enables the verification of invariance
properties. We consider reachability analyses using abstract interpretation [CC76, CC77,
Cou81, CC92a], an analysis framework based on lattice theory (§3.2) that consists of
two ingredients:

– an abstract domain (§3.3), i.e., an abstract state space to which concrete program
states are mapped; also, the concrete semantics of the program is mapped to an
abstract semantics in the abstract domain; and

– a method for resolving the abstract semantic fixed point equations associated to the
program (§3.4).

Abstract interpretation methods are guaranteed to terminate for any program, but at
the price of an approximate analysis result. There are several commercial and academic
static analysis libraries and tools based on this framework (§3.5).

3.1 Reachability Analysis

Reachability analysis aims at computing the reachable state space of a discrete transition
system xΣ,Υ, R,Iy.

Post- and pre-condition (or image and pre-image) operators define the sets of states
reachable from a given set of states by taking a transition in forward or backward
direction respectively:

Definition 3.1 (Pre- and post-condition operators)

Post-condition operator: postpSq “ ts1 | Ds P S, Di P Υ : ps, i, s1q P Ru, S Ď Σ
Pre-condition operator: prepSq “ ts | Ds1 P S, Di P Υ : ps, i, s1q P Ru, S Ď Σ

The set of (co-)reachable states, i.e., the (co-)reachable state space of a discrete
transition system, is defined by the reflexive and transitive closure of these operators:

17



Chapter 3. Reachability Analysis by Abstract Interpretation 18

Definition 3.2 ((Co-)reachable state space)

Reachable state space: reachpIq “ post˚pIq “
Ť

kě0 post
kpIq

Co-reachable state space: co-reachpIq “ pre˚pIq “
Ť

kě0 pre
kpIq

with

"
post0pSq “ S
postk`1pSq “ post ˝ postkpSq and analogously for prek.

An invariance property G (§2.3) can be checked by either a (forward) reachability
analysis or a co-reachability analysis (backward analysis):
– reachpIq Ď G, or reachpIq X E “ H with the error states E “ Σ ´ G
– co-reachpEq X I “ H

Finite and infinite-state systems. If Σ is finite the computation of reachpIq is
guaranteed to terminate in a finite number of computation steps, whereas in systems
with an infinite state space termination is generally not guaranteed. As a fundamental
consequence, reachability analysis in finite-state systems is decidable, whereas in infinite-
state systems, e.g., systems with Σ “ Zn, it is undecidable in general: a system with two
counters with increment, decrement and test-to-zero (two-counter machine) is known to
be Turing-complete [Min67].

However, there are some important classes of infinite-state systems with restricted
transition relations R such that reachability analysis becomes decidable, e.g., timed
automata [AD94]. We will deal with general infinite state systems.

Analysis approaches. Model checking subsumes methods for checking properties of
finite state systems or systems abstracted to finite state systems. Model checking is
successfully applied in digital circuit verification, i.e., on Boolean transition systems,
for which the reachability problem is an NP-complete problem [Coo71]. Model checking
methods rely either on enumeration, symbolic representations likeBdds, or SAT-solving.
Bounded model checking [CBRZ01] considers only traces of bounded length. It is an
efficient method to find bugs, but it cannot prove properties.

An infinite state system can be model-checked by abstracting it (by an appropriate
simulation relation) to a finite system (also called “quotient system” [Hen96]) such that
the property to be verified is preserved [BBLS92, CGL94]. For example, predicate
abstraction [GS97, FQ02] considers a finite set of predicates in order to generate a finite
state system, which is a (conservative, safe) over-approximation of the original system:
this means that each execution trace of the original system is an execution trace of
its abstraction, but conversely, a trace of the abstracted system may not be an actual
trace of the original system. Hence, if the property is verified on the abstraction, it is
also true on the original system. However, the additional behavior of the abstraction
may disprove the property although it is true. Such spurious counterexamples can be
used to derive additional predicates for refining the abstraction (counterexample-guided
abstraction refinement [CGJ`00]). Yet, this refinement process is not guaranteed to
terminate in general.

Other methods for infinite state systems make use of the power of modern SMT-
solvers: k-induction for instance [SSS00, HT08, DHKR11], unrolls the transition relation
k times and proves by induction that the property also holds for k`1. This method
terminates if there exists a bounded k that enables the proof of the property.

Abstract interpretation is a framework for over-approximating the concrete states
and semantics by abstract ones. Termination is guaranteed by an extrapolation oper-
ator. Similarly to finite state abstraction in model checking, the over-approximation

18



19 3.2. Lattice Theory and the Principle of Abstract Interpretation

analyzer
safety property yes, safe

program don’t know

Figure 3.1: Abstract interpreter for verifying safety properties.

adds behaviors, and thus the method can prove properties, but it cannot falsify them
in general. Fig. 3.1 shows the scheme of an abstract interpreter for verifying safety
properties: either the property is proved (“yes, safe”) or the result remains inconclusive
(“don’t know”).

3.2 Lattice Theory and the Principle of Abstract Inter-
pretation

Abstract domains (§3.3) are often complete lattices, i.e., algebras over partially ordered
sets. We recall in this section the fundamental notions of lattice theory, which are
the basis for the soundness of over-approximations of reachable state sets computed by
abstract interpretation methods. For further details and proofs we refer to textbooks
on lattice theory [DP90] and static analysis [NNH05].

From partial orders to complete lattices

Definition 3.3 (Partial order) A partial order xS,Ďy is a set S equipped with a re-
flexive, transitive and anti-symmetric binary relation Ď: S ˆ S.

For example, the powerset of integers with the set inclusion x℘pZq,Ďy is a partial
order. Partial orders can be visualized with the help of Hasse diagrams.

Definition 3.4 (Upper and lower bounds) Let S1 Ď S:
– Upper bound s P S: @s1 P S1 : s1 Ď s
– Lower bound s P S: @s1 P S1 : s1 Ě s
– Least upper bound (also called join or union operator) s “

Ů
S1: for all upper bounds

s1 P S1: s Ď s1

– Greatest lower bound (also called meet or intersection operator) s “
Ű

S1: for all
lower bounds s1 P S1: s Ě s1

For the powerset of integers x℘pZq,Ďy, we can define these operations as the usual
intersection X and union Y for sets. For example, take S1 “ tt1, 2, 3u, t2, 4, 5u, t2, 5uu,
then

Ů
S1 “t1, 2, 3u \ t2, 4, 5u \ t2, 5u“t1, 2, 3, 4, 5u, and

Ű
S1 “t2u.

Abstract domains are often complete lattices:

Definition 3.5 (Complete lattice) A complete lattice is an algebraic structure xS,Ď

,\,[,K,Jy with a partially ordered set S such that
– all subsets have least upper and greatest lower bounds,
– the least element K “

Ů
H “

Ű
S, and

– the greatest element J “
Ű

H “
Ů

S.

The powerset of integers is a complete lattice with K “ H and J “ Z.

19



Chapter 3. Reachability Analysis by Abstract Interpretation 20

Definition 3.6 (Ascending and descending chains)

– A chain is a totally ordered subset S1 Ď S, i.e., @s1, s2 P S1 : s1 Ď s2 _ s1 Ě s2.
– A sequence psnqnPN with sn P S is called

– an ascending chain iff m ď n ñ sm Ď sn,
– a descending chain iff m ď n ñ sm Ě sn.

The height of a lattice is defined as the length of its longest chain. A lattice has
finite height iff all of its chains have finite length, otherwise it has infinite height. The
powerset of integers lattice, for example, has infinite height.

Functions over lattices and their fixed points. The following definitions are
needed to state the theorems that allow us to solve fixed point equations over complete
lattices.

Definition 3.7 (Monotonic and continuous functions) Let xX,ĎXy and xY,ĎY y
be partial orders and f : X Ñ Y a function, then f is
– monotonic iff @x1, x2 P X : x1 ĎX x2 ùñ fpx1q ĎY fpx2q
– semi-\-continuous iff f is monotonic and preserves the upper bounds of ascending

chains:
– for each ascending chain C of X:

Ů
Y tfpXq | X P Cu “ fp

Ů
X Cq, and

– semi-[-continuous iff f is monotonic and preserves the lower bounds of descending
chains:

– for each descending chain C of X:
Ű

Y tfpXq | X P Cu “ fp
Ű

X Cq

Definition 3.8 (Least and greatest fixed point) Let xS,Ďy be a partial order and
f : S Ñ S a function:
– The elements s1 P S satisfying fps1q Ď s1 are called the post-fixed points of f .
– The elements s1 P S satisfying fps1q Ě s1 are called the pre-fixed points of f .
– The elements s P S satisfying s “ fpsq are called the fixed points of f .
– s “ lfppfq is the least fixed point of f iff @s1 P S : fps1q Ď s1 ñ s Ď s1.
– s “ gfppfq is the greatest fixed point of f iff @s1 P S : fps1q Ě s1 ñ s Ě s1.

The theorem of Knaster-Tarski [Tar55] characterizes the set of fixed points of f :

Theorem 3.1 (Knaster-Tarski) Let S be a complete lattice and f a monotonic func-
tion, then the set of fixed points forms a (non-empty) complete lattice:
– lfppfq “

Ű
tS | fpSq Ď Su

– gfppfq “
Ů

tS | S Ď fpSqu

Finally, the theorem of Kleene [Kle52] suggests an iterative method for computing
fixed points (Kleene iteration, see §3.4.1):

Theorem 3.2 (Kleene) Let S be a complete lattice and f a semi-\-continuous (resp.
semi-[-continuous) function f , then
– lfppfq “

Ů
kPNě0 fkpKq (ascending Kleene iteration)

– gfppfq “
Ű

kPNě0 fkpJq (descending Kleene iteration)

We have the following relationships, which are illustrated in Fig. 3.2:

K Ď fkpKq Ď
Ů

k f
kpKq Ď lfppfq

gfppfq Ď
Ű

k f
kpJq Ď fkpJq Ď J
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J

fkpJq
Ű

k f
kpJq

gfppfq

lfppfq
Ů

k f
kpKq

fkpKq

K

fpsq Ď s

fpsq “ s

s Ď fpsq

Figure 3.2: Fixed points of f

concrete (C) abstract (A)

S αpSq

γpS7q S7

α

γ
Ď Ď7

Figure 3.3: Galois connection

Principle of reachability analysis using abstract interpretation

In abstract interpretation, sets of concrete program states in S P C “ ℘pΣq are ab-
stracted by abstract values S7 from an abstract domain A. Their relationship is formal-
ized by the notion of a Galois connection (illustrated in Fig. 3.3):

Definition 3.9 (Galois connection) Let xC,Ďy and xA,Ď7y be partial orders, and
α : C Ñ A and γ : A Ñ C functions, then

C ´́ Ñ́Ð́´́
α

γ
A is a Galois connection iff @S P C,S7 P A : αpSq Ď7 S7 ðñ S Ď γpS7q.

The functions γ and α are called concretization and abstraction function respectively.
The goal of a reachability analysis is to compute reachpIq “ post˚pIq, which is

equivalent to computing the least fixed point of the monotonic function F “ λS.I Y
postpSq. An abstract interpretation-based reachability analysis computes this fixed
point in the abstract domain, i.e., it computes lfppF 7q where F 7 “ α ˝ F ˝ γ.

The following theorem [CC77] states the soundness of an abstract interpretation-
based analysis:

Theorem 3.3 (Sound over-approximation) Let C ´́ Ñ́Ð́´́
α

γ
A be a Galois connection

and F a monotonic function, then αplfppF qq Ď7 lfppα ˝ F ˝ γq.

This means that the fixed point in the abstract domain is an over-approximation of the
fixed point in the concrete domain.
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Chapter 3. Reachability Analysis by Abstract Interpretation 22

(a) Signs (light gray), parity (vertical lines)
and intervals (dark gray)

(b) Zones (outermost), octagons and convex
polyhedra (innermost)

Figure 3.4: Comparison of the precision of various abstract domains w.r.t. abstracting
a concrete set of points.

3.3 Abstract Domains

Abstract domains are used to represent and manipulate sets of program states. Since we
are generally dealing with infinite state systems a finite representation of infinite sets is
needed. For numerical state spaces convex geometric shapes like rectangles, octagons or
polyhedra are typical candidates for numerical abstract domains. However, such shapes
are not capable of representing the exact sets of program states. Thus, the choice of an
abstract domain induces a static approximation (i.e., prior to the analysis) and restricts
the set of possible invariants we can compute by a reachability analysis.

Characterizing domains. Fig. 3.4 compares the precision of some classical numerical
abstract domains. Abstract domains can be characterized by their ability to represent
relations between variables:
– An abstract value in non-relational domains like signs (x’0 with ’ P tă,ď,“,ě,ąu),

parity (x is even or odd) and intervals (lďxďu) is the cartesian product of the values
of the individual dimensions.

– Weakly relational domains allow a restricted coupling between dimensions. For ex-
ample, octagons are defined by sum and difference constraints between two variables.

– Fully relational domains like convex polyhedra – actually “polytopes”, i.e., a general-
ization of polygons to n dimensions – allow a coupling between all dimensions.

The precision of the domains increases from non-relational to fully relational domains,
but so does the computational complexity of the associated domain operations.

Defining domains. Besides a concretization function γ and an abstraction function α,
an abstract domain must provide the following operations:
– The test for inclusion Ď is used for checking convergence (i.e., having reached a fixed

point F 7pS7q Ď S7) of the analysis.
– The join (or union) operator \ is used to merge abstract values from several incoming

arcs of a location in a CFG for example.
– Transformation by a program statement (image, post-condition) !f"7: During the

analysis abstract values are transformed by the operators (statements) f occurring in
the program. Ideally, we have the !f"7 “ α ˝ !f" ˝ γ (where !f" denotes the concrete
semantics of f), but sometimes this “best abstract transformer” can only be over-
approximated. We denote !f"´1 the inverse of a transformation (pre-image).
Program statements are essentially
‚ assignments, like x1 “ Ax` b, which performs a linear (to be precise: affine)
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23 3.3. Abstract Domains

transformation of the abstract value; and
‚ guards (e.g., the conditions of an if-then-else construct) like the linear guardAxďb,

which the abstract value is intersected with. We will call this operator intersection
by a guard [g.

– The test for emptiness “ K is used for checking whether the intersection of the
reachable states with a given error set is empty.

– The projection (existential quantification of a variable Dxi) is needed for handling
input variables, for example.
A low computational complexity of the domain operations is crucial for an efficient

implementation. A canonical representation of abstract values is desirable because it
enables a cheap test for equality and lowers memory consumption by sharing values.

We will now describe three abstract domains, intervals (§3.3.1), convex polyhedra
(§3.3.2) and template polyhedra (§3.3.3) in detail and we give a short overview of other
abstract domains (§3.3.4). §3.3.5 explains how to combine abstract domains.

3.3.1 Intervals

The interval domain [CC76] (also called box domain) abstracts the values of the program
variables by their lower and upper bounds:

IntpRnq “ tKu Y
`
trl, us | l, u P R ^ l ď uu

˘n

where R “ R Y t´8,8u. Moreover, we denote J “s ´ 8,8r.
The domain is ordered by the inclusion of intervals:

X Ď Y ðñ

$
&

%

tt if X“K
ff if X‰K ^ Y “KŹ

iPr1...ns l
Y
i ď lXi ď uXi ď uYi otherwise

The union of two abstract values is the component-wise union of the intervals:

X \ Y “

$
&

%

X if Y “K
Y if X “KŚ

iPr1...nsrmintlXi , lYi u,maxtuXi , uYi us otherwise

Transformations by program statements are computed using interval arithmetic [Moo66].

For example:

#
x1
1 “ 2x1`x2`1

x1
2 “ ´x2

$7 ˆ
r0, 2s
r1, 3s

˙
“

ˆ
2r0, 2s`r1, 3s`1

´r1, 3s

˙
“

ˆ
r2, 8s

r´3,´1s

˙
.

Existential quantification of a variable xi simply means setting the respective com-
ponent to J: Dxi : X “ prl1, u1s, . . . , rli´1, ui´1s,J, rli`1, ui`1s, . . . , rln, unsqT

Interval analysis is very cheap: all the domain operations can be performed in linear
time and space in the number of dimensions.

3.3.2 Convex Polyhedra

The convex polyhedra domain [CH78, Hal79] is a fully relational domain.
A convex polyhedron can be either represented by
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Chapter 3. Reachability Analysis by Abstract Interpretation 24

Inclusion pV1, R1q Ď pA2xďb2q ðñ @v P V1 : A2vďb2 ^ @r P R1 : A2rě0

Canonicalization canpXq Chernikova’s algorithm

Abstraction αpXq Chernikova’s algorithm

Concretization γpX7q Chernikova’s algorithm

(Linear guard) pA1xďb1q [ pA2xďb2q “ can

ˆˆ
A1

A2

˙
xď

ˆ
b1
b2

˙˙

intersection

Union pV1, R1q \ pV2, R2q “ can

ˆˆ
V1

V2

˙
,

ˆ
R1

R2

˙˙

Linear trans- !x1 “ Cx ` d"7pV,Rq “ ptCv ` b | v P V u, tCr | r P Ruq
formation !x1 “ Cx ` d"7´1pAxďbq “ pACx ď b ´ Adq
Emptiness γpV,Rq“H ðñ V “H
Projection Dxi : X7 Fourier-Motzkin elimination

Table 3.1: Convex polyhedra domain operations.

– the sets of generators pV,Rq, i.e., the convex closure of vertices and rays

γpV,Rq “ tx | Dλě0,µě0 :
ÿ

i

λi “ 1 ^ x “
ÿ

i

viλi `
ÿ

j

rjµju

with the vertices V “ tv1, . . . ,vpu, vi P Rn and the rays R “ tr1, . . . , rqu, rj P Rn,
– or by a conjunction of linear constraints Ax ď b, i.e., an intersection of halfspaces

γpAx ď bq “ tx | Ax ď bu

with x P Rn, A P Rmˆn and b P Rm.
J and K denote the polyhedra Rn and H respectively.

We can convert from one representation to the other one using the double description
method [MRTT53, FP95], also known as Chernikova’s algorithm [Che65, Ver92]. The
conversion between constraint and generator representations has exponential worst case
complexity in the number of dimensions n (see [FP95]). However, it also depends on the
size of the polyhedra representation (number of generators or number of constraints),
which is unbounded in general.

Domain operations. The definitions of the domain operations (cf., e.g., [HPR97])
are summarized in Table 3.1.

Once a polyhedron is represented in both ways, some domain operations can be
performed more efficiently using the generator representation only, others based on the
constraint representation, and some making use of both. Hence any composition of do-
main operations requiring both representations has a worst-case exponential complexity.

Assuming that concrete sets X are given by constraints or points (vertices), Cherni-
kova’s algorithm transforms them into non-redundant (canonical) generator and con-
straint representations X7. In the case of generators this operation involves a convex
approximation (convex hull) of the concrete set of points.

Mind that a linear guard, i.e., the conjunction of linear constraints, is a convex
polyhedron. The intersection of two convex polyhedra is again a convex polyhedron:
X1 X X2 “ X1 [ X2. In contrast, the union of two convex polyhedra is not convex in
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25 3.3. Abstract Domains

general. It is computed by the union of their generators which implies that the result
is the convex hull of the original polyhedra: X1 Y X2 Ď X1 \ X2.

For the projection Dxi : X Fourier-Motzkin elimination is used, which is an algorithm
for eliminating variables from a system of linear inequalities (constraint representation)
and which has doubly exponential worst-case complexity (see, e.g., [Wil86] for details).

Furthermore, we will use the following operations:
– The Minkowski sum of two polyhedra X “ X1`X2 is defined by X “ tx1`x2 | x1 P

X1,x2 P X2u.
– The time elapse operation [HPR97], defined as X1 Õ X2 “ tx1 ` tx2 | x1 P X1,x2 P

X2, t P Rě0u, can be implemented using the generator representations: pV1, R1q Õ
pV2, R2q “ pV1, R1 Y V2 Y R2q.
All these domain operations are implemented in polyhedra libraries like PPL [BHZ05]

or NewPolka [Jea00].

Discussion. As already mentioned convex polyhedra operations have a high com-
putational complexity. However, they provide a good precision: Since they are closed
by affine transformations, images by statements x1 “ Cx ` d can be computed with-
out approximations. In comparison to template polyhedra (see below), which have a
fixed shape, the shape of convex polyhedra is dynamic and, thus, analyses with convex
polyhedra can “discover” non-trivial shapes of invariants.

We will use convex polyhedra in the context of abstract acceleration (see §§4–6
and §8) and hybrid system analysis (§12 and §13).

3.3.3 Template Polyhedra

Abstract interpretation with template polyhedra was introduced by Sankaranarayanan
et al [SSM05]. It is based on polyhedra the shape of which is fixed by a so-called (linear)
template constraint matrix, or short template, T P Rmˆn where each row contains
at least one non-zero entry. The set of template polyhedra PolT generated by T is
tXd | d P R

mu with Xd “ tx | Tx ď d,x P Rnu.

For example,

ˆ
1

´1

˙
is a template constraint matrix of intervals for a system with

a single variable x: it represents the constraints xď d1 ^ ´xď d2, i.e., ´d2 ď xď d1.
Similarly, zonal (˘xiď d, xi´xj ď d) and octagonal (˘xiď d,˘xi ˘ xj ď d) constraints
can be expressed using templates.

J and K are naturally represented by the bound vectors 8 and ´8 respectively.
When analyzing a CFG, the templates may vary from location to location.

In the following, the operators min, sup, a.s.o. are point-wisely lifted to vectors.

Domain operations. Table 3.2 summarizes the domain operations. They involve
min and max operators over infinite sets. These optimization problems are solved using
linear programming.

We recall the most important notions of linear programming (LP): A linear program-
ming problem is of the form (primal problem): max cTx subject to Ax ď b ^ x ě 0.
cTx is the objective function and Ax ď b^x ě 0 is the feasible region, which is a con-
vex polyhedron. The dual problem is min bTy subject to ATy ě c^y ě 0. The strong
duality theorem says that if x˚ is an optimal solution of the primal problem, then y˚ is
an optimal solution of dual problem, such that cTx˚ “ bTy˚. If the primal problem is
unbounded (i.e., the optimal solution is 8), then the dual problem is infeasible and vice
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Inclusion c ĎT dðñ
Ź

i ci ď di

Abstraction αTpXq “ mintd P R
m | γTpdq Ě Xu, X Ď Rn

Concretization γTpdq “ tx | x P Rn,Tx ď du, d P R
m

Union d \T d1 “
`
maxpd1, d1

1q, . . . ,maxpdm, d1
mq

˘

Linear guard
d [g

T
pAxďbq “ mintd1 | Axďb ^ Tx ď d ^ Tx ď d1u

intersection

Linear trans- !x1 “ Ax ` b"7pdq “ mintd1 | x1 “ Ax ` b ^ Tx ď d ^ Tx1 ď d1u
formation

Emptiness γpdq“H ðñ d“´8
Projection Dxi : d “ mintd1 | Tx ď d ^ Tx1 ď d1 ^ @j‰ i : x1

j “xju

Table 3.2: Template polyhedra domain operations.

versa. The classical algorithm for solving LP problems is the simplex algorithm [DT97].
There are other methods, e.g., interior point methods [Kar84], which have polynomial
complexity, but the simplex algorithm is despite its exponential worst-case complexity
the most efficient and most-widely used in practice.

Hence, the theoretical complexity of the operations of the template polyhedra do-
main is polynomial in the number of dimensions and the size of the template constraint
matrix.

Besides, there are extensions [AGG10a, GS10] from linear to quadratic templates
using semi-definite programming for resolving the optimization problems involved.

Discussion. Template polyhedra are computationally efficient and they possess a
great flexibility in defining the shape of possible invariants. However the shape must
be fixed prior to the analysis, when no information except the program code itself is
available. Guard conditions might be good candidates, but in general the shape of an
invariant cannot be guessed from the source code. The proposed methods are heuristic
and include the use of general shapes like octagonal constraints, deriving additional
constraints from a given template [SSM05], performing a truncated polyhedral analysis
to discover constraints or adding random constraints.

However, a large template size penalizes the efficiency of the domain operations.
Thus, finding templates consisting of a small number of relevant constraints is still an
open problem.

We will use template polyhedra in the context of max-strategy iteration (see §3.4.3
and §9).

3.3.4 Other Domains

We pick some other domains to show the large variety of abstract domains:
There are weakly relational domains with low polynomial complexity, like zones

[HNSY92, Min01a] (defined by constraints ˘xi ď d, xi ´xj ď d), octagons [Min01b]
(˘xiď d,˘xi ˘ xj ď d) and their generalization logahedra [HK09], i.e., to two-variable
constraints with coefficients that are powers of two up to some bound parameter.

Among the fully relational domains count zonotopes [Gir05, GP06], which are bounded,
central-symmetric polyhedra defined by x “ c`

ř
i giλi,λi P r´1, 1s, i.e., the Minkowski
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27 3.3. Abstract Domains

sum of a central point and a finite set of line segments; and ellipsoids [KV00] (xTAxďb).
These domains are both closed under linear transformations.

Tropical polyhedra [AGG10b] are based on max-plus algebra and they are able to
represent some non-convex shapes. Donut domains [GIB`12] are shapes computed by
the difference between two convex sets.

The linear congruence domain [Gra91] (
Ź

i a
T
i x ” ci mod mi) is used for proving

divisibility properties, e.g., in algorithms involving gcd and lcm. Varieties [SSM04]
are algebraic sets defined by the common zeros of a set of polynomials pj , i.e., tx P
Cn |

Ź
j pjpxq “ 0u. This domain has been used for analyzing hardware division algo-

rithms for instance.

3.3.5 Composite Abstract Domains

Composite abstract domains [CC79] enable, for example, to analyze different types of
variables using suitable abstract domains. In a logico-numerical program with state
space Bn ˆ Rm, for instance, sets of Boolean states ℘pBnq can be presented (exactly)
by Boolean formulas, while sets of numerical states ℘pRmq are abstracted by convex
polyhedra PolpRmq.

Another reason to combine domains is to improve the precision. For example, an-
alyzing a numerical program with state space Rn using a single analysis combining
convex polyhedra PolpRnq and linear congruences LinCongr pRnq yields more precise
results than analyzing the program first with convex polyhedra and then with linear
congruences or the other way around [CC79].

We consider the following two ways to construct composite abstract domains:
– A product domain A ˆ B is able to represent a conjunctive relation between the two

subdomains A and B. For example in the logico-numerical setting above, we have
the abstraction: ℘pBn ˆ Rmq ´́ Ñ́Ð́´́

γ

α
℘pBnq ˆ PolpRmq: in this domain b ^ xě0 can be

presented exactly whereas b ô xě0 is abstracted to J ˆ J.
– A power domain BA “ A Ñ B can represent one abstract value of B for each value

of the set A. For example for the logico-numerical state space above, we have the
abstraction ℘pBn ˆ Rmq ´́ Ñ́Ð́´́

γ

α
Bn Ñ PolpRmq: this domain can exactly represent

b ô xě0, whereas b ^ xě10 _ b ^ xď0 is abstracted to b Ñ J.

Domain operations and reduction. Since the subdomains in a composite domain
are not semantically independent, a naive combination of the domain operations would
lead to non-canonical representations of abstract values. Hence, a canonicalization op-
eration is needed in order to reduce the result of operations:

For example, given two abstract domains A and B combined into a product domain
with the abstraction and concretization functions αA,αB and γA, γB respectively, we
have the canonicalization canpa1, b1q “

Ű
tpa2, b2q | γApa1q ^γBpb1q “ γApa2q ^γBpb2qu.

A consequence of the canonicalization is, for example, that in the combined domain an
abstract value pa, bq equals K if a “ KA or b “ KB.

We give the resulting operations of the (reduced) product domain:

xA,ĎA,KA,JA,[A,\Ay ˆ xB,ĎB ,KB,JB ,[B ,\By “ xA ˆ B,Ď,K, pJA,JBq,[,\y

with

$
&

%

Ď “ λpa1, b1q, pa2, b2q.pa1 ĎA a2q ^ pb1 ĎB b2q
[ “ λpa1, b1q, pa2, b2q.canpa1 [A a2, b1 [B b2q
\ “ λpa1, b1q, pa2, b2q.pa1 \A a2, b1 \B b2q
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Chapter 3. Reachability Analysis by Abstract Interpretation 28

The abstraction and concretization functions are defined as αpSq “ canpαApSq,αBpSqq
and γpa, bq “ γApaq ^ γBpbq respectively. A transformation !f" is then abstracted to
!f"7 “ α ˝ !f" ˝ γ in the combined abstract domain.

Similarly, one can define the domain operations for the (reduced) power domain (see
[CC79] for details). We will return to logico-numerical domains constructed by product
and power domain combinations in §7.

Besides, disjunctive combinations of elements of the same domain have been consid-
ered too, e.g., in [CC79, GR98, BHZ04, SISG06]. This helps for example to overcome
the convexity limitations of most numerical domains, but it entails an exponentially
higher complexity and difficulties in canonicalizing representations.

3.4 Fixed Point Computation

The classical method for fixed point computation is Kleene iteration (§3.4.1). However,
in general this iteration does not terminate. Therefore an extrapolation operator called
widening is used in order to speed up convergence for the price of additional approxi-
mations. Numerous improvements for widening (§3.4.2) have been developed to reduce
the involved loss of precision.

Strategy improvement (or strategy iteration) methods (§3.4.3) enable the computa-
tion of the fixed point without the use of widening for certain abstract domains with
infinite height, e.g., template polyhedra.

3.4.1 Kleene Iteration with Widening

We denote F 7 “ λS7.S70 \ post7pS7q with S70 “ αpIq and post7 “ α ˝ post ˝ γ. In order
to avoid clutter, we will not put the 7 superscript in the following when it is clear from
the context that we are manipulating abstract values. Moreover, we will use the term
“Kleene iteration” to refer to the ascending Kleene iteration (see Thm. 3.2).

Widening. Kleene iteration computes the least fixed point lfppF q by
Ů

kPNě0pF qkpKq.
However, it may require an infinite number of iterations when the abstract domain has
infinite ascending chains or a large number of iterations for lengthy finite ascending
chains.

For this reason, abstract interpretation introduces a widening operator that guaran-
tees convergence:

Definition 3.10 (Widening operator ∇) ∇ : S ˆ S Ñ S is a widening operator iff
• @s1, s2 P S : s1 Ď s1∇s2 ^ s2 Ď s1∇s2
• for any ascending chain s0 Ď s1 Ď . . ., the chain ps1

iq with s1
0 “ s0, s1

i`1 “ s1
i∇si`1

eventually stabilizes, i.e., Dn P N : @n1 ą n : s1
n1 “ s1

n

The standard widening operators of numerical abstract domains suppose that the
program has a certain regularity, and thus, a constraint that changes in successive
iterations will continue to be shifted in the same direction. Hence, it is extrapolated to
infinity (resp. minus infinity). For instance the standard widening operator for intervals
is defined as follows (component-wise):

$
&

%

K∇X “ X∇K “ X

rl1, u1s∇rl2, u2s “
„

if l2 ă l1 then ´ 8 else l1,
if u2 ą u1 then 8 else u1


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F 7pSq Ď S

F 7pSq Ě S

F 7pSq “ S

J

gfppF 7q

lfppF 7q

K

S0

S1

S1
0 “ S2

S1
N 1 S2

0

S2
1

S2
2

Figure 3.5: Kleene iteration with delayed widening (N “2) and two descending itera-
tions

For convex polyhedra X1∇X2 consists, roughly speaking, of those constraints of X1

that are satisfied by X2 (see [Hal79, HPR97] for a detailed presentation).
Widening for template polyhedra [SSM05] works similarly to intervals.

Fixed point computation. The classical analysis procedure [CC77, CC92b] consists
of three phases:
(1) an ascending sequence pSnq0ďnďN of post-condition computations:

"
S0 “ S0

Sn`1 “ F pSnq for năN

(2) a (delayed) widening sequence pS1
nq0ďnďN 1 that is guaranteed to converge to a post-

fixed point S1
N 1 in a finite number of steps:

"
S1
0 “ SN

S1
n`1 “ S1

n∇pF pS1
nqq until convergence pS1

N 1 Ď S1
N 1`1q

(3) a (truncated) descending sequence pS2
nq0ďnďN2 of post-condition computations for

approaching the least fixed point:

"
S2
0 “ S1

N 1

S2
n`1 “ F pS2

nq for n ă N2

This procedure is illustrated in Fig. 3.5.
Descending iterations generally do not converge: Cousot and Cousot [CC77] propose

the use of a narrowing operator in order to force the convergence to a fixed point. In
practice, the descending sequence is usually truncated, which is sound because the result
of the widening sequence satisfies F pS1

N 1 q Ď S1
N 1 , and hence, by Thm. 3.2 all elements

of the descending sequence are upper bounds of the least fixed point.
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Chapter 3. Reachability Analysis by Abstract Interpretation 30

Example 3.1 (Kleene Iteration with widening) We analyze the following program
"

I “ px“0q
x1 “ if xď9 then x`1 else 0

in the interval domain with N “ 2 and N2 “ 1:

S0 “ r0, 0s
S1 “ r0, 0s \ r1, 1s “ r0, 1s
S2 “ r0, 0s \ r1, 2s “ r0, 2s “ S1

0

S1
1 “ r0, 2s∇r0, 3s “ r0,8s “ S1

2 “ S2
0

S2
1 “ r0, 10s

Iteration strategies

When analyzing a CFG one assigns to each location ' P L an abstract value from an
abstract domain A. Thus the overall abstract domain has the structure of the power
domain pL Ñ Aq. Therefore, one has to solve the fixed point equation

S “ S0 \ λ'1 .
ğ

#1PL

post#,#1pSp'qq

where S, S0 P pL Ñ Aq.
A naive way to perform Kleene iteration is to apply all the post#,#1 operators in par-

allel as suggested by the above equation. However, Kleene iteration actually propagates
the abstract values through the graph in a wave-like fashion while transforming them
by the post#,#1 operators associated to the arcs (transitions) of the graph. Thus, the
computation should be serialized.

It can be shown [Cou77, CC77] that any order, i.e., iteration strategy, which does
not forget any transition indefinitely, computes the least fixed point (“chaotic iteration”).

Bourdoncle [Bou93] proposes heuristics to derive efficient iteration strategies from
the graph structure. He first computes a weak topological ordering by depth-first ex-
ploration of the CFG. The ordering can be written as a well-parenthesized permutation
of the locations L, such that the locations within two matching parentheses correspond
to the strongly connected components of the graph. For example, the ordering obtained
for the CFG in Fig. 3.6a is p'1 p'2qq '3.

He proposes two strategies: the iterative strategy (p'1 '2q˚ '3 for Fig. 3.6a) stabilizes
the outer strongly connected components, whereas the recursive strategy (p'1 p'2q˚q˚ '3)
recursively stabilizes components from the innermost to the outermost ones such that
the inner components are re-stabilized in each iteration of an outer component.

Moreover, it suffices to apply widening only in the loop heads, i.e., the first location
of a strategy component. Also, convergence can be detected by the stabilization of the
loop heads. For Fig. 3.6a the widening points (marked with W ) are p'1W p'2W qq '3.

Backward analysis

Co-reachability analysis of a CFG is performed by transposing the graph and inverting
the transition relations associated to the arcs, i.e., the arcs are labeled by post´1. The
Kleene iteration is started from the error set E , and the set to be avoided is the set of
initial states I. Hence, a backward analysis is just a forward analysis on the reverse
CFG. Everything stated in this section applies analogously to backward analyses.
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31 3.4. Fixed Point Computation

'1 '2

'3

Σ0 “ I “ p'1 Ñ px1 “x2“0q, t'2, '3u Ñ Kq

(a)

x1ě10

x1ď9 ^
x1
2 “ 0

x2ě10 ^
x1
1 “ x1`1

x2ď9 ^
x1
2 “ x2`1

'1 '2

'3

Σ0 “ E “ λ'.px1ě11 ^ x2ě11q

(b)

x1ě10

x1ď9 ^ x2 “0
^ x1

2 P Z

x2ě10 ^
x1
1 “ x1´1

x2ď10 ^
x1
2 “ x2´1

Figure 3.6: Example 3.2: a CFG (a) and its reverse CFG (b).

x1 “0

xď99 ^ x1 “ x`1

xě100 ^ x1 “ 0

x1 “ x

Figure 3.7: CFG for Example 3.3: the descending sequence fails.

Example 3.2 (Backward analysis) Fig. 3.6b shows the reverse CFG of Fig. 3.6a.
Starting from the set of error states E “ px1 ě 11 ^ x2 ě 11q, the backward analysis
converges with the invariant t'1, '3u Ñ px1 ě 11 ^ x2 ě 11q, '2 Ñ px1 ě 10 ^ x2 ě 11q,
which does not intersect with I “ px1 “x2 “0q. Mind that if post is not injective, post´1

is a relation.

3.4.2 Improvements of Widening

Although Cousot and Cousot [CC92b] show that the approach using Kleene iteration
with widening and infinite height lattices can discover invariants that finite height lat-
tices cannot discover, the dynamic approximations induced by widening lead quite often
to an important loss of precision. There are several reasons for these problems:
– The standard widening operators are not monotonic, e.g., r0, 2s∇r0, 4s “ r0,8s, but

r1, 2s∇r0, 3s “ J (although r1, 2s Ď r0, 2s and r0, 3s Ď r0, 4s).
– Descending iterations fail to recover information if the result of the widening sequence

S1
N 1 is already a fixed point, i.e., postpS1

N 1 q “ S1
N 1 .

Example 3.3 (Descending sequence fails) The program in Fig. 3.7 (cf. [Mon09])
exhibits the latter problem: After widening we obtain S1

1 “ r0,8s “ S2
0 , but then S2

1 “
r0, 100s \ r0, 0s \ r0,8s “ r0,8s “ S2

0 . The descending sequence fails to improve the
result, because the transition x1 “x keeps “injecting” the value S2

0 “ r0,8s in the join of
the three incoming transitions.

Moreover, the delay N of widening has an important effect on precision, as shows
Ex. 3.4. However, delaying widening might be expensive, especially with convex poly-
hedra where coefficients quickly become huge. Mind that delaying widening is not
equivalent to loop unrolling, because the convex union is taken after each iteration,
whereas loop unrolling creates separate locations.
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x1

x2

0

1

2

3

0 1 2 3 4 5 6

Figure 3.8: Delayed widen-
ing (Ex. 3.4): Abstract reach-
able sets for N “ 1 (whole
shaded area), N “ 2 (gray
and dark gray) and N “ 3
(dark gray)

0

1

2

3

4

5

´1
x1

x2

Figure 3.9: Taking into account loop phases
(Ex. 3.5): Reachable sets computed by Kleene it-
eration (whole shaded area) with widening (N “1)
and descending iterations (N2 “1), and by guided
static analysis (dark gray).

Example 3.4 (Delayed widening) For the following program we get increasingly bet-
ter approximations with increasing delay N (depicted in Fig. 3.8 for N “ 1, 2, 3):

$
&

%

Ipx1, x2q “ p0, 0q
x1
1 “ if x2ě0 then x1 ` x2 ` 1 else 0

x1
2 “ if x2ě0 then x2 ` 1 else 0

Taking into account loop phases. Standard widening performs an extrapolation
based on the hypothesis that the program behavior is somehow regular. However, this
is not the case if a loop body consists of several paths (loop phases, see e.g., CFG in
Fig. 2.1). Distinguishing these loop phases can be exploited to obtain a better precision
[Hal93a].

Guided static analysis [GR07] follows this idea by alternating ascending and descend-
ing sequences on a strictly increasing, finite sequence of restrictions of the program (by
adding new transitions) which converges towards the original program. In many cases
this method improves the precision, but it ultimately relies on the effectiveness of the
descending iterations.

Example 3.5 (Loop phases) The overall reachable states for the CFG in Fig. 2.1
(§2.1.2) obtained by a classical Kleene iteration with widening respectively guided static
analysis are depicted in Fig. 3.9.

Widening with thresholds. The idea of widening with thresholds (or “widening
up to”) is to limit widening by a given set of constraints [Hal93a, CCF`09]. To achieve
this, the widening operator is parametrized with a set of threshold constraints T :

Sn∇T pSn\postpSnqq “ pSn∇pSn\postpSnqqq[
ę

tT P T | Sn Ď T^pSn\postpSnqq Ď T u

Hence, widening with thresholds is computed by applying the standard widening op-
erator and then intersecting with those constraints in T that are satisfied by both
arguments of the widening operator.
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33 3.4. Fixed Point Computation

Example 3.6 (Widening with thresholds) An analysis of the CFG in Fig. 3.6a
(cf. [LCJG11]) with Kleene iteration and widening (N “ 2, N2 “ 2) yields the overall
invariant x1ě0 ^ 0ďx2ď10. Using widening with the threshold sets in locations '1, '2
respectively T1 “ tx1ď10, x2 “10u and T2 “ tx1ď9, x2ď10u yields the desired invariant
0ďx1ď10 ^ 0ďx2ď10.

The problem is, though, how to find a set of relevant threshold constraints. A static
threshold inference method based on propagating the post-condition of a loop guard to
the widening points of the CFG is proposed in [LCJG11]. Dynamic threshold inference
methods are for example counterexample-refined widening [WYGI07], which is based
on an (under-approximating) backward analysis, and widening with landmarks [SK06],
which extrapolates threshold constraints by estimating the number of loop iterations
until the guard of the loop is violated.

Loop acceleration methods. These techniques take into account information about
the dynamics of the loop body in order to compute the precise effect of an unbounded
number of loop iterations (e.g., [GH06]). Since these methods have shown promising
results, we will use them in this thesis for improving the precision. We will discuss them
in detail in §5.

3.4.3 Strategy Iteration

Strategy (or policy) iteration methods [CGG`05, GGTZ07, AGG10a, GS07a, GS07b,
GSA`12] are a way to solve fixed point equations over infinite height lattices without
the need for a widening operator.

Originally, strategy iteration was developed for solving stochastic control problems.
Later it was applied to two-player zero-sum games and min-max-plus systems, and more
recently to solving abstract semantic equations in static analysis. More information on
the historical background can be found, e.g., in [CGG`05].

The main idea of strategy iteration is to iteratively approximate the least fixed
point of the abstract semantic equation S7 “ F 7pS7q by fixed points of “simpler”, more
efficiently computable semantic equations F 7piq, called strategies, such that a fixed point
of F 7 is guaranteed to be found after solving a finite number of equations S7 “ F 7piqpS7q.
Depending on whether the least fixed point of F 7 is approached from above or below,
the methods are called min- or max-strategy iteration respectively.

Current strategy iteration methods are limited to template domains (§3.3.3).

Min-strategy iteration

Min-strategy iteration [CGG`05, GGTZ07, AGG10a] aims at computing least fixed
points of monotone self-maps F where F pxq “ mintπpxq | π P Πu for all x. The set
of self-maps Π is called the min-strategies. For example, F could be the min of max
of affine functions. Then a min-strategy π is the choice of an argument of the min
operator.

The idea is that the least fixed point of a strategy lfp π can be computed more
efficiently than lfp F , e.g., with the help of an LP solver. Starting with πp0q, the
decreasing sequence of abstract values plfp πpkqqk stabilizes if lfp πpkq is a fixed point
of F .
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Chapter 3. Reachability Analysis by Abstract Interpretation 34

The improvement of a strategy πpkq amounts to finding a πpk`1q such that πpk`1qpxpkqq “
F pxpkqq: Let xpkq “ lfp πpkq, then we have F pxpkqq Ă xpkq because otherwise xpkq would
be a fixed point of F and we are done. This means that there is at least one component

x
pkq
i of xpkq for which F pxpkqqi ă x

pkq
i . Thus, we have to choose an argument πpk`1q of

the min operator in F such that πpk`1qpxpkqqi “ F pxpkqqi. Furthermore, this ensures
that the new strategy actually improves the fixed point: lfp πpk`1q Ă lfp πpkq.

However, min-strategy iteration does not necessarily find the least fixed point of f :
in order to guarantee that the procedure terminates with the least fixed point, f must
be non-expansive, i.e., @x1, x2 : }fpx1q´fpx2q}8ď }x1´x2}8. Moreover, the choice of
the initial min-strategy is important, because otherwise the procedure may fail to find
the least fixed point as well.

An advantage of min-strategy iteration is that the computation can be stopped
before convergence and the obtained result will be a sound over-approximation.

Max-strategy iteration

Max-strategy iteration [GS07a, GS07b, GS08, GS10, GS11] is a method for computing
the least solution of a system of equations M of the form δ “ F pδq, where δ are the
template bounds, and Fi, 0 ď i ď n is a finite maximum of monotonic and concave
operators Rn Ñ R, e.g., affine functions.

The system of equations M is constructed from the abstract semantics of the CFG
transitions in the template domain:

for each '1 P L : δ#1 “max
´

td0
#1u Y t!R"7pδ#q | p', R, '1q P Ru

¯

where d0
#1 are the initial bounds in location '1. A max-strategy µ induces a subsystem

of M by selecting an argument of the max-operator for each template bound variable
δi P δ in each location '1.

The least solution of the system of equations lfp!M" is computed with the help of the
max-strategy improvement algorithm: Starting from the strategy µp0q that yields the
abstract value K, an increasing sequence of abstract values dpkq “ lfp!µpkq" is computed
by improving the strategies until no more improvement is possible. The least fixed point
of the current strategy µpkq is computed with the help of mathematical programming.

The max-strategy improvement algorithm is guaranteed to compute the least fixed
point. A more detailed presentation of max-strategy iteration will be given in §9.

3.5 Tools and Libraries

Until now, the commercial success of abstract interpretation manifests itself in proving
the absence of runtime errors in C programs, which represent the majority of industrial
embedded code. We list some commercial and academic tools that particularly target
this kind of applications:
– PolySpace Verifier1 targets the languages C, C++ and Ada.
– Astrée2 (in French: Analyseur Statique de logiciels Temps-RÉel Embarqués) [BCC`02,

BCC`03, CCF`05, CCF`09] is at its origin an academic development that is now

1http://www.mathworks.com/products/polyspace
2http://www.astree.ens.fr
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commercialized by Absint3. It has been successfully used in the verification of avion-
ics software.

– F-Soft4 and Frama-C5 are static analyzers for C programs.
Regarding other applications, there is a large number of academic tools and proto-

types that implement a variety of methods. However, these tools often have proprietary
input formats and abstract domain implementations. We list here some academic de-
velopments that had a significant impact in the last decade:
– Libraries:

‚ The abstract domain library Apron6 [JM09] aims at providing a common applica-
tion programming interface for abstract domains: it includes a variety of domains
like intervals, octagons, convex polyhedra, linear congruences, and the reduced
product of convex polyhedra and linear congruences. Apron relies on the polyhe-
dra library PPL7 (Parma Polyhedra Library) for some if its domains.

‚ BddApron [Jea] is an extension of Apron that adds the direct product and power
domains of Boolean formulas and any Apron domain.

– Tools:
‚ Tvla8 (Three-Valued Logic Analysis engine) is a static analysis framework for

shape analysis, i.e., properties about memory usage.
‚ Fluctuat9 [GMP02, GP06] is a static analyzer for evaluating the effect of rounding

errors introduced by floating point operations, which is being adopted in industry
to verify avionics software [DGP`09].

‚ NBac10 [JHR99, Jea00, Jea03] is an analyzer for Lustre programs based on logico-
numerical abstract domains and partition refinement techniques.

‚ ConcurInterproc11 is an abstract interpreter for computing invariants for a
simple imperative, multi-threaded language. It is based on the BddApron library.

3http://www.absint.com/astree/
4http://www.nec-labs.com/research/system/systems_SAV-website/fsoft-publications.php
5http://www.frama-c.com
6http://apron.cri.ensmp.fr/library/
7http://www.cs.unipr.it/ppl/
8http://www.cs.tau.ac.il/~tvla/
9http://www.di.ens.fr/~cousot/projects/DAEDALUS/synthetic_summary/CEA/Fluctuat/

10http://pop-art.inrialpes.fr/~bjeannet/nbac/
11http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi
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Chapter 4

Acceleration and Abstract
Acceleration

This chapter gives an overview of acceleration and abstract acceleration techniques.
Acceleration methods aim at computing the exact set of reachable states in numerical
transition systems. They are motivated by the analysis of communication protocols
often modeled using counter machines or Petri nets. First achievements date back to
the 1990s [BW94, BG97, FO97, CJ98, Boi98].

Unlike abstract interpretation, which overcomes the undecidability issue by comput-
ing a conservative approximation, acceleration identifies classes of systems for which the
reachability problem is decidable and can be solved exactly, e.g., programs of a certain
structure with certain affine tests and assignments.

The idea of acceleration is to accelerate cycles labeled by a transition relation τ
in the control structure of a program by computing the exact effect of its reflexive
and transitive closure τ˚ “

Ť
kě0 τ

k on a set of states X. Applied to the program of
Fig. 4.1(a), we obtain the program of Fig. 4.1(b). If the program does not contain nested
loops and all loops can be accelerated, then the method is complete. Otherwise, there
are techniques for accelerating selected cycles in the hope to converge, but there is no
guarantee to terminate in general.

Gonnord et al. [GH06, Gon07] have proposed the concept of abstract acceleration
that integrates the acceleration idea into the abstract interpretation framework with
convex polyhedra: wherever possible, simple loops are accelerated in the abstract do-
main, and in any other cases (multiple self-loops, nested loops, too expressive transi-

(a) X0 l0 l1
x3ď20

x3“x3`1

τ : 2x1`2x2ďx3 Ñ

ˇ̌
ˇ̌
ˇ̌
x1
1 “x1`1

x1
2 “1

x1
3 “x3

(b) X0 l0 l11 l1 (c) X0 “
"

px1, x2, x3q
ˇ̌
ˇ̌ 0ďx1 ^ 1ďx2
x1`x2ď2 ^ x3 “3

*x3ď20 τ˚

x3 “x3`1

Figure 4.1: Example program (a), transformed program (b) where τ˚ denotes the
reflexive and transitive closure of the transition τ , and set of initial states (c).
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tions) one resorts to the use of widening to guarantee the convergence of the fixed point
computation at the cost of over-approximations.

After recalling in §4.1 some concepts of linear algebra used in the following chapters,
we present classical exact acceleration in §4.2 and abstract acceleration in §4.3.

4.1 Introduction to Linear Algebra

In this section we recall some basic concepts of linear algebra. For further details we
refer to textbooks on matrix theory and linear algebra, e.g., [LT84].

A matrix A P Rnˆm has n rows and m columns. The element in the ith row and
jth column is denoted Ai,j. The ith row vector and the jth column vector are denoted
respectively Ai,¨ and A¨,j.

Square matrices. A square matrix A P Rnˆn, i.e., of dimension dimpAq “ n, is
called
– a diagonal matrix A “ diagpa1, . . . , anq iff Ai,i “ ai and all other entries are zero;
– the unit (or identity) matrix, denoted I, iff A “ diagp1, . . . , 1q;
– the zero matrix 0 iff all entries equal zero.
– idempotent iff A2 “ A;
– nilpotent iff Dp ą 0 : Ap “ 0.
– invertible iff DB : AB “ BA “ I; B “ A´1 is called the inverse matrix; non-invertible

matrices are called singular.
The determinant of A is defined by detpAq “

ř
jp´1qtpjqA1,j1 ¨ . . . ¨An,jn where tpjq

is the number of inversions in the permutation of indices pj1, . . . , jnq and the sum runs
over all n! permutations pj1, . . . , jnq. The determinant of a 2-dimensional matrix is for
example A1,1A2,2 ´ A1,2A2,1.

Vectors a1, . . . ,an are linearly independent iff
řn

i“1 ciai “ 0 ùñ @1ď iďn : ci “0.
rankpAq denotes the number of linearly independent column vectors, which is equal to
the number of linearly independent row vectors.

Linear spaces. xV,`,Fy is a linear space over a field F iff xV,`y is a commutative
group and there is for each α P F and for each v P V an associative and distributive
scalar multiplication α ¨ v P V. We will consider linear spaces xRn,`,Ry or xCn,`,Cy.

A linear subspace is a subset S Ď V closed under the operations (vector addition
` and scalar multiplication ¨). The kernel (or null space) kerpAq of a matrix is the
linear space defined by tx | Ax “ 0u. The image (or range) impAq is the linear space
tx1 | x1 “ Axu.

The linear hull denoted spanta1, . . . ,anu is the linear space generated by linear
combinations of the vectors a1, . . . ,an, i.e., ta | a “

řn
i“1 ciaiu.

A minimal number of vectors a1, . . . ,an spanning a linear space are called a basis of
the linear space. The number n of the basis vectors equals the dimension of the space.

Two bases a1, . . . ,an and b1, . . . , bn are related by an invertible transition matrix
P such that @i : bi “ Pai. Thus any vector x w.r.t. the first basis can be transformed
into a vector Px w.r.t. the second basis. This transformation is called the change of
basis.

A linear space L can be decomposed into a direct sum of subspaces 9Ř
iLi iff

Ş
i Li “ 0,

i.e., iff the union of basis vectors of the Li forms a basis of the sum space L.
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41 4.1. Introduction to Linear Algebra

Linear transformations. A linear transformation is a homomorphism between n
and m-dimensional linear spaces L1 and L2.

We will only deal with endomorphisms, i.e., a linear transformation from an n-
dimensional linear space to itself. Such a transformation can be represented by a square
matrix A with dimension n. A is not invariant w.r.t. the basis of the linear space.
The basis of the transformation matrix can be changed by the transition matrix Q:
A1 “ Q´1AQ. The set of all representations A w.r.t. all bases is an equivalence class
of similar matrices.

L1 is an invariant subspace of A if it satisfies @x P L1 : Ax P L1. If a linear space L
can be decomposed into a direct sum of invariant subspaces Li w.r.t. A, then A has a

representation in block diagonal form

¨

˝
A1 . . . 0
...

. . .
...

0 . . . Ak

˛

‚ s.t. a block Ai corresponds to Li.

Eigenvalues. The set eigpAq “ tλ | Dx ‰ 0 : Ax “ λxu is the spectrum of A P
Rnˆn (or Cnˆn). The values λ P C and the vectors x P Cn are called respectively
the eigenvalues and eigenvectors of A. An n-dimensional matrix has at most n distinct
eigenvalues. Eigenvectors corresponding to distinct eigenvalues are linearly independent.
The eigenspace associated with an eigenvalue is the linear hull of the eigenvectors.
Similar matrices have the same spectrum. If λ is an eigenvalue of A then λp is an
eigenvalue of Ap. A matrix is singular iff it has a zero eigenvalue.

An alternative characterization of the eigenvalues is pA ´ λIqx “ 0 with x ‰ 0.
Hence, the eigenvalues can also be seen as the zeros in C of the characterstic polynomial
(in λ) detpA ´ λIq. The algebraic multiplicity of an eigenvalue is its multiplicity as a
root of the characteristic polynomial. The geometric multiplicity of an eigenvalue is the
dimension of its associated eigenspace: dimpkerpA ´ λIqq. The geometric multiplicity
is always less than or equal to the algebraic multiplicity.

If A has n distinct eigenvalues then the eigenvectors form a basis (eigenbasis): we
can change the basis ofA with a transition matrixQ P Cnˆn of which the column vectors
are the eigenvectors: Q´1AQ “ diagpλ1, . . . ,λnq, i.e., A is then called diagonizable.

Jordan canonical form. The Jordan canonical form J P Cnˆn is the unique decom-
position of a linear transformation A P Rnˆn (or Cnˆn) into a direct sum of k linear
transformations, i.e., J is a block diagonal matrix consisting of k blocks. Each block

is associated with an eigenvalue λi and has the form

¨

˚̊
˚̋
λi 1 0

. . .

0
. . .

. . . 0
...
. . . λi 1

0 . . . 0 λi

˛

‹‹‹‚
. The number of

Jordan blocks associated with the same eigenvalue equals its geometric multiplicity; the
sum of the sizes of these blocks is its algebraic multiplicity.

The generalized eigenspace associated to an eigenvalue with algebraic multiplicity m
is kerppA´λIqmq. There are m generalized eigenvectors forming a basis of the general-
ized eigenspace. The matrix where the column vectors are the generalized eigenvectors
of A is a transition matrix Q P Cnˆn such that J “ Q´1AQ.

For real matrices, complex eigenvalues are always conjugate, that is of the form
ρe˘iθ with ρ, θ P R. In this case there is a real Jordan form in which conjugate

41



Chapter 4. Acceleration and Abstract Acceleration 42

complex eigenvalues are associated with a block of the form

¨

˚̋
A I 0
...

. . . I
0 . . . A

˛

‹‚ with

A “
ˆ
ρ cos θ ´ρ sin θ
ρ sin θ ρ cos θ

˙
.

4.2 Acceleration

Acceleration methods consider the program model of counter systems, but they have
also been shown to be applicable to pushdown systems and systems of FIFO channels
for instance (cf. [BFLS05]). The acceleration of counter systems is based on Presburger
arithmetic.

Presburger arithmetic. Presburger arithmetic [Pre30] is the first-order additive
theory over integers xZ,ď,`y. Satisfiability and validity are decidable in this theory. A
set is Presburger-definable if it can be described by a Presburger formula. For example,
the set of odd natural numbers x can be defined by the Presburger formula Dk ě 0 :
x “ 1 ` 2k, whereas for example the formula Dk : y “ k ¨ k characterizing the quadratic
numbers y is not Presburger because of the multiplication of variables.

Counter systems. Counter systems are a subclass of discrete transition systems
(cf. Def. 2.3):

Definition 4.1 (Counter system) A counter system xΣ, L,!,Σ0y is defined by
– the state space Σ “ Zn,
– a set of locations L,
– a set of transitions !: L ˆ Σ2 ˆ L, where transitions are labeled with a relation

Rpx,x1q Ď Σ2 defined by a Presburger formula, and
– Σ0 : L Ñ Σ defines for each location the set of initial states using a Presburger

formula.

Counter systems generalize Minsky machines [Min67], thus the reachability problem
is undecidable. In general, the reachable set reach of a counter system is not Presburger-
definable [KPRS96] because of the following two reasons:
(1) In the case where the system consists of a single self-loop and its transition rela-

tion R is Presburger-definable, then the reflexive and transitive closure R˚ is not
Presburger-definable in general.

(2) In the case of a system with nested loops where the reflexive and transitive closures
R˚ of all circuits in the system are Presburger-definable, reach of the whole system
is not Presburger-definable in general, because there are infinitely many possible
sequences of these circuits.

Issue (1) is addressed by identifying a class of accelerable relations R, i.e., for which
the transitive closure R˚ is Presburger-definable:

Definition 4.2 (Presburger-linear relations with finite monoid) The transition
relation Rpx,x1q “ pϕpxq ^ x1 “ Cx ` dq is Presburger-linear with finite monoid iff
ϕ is a Presburger formula and xC˚, ¨y is a finite, multiplicative monoid, i.e., the set
C˚ “ tCk | kě0u is finite.
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43 4.2. Acceleration

Theorem 4.1 (Presburger-definable transitive closure) If R is a Presburger-linear
relation with finite monoid, then R˚ is Presburger-definable [Boi98, FL02].

The finiteness of the monoid is polynomially decidable [Boi98]. The tool Lash [Boi98,
WB98] implements these results.

Example 4.1 (Translation) An example of transition relations of which the transitive
closure is Presburger-definable are translations: Rpx,x1q “ pϕpxq ^ x1 “ x ` dq. The
variables are translated in each iteration by a constant vector d. A translation is trivially
finite monoid because C“I. The transitive closure is given by the Presburger formula:

R˚px,x1q “ Dkě0 : x1 “ x ` kd ^ @k1 P r0, k´1s : ϕpx ` k1dq

Issue (2) is adressed by the concept of flat acceleration:

Flat systems. A system is called flat if it has no nested loops, or more precisely if
any location of the system is contained in at most one elementary cycle of the system
[BFLP03]. This notion allows us to identify a class of systems for which the set of
reachable states can be computed exactly:

Theorem 4.2 (Presburger-definable flat systems) The reachability set reach of a
counter system is Presburger-definable if the system is flat and all its transitions are
Presburger-linear relations with finite monoid [FL02].

Although there are many practical examples of flat systems [LS05], most systems
are non-flat (like Fig. 4.1).

Application to non-flat systems. The idea of Finkel et al [FL02, BFLS05] is to
partially unfold the outer loops (circuits) of nested loops in order to obtain a flat system
that is simulated by the original system. Such a system is called a flattening.

The algorithm is based on heuristically selecting circuits of increasing length and
enumerating flattenings of these circuits. Hence, the algorithm terminates in case the
system is flattable, i.e., at least one of its (finite) flattenings has the same reachability
set as the original system.

Theorem 4.3 (Reachability in flattable systems) The set of reachable states reach
of flattable systems can be computed exactly [BFLS05].

However, flattability is undecidable [BFLS05]. All these techniques are implemented in
the tool Fast [BFLP03, Ler03, BFL04, BFLS05, BFLP08].

Acceleration of relations. It has been shown that the transitive closure of difference
bounds constraints [CJ98] and octagonal relations [BGI09] is also Presburger-definable.
A performant algorithm for accelerating such relations is implemented in the tool Flata
[BIK10].
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Chapter 4. Acceleration and Abstract Acceleration 44

4.3 Abstract Acceleration

Abstract acceleration introduced by Gonnord et al [GH06, Gon07] reformulates accelera-
tion concepts within an abstract interpretation approach: it aims at computing the best
correct approximation of the effect of loops in the abstract domain of convex polyhedra.

The objective of abstract acceleration is to over-approximate the set τ˚pXq, X Ď Rn

by a convex polyhedron γpτbpαpXqqq Ě τ˚pXq that is “close” to the convex hull of the
exact set.

We will focus on the acceleration of self-loops τ , but the technique can also deal
with cycles by composing transitions.

Accelerable transitions. Abstract acceleration targets the model of affine counter
automata, i.e., with transition relations τ (actually functions) of the form of guarded
actions G Ñ A, meaning “while guard G do action A”:

Ax ď blooomooon
guard

Ñ x1 “ Cx ` dloooooomoooooon
action

(4.1)

where Ax ď b is a convex polyhedron, and x1 “ Cx ` d is an affine transformation.
We will use the same notation for polyhedra X interexchangeably for both the

predicate Xpxq “ pAx ď bq and the set X “ tx | Ax ď bu.
Abstract acceleration distinguishes different types of transitions depending on the

form of the square matrix C:
– Resets iff C is the zero matrix.
– Translations iff C is the identity matrix.
– Translations with resets (or translation/reset) iff C is a diagonal matrix with zeros

and ones only.
– Periodic affine transformations iff Dp ą 0, Dl ą 0 : Cp`l “ Cp.
– General affine transformations otherwise.
We observe that Presburger-linear relations with finite monoid (Def. 4.2) include the
first four cases, which are thus considered accelerable.

We will now explain how to accelerate these types of transitions:

Theorem 4.4 (Translations) Let τ be a translation G Ñ x1 “ x ` d, then for every
convex polyhedron X, the convex polyhedron

τbpXq “ X \
´`

pX [ Gq Õ tdu
˘

[ pG ` tduq
¯

is a convex over-approximation of τ˚pXq [Gon07].

Observe that the abstract acceleration of translations uses the time elapse opera-
tor Õ for polyhedra, originally considered in the analysis of timed or hybrid automata
(see §3.3.2).

Example 4.2 (Translation) (see Fig. 4.2)

τ : x1`x2ď4 ^ x2ď3loooooooooooomoooooooooooon
G

Ñ
ˆ

x1
1

x1
2

˙
“

ˆ
x1
x2

˙
`

ˆ
2
1

˙

loomoon
d
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0
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3

4

0 1 2 3 4 5
x1

x2

τbpXq
X

G

d

Figure 4.2: Abstract acceleration
of a translation (Ex. 4.2) by vector d

starting from X (dark gray) resulting
in τbpXq (whole shaded area).

0

1

2

3

4

0 1 2 3 4 5
x1

x2

τbpXq
X

τpXq

G

Figure 4.3: Abstract acceleration
of a translation with resets (Ex. 4.3)
starting from X (dark gray): τpXq
(bold line) and result τbpXq (whole
shaded area).

Starting from X “ p0ďx1ď1 ^ 0ďx2ď4q we compute τbpXq:

X [ G “ p0ďx1ď1 ^ 0ďx2ď3q

pX [ Gq Õ tdu “
"

x1ě0 ^ x2ě0 ^ x1´2x2ě´6 ^
´x1`2x2ě´1q

ppX [ Gq Õ tduq [ pG ` tduq “
"

x1ě0 ^ 0ďx2ď4 ^ x1´2x2ě´6 ^
´x1`2x2ě´1 ^ x1`x2ď7

τbpXq “
"

x1ě0 ^ 0ďx2ď4 ^ ´ x1`2x2ě´1 ^
x1`x2ď7

Remark 4.1 Ideally, τbpXq as defined in Thm. 4.4 should be the best over-approximation
of τ˚pXq by a convex polyhedron. This is not the case as shown by the following example
in one dimension. Let X “ r1, 1s and τ : x1 ď 4 Ñ x1

1 “ x1`2. τbpXq “ r1, 6s, whereas
the best convex over-approximation of τ˚pXq “ t1, 3, 5u is the interval r1, 5s. This is
because the operations involved in the definition of τbpXq manipulate dense sets and do
not take into account arithmetic congruences.

Theorem 4.5 (Translations with resets) Let τ be a translation with resets G Ñ
x1 “ Cx ` d, then for every convex polyhedron X, the convex polyhedron

τbpXq “ X \ τpXq \
´`

pτpXq [ Gq Õ tCdu
˘

[ pG ` tCduq
¯

is a convex over-approximation of τ˚pXq [Gon07].

Example 4.3 (Translation with resets) (see Fig. 4.3)

τ : x1`x2ď4 ^
"

x1
1 “ x1`2

x1
2 “ 1

Starting from X “ p0ďx1ď3 ^ 2ďx2ď3q we compute τbpXq:

τpXq “ p2ďx1ď4 ^ x2 “1q
τpXq [ G “ p2ďx1ď3 ^ x2 “1q

pτpXq [ Gq Õ tCdu “ px1ě2 ^ x2 “1q
ppτpXq [ Gq Õ tCduq [ pG ` tCduq “ p2ďx1ď5 ^ x2 “1q

τbpXq “
"

x1ě0 ^ 1ďx2ď3 ^ x1`2x2ě4 ^
x1`x2ď6
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Remark 4.2 Thm. 4.5 exploits the property that a translation with resets to constants
iterated N times is equivalent to the same translation with resets, followed by a pure
translation iterated N´1 times. Hence the structure of the obtained formula.

Periodic affine transformations. Let τ be a transition Axďb^x1 “ Cx`d such
that the powers of C form a finite monoid (cf. Def. 4.2) with Dp ą 0, Dl ą 0 : Cp`l “ Cp,
i.e., the powers of C generate an ultimately periodic sequence with prefix p and period l.
Gonnord [Gon07] uses the periodicity condition Dq ą 0 : C2q “ Cq. This condition is
equivalent to the one above with q “ lcmpp, lq.

With the latter condition, τ˚ can be rewritten by enumerating the transitions in-
duced by the powers of C:

τ˚pXq “
ď

0ďjďq´1

pτ qq˚pτ jpXqq (4.2)

This means that one only has to know how to accelerate τ q which equals:

τ q “
ľ

0ďiďq´1

˜

ACix `
ÿ

0ďjďi´1

Cjd ď b

¸

loooooooooooooooooooooooomoooooooooooooooooooooooon
A1xďb1

Ñ x1 “ Cqx `
ÿ

0ďjďq´1

Cjd

looooooooooooooomooooooooooooooon
x1“C1x`d1

(4.3)

The periodicity condition above implies that Cq is diagonizable and all eigenvalues
of Cq are in t0, 1u. Hence, τ q is a translation with resets in the eigenbasis of Cq. Let
us denote C1 “ Cq:

Lemma 4.1 (Translation with resets in the eigenbasis) A transition τ : Ax ď
b Ñ x1 “ C1x`d where C1 “ C

12 is a translation with resets τ 1 in the eigenbasis of C1:

τ 1 : AQxďb Ñ x1 “ Q´1C1Qx ` Q´1d

where Q´1C1Q “ diagpλ1, . . . ,λnq and λi the eigenvalues of C1.

We can now state the theorem for abstract acceleration of finite monoid transitions:

Theorem 4.6 (Finite monoid) Let τ be a transition G ^ x1 “ Cx ` d where Dq ą
0 : C2q “ Cq, then for every convex polyhedron X, the convex polyhedron

τbpXq “
ğ

0ďjďq´1

pτ qqbpτ jpXqq

is a convex over-approximation of τ˚pXq, where τ q is defined by Eq. 4.3 and pτ qqb is
computed using Lem. 4.1 [Gon07].

Example 4.4 (Finite monoid) (see Fig. 4.4)

τ : x1`x2ď4 ^
ˆ

x1
1

x1
2

˙
“

ˆ
0 1
1 0

˙ ˆ
x1
x2

˙
`

ˆ
2
1

˙

We have C2 “ I “ C4, thus q “ 2. Obviously C2 has its eigenvalues in t0, 1u and
Q “ I.
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0
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3

4

0 1 2 3 4 5 x1

x2

τbpXq

pτ2qbpXq

X

τpXq

G

Figure 4.4: Abstract acceleration of a finite monoid (Ex. 4.4) starting from X “
tp1, 0qu, pτ2qbpXq (bold line), pτ2qbpτpXqq “ τpXq “ tp2, 2qu, and result τbpXq (whole
shaded area).

According to Eq. 4.3 we strengthen the guard by pApCx`dqďbq “ px1`x2ď1q and

compute d1 “ pC`Iqd “
ˆ

3
3

˙
. Hence we get:

τ2 : px1`x2ď1q ^
ˆ

x1
1

x1
2

˙
“

ˆ
x1
x2

˙
`

ˆ
3
3

˙

Starting from X “ px1 “ 1 ^ x2 “ 0q we compute τbpXq “ X \ pτ2qbpXq \
pτ2qbpτpXqq:

τpXq “ px1 “x2“2q
pτ2qbpXq “ p1ďx1ď4 ^ x1´x2“1q

pτ2qbpτpXqq “ px1 “x2“2q

τbpXq “
"

2x1´x2ě2 ^ x1´2x2ě´2 ^
x1´x2ď1

Widening and acceleration. Abstract acceleration gives us a formula for comput-
ing the transitive closure of accelerable transitions. Precision is gained in comparison
to standard abstract interpretation relying only on Kleene iteration and widening to
converge for the following reasons:
– Abstract acceleration aims at precisely approximating α˝ τ˚pXq, i.e., abstracting the

result of the transitive closure of the concrete transition, whereas standard abstract
interpretation iterates the abstracted transition pα ˝ τ ˝ γq˚ ˝ αpXq. We will discuss
this issue in §5.3.1.

– Abstract acceleration is monotonic, i.e., X1 Ď X2 ñ τbpX1q Ď τbpX2q, whereas
standard widening is not, which makes the analysis more robust and predictible.

– Widening is not needed at all in flat systems.
Yet, widening is required in the case of non-accelerable transitions, outer loops of nested
loops, and to guarantee convergence when there are multiple self-loops in the same
control location.

Further results. Some special cases of multiple self-loops can be accelerated without
widening [GH06, Gon07]. The path focussing technique of Monniaux and Gonnord
[MG11] is an improvement w.r.t. the abstract acceleration of cycles and nested loops.
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Chapter 5

Extending Abstract Acceleration

In this chapter we extend abstract acceleration to systems with numerical inputs and
to backward, i.e., co-reachability, analysis.

Reactive programs such as Lustre programs (§2.2) interact with their environment:
at each computation step, they have to take into account the values of input variables,
which typically correspond to values acquired by sensors. Boolean input variables can
be encoded in a CFG by finite non-deterministic choices, but numerical input variables
require a more specific treatment. Indeed, they induce transitions of the form

τ : gpx, ξq Ñ x1 “ fpx, ξq x,x1 P Rn ξ P Rp

that depend on both, numerical state variables x and numerical input variables ξ.

A second aspect we are looking at is backward analysis (cf. §3.4.1): so far, ab-
stract acceleration has only been defined to perform forward reachability analysis. Yet,
applications of verification methods, like parameter synthesis, make use of backward
analysis techniques. Moreover, the experience of verification tools, e.g., [Jea03], shows
that combining forward and backward analyses results in more powerful tools.

Outline. This chapter describes the following contributions (see Fig. 5.1):
1. We show how to extend abstract acceleration from closed to open systems, i.e.,

systems with numerical inputs (§5.1).
2. We also extend abstract acceleration techniques from forward (reachability) anal-

ysis to backward (co-reachability) analysis (§5.2).
3. In §5.3 we compare the abstract acceleration approach with Kleene iteration,

widening and the affine derivative closure algorithm of Ancourt et al. [ACI10],
which is another abstract interpretation-based approach to computing transitive
closures of transitions.

abstract acceleration with inputs §5.1 backward abstract acceleration §5.2

evaluation and comparison §5.3

conclusions and perspectives §5.4

Figure 5.1: Chapter organization
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5.1 Abstract Acceleration with Numerical Inputs

We consider transitions τ of the form1

ˆ
A L
0 J

˙ ˆ
x

ξ

˙
ď

ˆ
b

k

˙

looooooooooooomooooooooooooon
Ax`Lξďb ^ Jξďk

Ñ x1 “
`
C T

˘ ˆ
x

ξ

˙
` u

loooooooooomoooooooooon
Cx`Tξ`u

(5.1)

General and simple guards. The following proposition shows the challenge raised
by adding inputs:

Proposition 5.1 (General guards and general affine transformations) Any gen-
eral affine transformation without inputs Ax ď b Ñ x1 “ Cx ` d can be expressed

– as a “reset with inputs” pAx ď b ^ ξ “ Cx ` dq Ñ x1 “ ξ,
– as well as a “translation with inputs” pAx ď b ^ ξ “ pC´Iqx ` dq Ñ x1 “ x ` ξ.

This means that there is no hope to get precise acceleration for such resets or translations
with inputs, unless we know how to accelerate precisely general affine transformations
without inputs, which is out of the scope of the current state of the art.

Nevertheless, we can accelerate transitions with inputs if the constraints on the state
variables do not depend on the inputs, i.e., the guard is of the form Ax ď b ^ Jξ ď k,
i.e., when L “ 0 in Eqn. (5.1). We call the resulting guards simple guards.

In the following, we show how to accelerate translations and translations with resets
with simple guards. We provide in §5.1.3 an over-approximation of our results for general
guards. The extension of further cases such as periodic affine transformations will be
discussed in §5.4.

5.1.1 Translations with Inputs and Simple Guards

Definition 5.1 Translations with inputs and simple guards are defined as

ˆ
A 0
0 J

˙ ˆ
x

ξ

˙
ď

ˆ
b

k

˙

looooooooooooomooooooooooooon
Ax ď bloomoon

G

^ Jξďk

Ñ x1
“

`
I T

˘ ˆ
x

ξ

˙
` u

looooooooomooooooooon
x`Tξ`u

The first step we perform is to reduce such a translation with inputs to a polyhedral
translation τ : G Ñ x1 “ x ` D and defined by τpXq “ pX [ Gq ` D.

Proposition 5.2 (Translation with inputs “ polyhedral translation) A transla-
tion τ with inputs and a simple guard (Def. 5.1) is equivalent to a polyhedral translation
defined by

G Ñ x1 “ x ` D with D “ td | Dξ : d “ T ξ ` u ^ Jξ ď ku

(D can be computed by standard polyhedra operations.)

1Note that the 0 in the matrix of the guard does not imply a loss of generality.
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51 5.1. Abstract Acceleration with Numerical Inputs

Proof
x1 P τpXq

ðñ Dx P X, Dξ : Ax ď b ^ Jξ ď k ^ x1 “ x ` Tξ ` u

ðñ Dx P X [ G, Dξ, Dd : Jξ ď k ^ d “ Tξ ` u ^ x1 “ x ` d

ðñ Dx P X [ G, Dd P D : x1 “ x ` d

with D “ td | Dξ : Jξ ď k ^ d “ Tξ ` uu

We now generalize Thm. 4.4 from ordinary translations to polyhedral translations.

Proposition 5.3 (Polyhedral translation) Let τ be a polyhedral translation G Ñ
x1 “ x ` D. Then, the set

τbpXq “ X \ τ
`
pX [ Gq Õ D

˘

is a convex over-approximation of τ˚pXq.

Proof x1 P
Ť

kě1 τ
kpXq ðñ x1 P τp

Ť
kě0 τ

kpXqq

ðñ Dkě0, Dx0 P X, Dxk, Dd1 . . .dk P D :

$
’&

’%

x1 P τpxkq
xk “ x0 `

řk
j“1 dj

Gpx0q ^ @k1 P r1, ks : Gpx0 `
řk1

j“1 djq
ðñ Dkě0, Dx0 P X, Dxk, Dd P D : x1 P τpxkq ^ xk “ x0 ` kd ^ Gpx0q ^ Gpxkq

(because D and G are convex, see Rem. 5.1)

ùñ Dαě0, Dx0 P X, Dxk, Dd P D : x1 P τpxkq ^ xk “ x0 ` αd ^ Gpx0q
(dense approximation; Gpxkq implied by x1 P τpxkq)

ðñ Dx0 P X [ G, Dxk : x1 P τpxkq ^ xk P ptx0u Õ Dq
ðñ x1 P τppX [ Gq Õ Dq

Mind that the only approximation takes place in the line (ñ) where the integer coeffi-
cient kě 0 is replaced by a real coefficient αě 0. This is the technical explanation of
Rem. 4.1.

Remark 5.1 (Convexity argument) For any k loop iterations with d1, . . . ,dk P D

s.t. @k1 P r0, ks : Gpx `
řk1

j“1 djq we have Dd P D, Dα ě 0 : Gpxq ^ Gpx ` αdq s.t.
řk

j“1 dj “ αd: any intermediate point x ` αd must be in G, because G is convex;
moreover α ě 0 and a vector d P D actually exist: for example, take α “ k and d “
1
k

řk
j“1 dj , which is in D because D is convex.

Remark 5.2 (Inputs vs. constants) One might think that
Thm. 4.4 can be applied directly by accelerating the transition
for each d P D and taking the union, i.e. computing τbpXq by
X \

Ů
dPD Xd with Xd “

`
pX [ Gq Õ tdu

˘
[ pG ` tduq. However,

this formula is not correct for the last step beyond the guard, which
is illustrated in the figure on the right-hand side for a polyhedral
translation with X“tp0, 0qu, D“p0ďd1ď1 ^ d2 “1q and the guard

0

1

2

0 1 2 x1

x2

G

G given in the figure. For the step crossing the guard, e.g., at p2, 2q, there is actually a
choice among all values in D (correct abstract acceleration: whole shaded area), whereas
the wrong acceleration (dark gray) considers only the vector d“p1, 1q which led to p2, 2q.

We combine Propositions 5.2 and 5.3 to formulate the following theorem:
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d1

d2

ξ

1

1

D

J ξ ≤k

x1

x2

1

1
X

τ⊗(X)

G

Figure 5.2: Translation with inputs (Ex. 5.1): The left-
hand side shows the computation of D: Jξ ď k ^ d “
Tξ`u (bold line) is projected on variables d to obtainD.
The shaded area in the right-hand side figure is τbpXq.

x1

x2

1

1
X

τ⊗(X)

G

G+D

Figure 5.3: Precision loss
in example 5.1 when using
the approximate formula
according to Rem. 5.3.

Theorem 5.1 (Translation with inputs and simple guards) Let τ be a transla-
tion with inputs and a simple guard

τ : pAx ď blooomooon
G

q ^ pJξ ď kq Ñ x1 “ x ` Tξ ` u

Then, the set
τbpXq “ X \ τ

`
pX [ Gq Õ D

˘

with D “ td | Dξ : d “ T ξ ` u ^ Jξ ď ku is a convex over-approximation of τ˚pXq.

Proof Follows directly from Prop. 5.2 and 5.3.

Example 5.1 (Translation with inputs and simple guards) Consider the polyhe-
dron X “ tpx1, x2q | 0ďx1ďx2ď1u and the transition

τ :

ˇ̌
ˇ̌ x1 ` x2 ď 4

1 ď ξ ď 2
Ñ

ˇ̌
ˇ̌ x1

1 “ x1 ` 2ξ ´ 1
x1
2 “ x2 ` ξ

Eliminating the inputs as in Proposition 5.2 yields D “ tpd1, d2q|1ďd1ď3^ ´d1`2d2 “
1u, see Fig. 5.2 left-hand side. After translation of X by D (Fig. 5.2 right-hand side)
we obtain the polyhedron tpx1, x2q | x1ě0 ^ ´x1`x2ď1 ^ x1`x2ď9 ^ ´2x1`4x2ď9
^ 2x1´3x2ď0u.

Remark 5.3 (Alternative, less precise formula) In analogy to Thm. 4.4, we could
alternatively consider the formula

X \ ppppX [ Gq Õ Dq [ pG ` Dqq.
In order to justify this, we extend the proof of Proposition 5.3 by continuing at the label
(dense approximation):
ðñ Dαě0, Dx0 P X [ G, Dxk, Dd,d1 P D : x1 “ xk`d1 ^ xk “ x0`αd ^ Gpxkq
ðñ Dαě0, Dx0 P X [ G, Dd,d1 P D : x1 “ x0`αd`d1 ^ Gpx1´d1q
ùñ

`
Dαě0, Dx0 P X [ G, Dd,d1 P D : x1 “ x0`αd`d1

˘
^

`
Dd1 P D : Gpx1´d1q

˘

ðñ
`
Dα1ě1, Dx0 P X [ G, Dd2 P D : x1 “ x0`α1d2

˘
^

`
Dd1 P D : Gpx1´d1q

˘

ùñ x1 P pX [ Gq Õ D ^ x1 P pG ` Dq
using tx | Dd P D ^ Gpx´dqu “ tz`d | d P D ^ Gpzqu “ pG ` Dq. It can be
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53 5.1. Abstract Acceleration with Numerical Inputs

observed that for the translation of example 5.1 the latter formula results in an over-
approximation (see Fig. 5.3) as compared to the result in Fig. 5.2. This reflects the
additional approximation steps in the proof indicated by pùñq.

5.1.2 Translations/Resets with Inputs and Simple Guards

Definition 5.2 Translations/resets with inputs and simple guards are defined as

ˆ
A 0
0 J

˙ ˆ
x
ξ

˙
ď

ˆ
b
k

˙

looooooooooooomooooooooooooon
Axďb ^ Jξďk

Ñ x1 “
`
C T

˘ ˆ
x
ξ

˙
` u

loooooooooomoooooooooon
Cx`Tξ`u

where C is a diagonal matrix with Ci,i P t0, 1u for all i.

Notations. Let C1 “ I ´ C, then we can decompose any vector x in Cx`C1x. We
denote Cx “ xt,0 a vector where the reset dimensions are set to zero, and C1x “ x0,r

a vector where the translated dimensions are set to zero. We extend such notations to
sets: Xt,0 “ txt,0 | x P Xu and X0,r “ tx0,r | x P Xu. We use a similar notation
for projection: Xt,‚ “ tx | xt,0 P Xt,0u and X‚,r “ tx | x0,r P X0,ru denote the sets
obtained by existential quantification of the reset (resp. translated) dimensions.

Observe that the over-approximation Xt,‚ [X‚,r of a set X by the cartesian product
w.r.t. to translated and reset dimensions is equal to the Minkowski sum Xt,0 ` X0,r.

The case of translations/resets with inputs can be handled similarly to translations:
we combine Proposition 5.2 and Thm. 4.5 to reduce translations/resets with inputs to
polyhedral translations with resets τ : G Ñ x1 “Cx̀ D defined by τpXq“pX [ Gqt,0`D.

Mind, however, that Rem. 4.2 does not apply any more and cannot be exploited in
the presence of inputs, because the variables being reset may be assigned a different
value in each iteration.

Proposition 5.4 (Polyhedral translation with resets) Let τ be a polyhedral trans-
lation with resets G Ñ x1 “ Cx ` D. Then, the set

τbpXq “ X \ τpXq \ τ
´`

pτpXq [ Gqt,0 Õ Dt,0
˘

` D0,r
¯

is a convex over-approximation of τ˚pXq.

In the formula above and in the proof below, we unfold τ twice, that is, we accelerate
only the central part of the sequence x

τÝÑ x0 . . .xn
τÝÑ x1 with x P X because we have

@k P r0, ns : xk P G[D‚,r, whereas we only have x P G at the start-point, and x1 P D‚,r

at the end-point.

Proof The formula is trivially correct for 0 or 1 iterations of the self-loop τ . It remains
to show that, for the case of k ě 2 iterations, our formula yields an over-approximation
of

Ť
kě2 τ

kpXq.
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Chapter 5. Extending Abstract Acceleration 54

x1 P
Ť

kě2 τ
kpXq ðñ x1 P τ

`Ť
kě0 τ

kpτpXqq
˘

ðñ Dkě0, Dx P X, Dx0 . . .xk, Dd1 . . .dk P D :$
’’’’’&

’’’’’%

x0 P τpxq

^ @k1 P r1, ks :

#
xi
k1 “ xi

0 `
řk1

j“1 d
i
j for i P It

xi
k1 “ di

k1 for i P Ir

^ x1 P τpxkq
^ @k1 P r0, ks : Gpxk1q

ðñ Dkě0, Dx P X, Dx0 . . .xk, Dd1 . . .dk P D :$
&

%

@k1 P r1, ks : xk1 “ xt,0
0 ` p

řk1

j“1 d
t,0
j q ` d0,r

k1

^ @k1 P r0, ks : Gpxk1q
^ x0 P τpxq ^ x1 P τpxkq

ùñ Dkě0, Dx P X, Dx0 . . .xk, Ddt,0
1 . . .dt,0

k P Dt,0, Dd0,r
1 . . . d0,r

k P D0,r :$
&

%

@k1 P r1, ks : xk1 “ xt,0
0 ` p

řk1

j“1 d
t,0
j q ` d0,r

k1

^ @k1 P r0, ks : Gpxk1q
^ x0 P τpxq ^ x1 P τpxkq

pD approximated by the sum pDt,0 ` D0,rqq
ðñ Dkě0, Dx P X, Dx0,xk, Ddt,0 P Dt,0, Dd0,r

k P D0,r :$
&

%

xk “ xt,0
0 ` kdt,0 ` d0,r

k

^ Gpx0q ^ Gpxkq
^ x0 P τpxq ^ x1 P τpxkq

(because Dt,0,D0,r and G are convex and x0,r
0 P D0,r)

ùñ Dαě0, Dx P X, Dx0,xk, Ddt,0 P Dt,0, Dd0,r
k P D0,r :"

^ xk “ xt,0
0 ` αdt,0 ` d0,r

k

^ x0 P τpxq ^ Gpx0q ^ x1 P τpxkq
(dense over-approximation; Gpxkq already implied by x1 P τpxkq)

ðñ x1 P τ
´`

pτpXq [ Gqt,0 Õ Dt,0
˘

` D0,r
¯

Theorem 5.2 (Translation with resets, inputs and simple guards) The acceler-
ated transition τb for a translation/reset with inputs and a simple guard τ can be com-
puted by applying Proposition 5.4 with D defined as in Proposition 5.2.

Example 5.2 (Translation with resets, inputs and simple guards) Consider the
polyhedron X “ tpx1, x2q | 0 ď x1 ^ 1 ď x2 ^ x1 ` x2 ď 2u and the transition

τ :

ˇ̌
ˇ̌ x1 ` 2x2 ď 3

0 ď ξ ď 1
Ñ

ˇ̌
ˇ̌ x1

1 “ x1 ` ξ ` 1
x1
2 “ ξ

Eliminating the inputs yields D “ tpd1, d2q | 1 ď d1 ď 2 ^ d1 ´d2 “ 1u and Dt,0 “
tpd1, d2q | 1 ď d1 ď 2 ^ d2 “ 0u. We obtain τbpXq “ tpx1, x2q | x1 `x2 ě 1 ^ x2 ě
0 ^ x1´x2ď4 ^ x1`5x2ď10 ^ x1ě0u, see Fig. 5.4.

5.1.3 Relaxing General Guards to Simple Guards

As discussed at the beginning of §5.1, allowing constraints that relate state variables
with input variables in guards, i.e. G “ Ax ` Lξ ď b ^ Jξ ď k with L ‰ 0 (see
Eqn. (5.1)), makes acceleration very difficult (Prop. 5.1). Our solution is to relax the
guard G to a simple guard (or cartesian product) G “ pDξ : Gqlooomooon

A1xďb1

^ pDx : Gqlooomooon
J1ξďk1

.
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55 5.2. Backward Abstract Acceleration

x1

x2

1

1

G X

x1

x2

1

1

G X

Figure 5.4: Translation/reset with inputs: Ex. 5.2. Left-hand side: τpXq (dark
shaded) and ppτpXq [ Gqt,0 Õ Dt,0q ` D0,r (whole shaded area). Right-hand side:
τpppτpXq [ Gqt,0 Õ Dt,0q ` D0,rq (dark shaded) and τbpXq (whole shaded area).

x1

x2

1

1
X

G

Figure 5.5: Ex. 5.3: accelerated
transition τbpXq using the relaxed
guard G (result shaded).

x1

x2

1

1

Figure 5.6: Ex. 5.3: comparison between con-
vex hull of the exact result (dark gray), our
method (gray), and widening with no delay and
3 descending iterations (light gray).

We can now apply the accelerated transition from Theorems 5.1 and 5.2 with G1 “
pA1x ď b1q and D1 “ td | Dξ : d “ T ξ `u^J 1ξ ď k1u. This trivially results in a sound
over-approximation because a weaker guard is used for abstract acceleration.

Note however that in the corresponding acceleration formulas, we can still compute
exactly the function τ using the original guard G. Indeed, the proofs of those theorems
are not based on the assumption L ‰ 0 when they introduce the function τ .

Example 5.3 (Relaxed guard) Consider the polyhedron X “ tpx1, x2q |x1ď1^x2ď

1 ^ x1`x2ě1u and the transition τ :

ˇ̌
ˇ̌
ˇ̌
2x1 ` x2 ` ξ ď 6

x2 ´ ξ ď 2
0 ď ξ ď 1

Ñ
ˇ̌
ˇ̌ x1

1 “ x1 ` ξ ` 1
x1
2 “ x2 ` 1

The relaxed guard is G “ p2x1`x2ď6^x1`x2ď4^x2ď3q^p0ďξď1q. Eliminating the
inputs yields D “ tpd1, d2q | 1ďd1ď2^ d2 “1u. We obtain τbpXq “ tpx1, x2q | x1`x2ě
1 ^ x2´x1 ď 1 ^ ´4ď x1´2x2ď 1 ^ x1`2x2ď 10 ^ 2x1`x2ď 10u, see Fig. 5.5. The
convex hull of the exact result is tpx1, x2q | x1`x2ě 1 ^ ´2ďx2´x1 ď 1 ^ x1´2x2ď
1 ^ x2ď3 ^ 2x1`x2ď10u, see Fig. 5.6.

5.2 Backward Abstract Acceleration

Abstract acceleration has been applied to forward reachability analysis in order to com-
pute the reachable states starting from a set of initial states. Backward analysis com-
putes the states co-reachable from the error states. For example, combining forward
and backward analysis allows to obtain an approximation of the sets of states belonging
to a path from initial to error states (see for instance [Jea03]). Moreover, a backward
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Chapter 5. Extending Abstract Acceleration 56

analysis allows us to synthesize constraints on parameter variables that ensure that a
property is satisfied (see, e.g., [ACH`95]).

In this section, we present how to compute the accelerated backward transitions in
the case of translations and translations/resets. Although the inverse of a translation is
a translation, the difference is that the intersection with the guard occurs after the (in-
verted) translation. The case of backward translations with resets is more complicated
than for the forward case, because resets are not invertible. Finally, the relaxation of
general guards to simple guards applies in the same way to backward acceleration.

5.2.1 Translations

Proposition 5.5 (Polyhedral backward translation) Let τ be a polyhedral trans-
lation G Ñ x1 “ x ` D. Then the set

τ´bpX 1q “ X 1 \
`
pτ´1pX 1q Õ p´Dq

˘
[ G

is a convex over-approximation of τ´˚pX 1q, where τ´˚ “ pτ´1q˚ “ pτ˚q´1 is the reflexive
and transitive backward closure of τ .

p´Dq denotes the reflexion of D w.r.t. the origin: d P p´Dq ðñ p´dq P D.

Proof
x0 P

Ť
kě1 τ

´kpX 1q ðñ Dx1 P X 1 : x1 P τ
`Ť

kě0 τ
kptx0uq

˘

ðñ Dkě0, Dx1 P X 1, Dxk, Dd1, . . . ,dk P D :

$
’&

’%

xk “ x0 `
řk

j“1 dj

@k1 P r0, ks : Gpx0 `
řk1

j“1 djq
x1 P τptxkuq

(forward reachability)

ðñ Dkě0, Dx1 P X 1, Dxk, Dd1, . . . ,dk P D :

$
’&

’%

xk P τ´1ptx1uq
x0 “ xk ´

řk
j“1 dj

@k1 P r0, ks : Gpxk ´
řk

j“k1`1 djq
(rewritten as backward reachability)

ðñ Dkě0, Dx1 P X 1, Dxk, Dd P D : xk P τ´1ptx1uq ^ x0 “ xk ´ kd ^ Gpx0q ^ Gpxkq
(because D and G are convex)

ùñ Dαě0, Dx1 P X 1, Dxk, Dd P D : xk P τ´1ptx1uq ^ x0 “ xk ´ αd ^ Gpx0q
(dense approximation; Gpxkq implied by xk P τ´1ptx1uq)

ðñ x0 P
`
pτ´1pX 1q Õ p´Dq

˘
[ G.

Example 5.4 (Polyhedral backward translation) Consider the polyhedron X 1 “
tpx1, x2q | 3ďx1ď6 ^ 4ďx2ď5u and the transition

τ :

ˇ̌
ˇ̌ x1 ` 2x2ď10 ^ 0ďx1ď4 ^

0ďx2 ^ 1 ď ξď2
Ñ

ˇ̌
ˇ̌ x1

1 “ x1 ` 1
x1
2 “ x2 ` ξ

The polyhedron D is tpd1, d2q|d1“1 ^ 1ďd2ď2u. As result of the backward acceleration
(Fig. 5.7) we obtain the polyhedron tpx1, x2q | 0ďx1ď 6 ^ 0ďx2ď 5 ^ ´x1 ` x2ď 2
^ 4x1 ´ 3x2ď12u.
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x1

x2

1

1

X ′

G

x1

x2

1

1

X ′

G

Figure 5.7: Backward acceleration of a translation loop (Ex. 5.4) starting from X 1

with τ´1pX 1q (dark gray) and τ´1pX 1q Õ p´Dq (whole shaded area) on the left-hand
side and the final result (right-hand side).

5.2.2 Translations with Resets

Proposition 5.6 (Polyhedral backward translation with resets) Let τ be a poly-
hedral translation with resets G Ñ x1 “ Cx ` D. Then, the set

τ´bpX 1q “ X 1 \ τ´1pX 1q \ τ´1
´`

pτ´1pX 1qt,‚ Õ p´Dt,0q
˘

[ D‚,r [ G
¯

is a convex over-approximation of τ´˚pX 1q.

Proof The formula is trivially correct for 0 or 1 backward iterations of the self-loop τ ,
thus, it remains to show that, for the case of k ě 2 iterations, our formula yields an
over-approximation of

Ť
kě2 τ

´kpXq.
x P

Ť
kě2 τ

´kpX 1q ðñ Dx1 P X 1 : x1 P τ
`Ť

kě0 τ
kpτpxqq

˘

ðñ Dkě0, Dx1 P X 1, Dx0 . . .xk, Dd1 . . .dk P D :$
&

%

x0 P τpxq ^ x1 P τpxkq
^ @k1 P r1, ks : xk1 “ xt,0

0 `
řk1

j“1 d
t,0
j ` d0,r

k1

^ @k1 P r0, ks : Gpxk1q
(forward reachability)

ðñ Dkě0, Dx1 P X 1, Dx0 . . .xk, Dd1 . . .dk P D :$
&

%

@k1 P r0, k´1s : xk1 “ xt,0
k ´

řk
j“k1`1 d

t,0
j ` d0,r

k1

^ @k1 P r0, ks : Gpxk1q
^ xk P τ´1ptx1uq ^ x P τ´1ptx0uq

(rewritten as backward reachability)

ùñ Dkě0, Dx1 P X 1, Dx0 . . .xk, Ddt,0
1 . . .dt,0

k P Dt,0, Dd0,r
1 . . .d0,r

k P D0,r :$
&

%

@k1 P r0, k´1s : xk1 “ xt,0
k ´

řk
j“k1`1 d

t,0
j ` d0,r

k1

^ @k1 P r0, ks : Gpxk1q
^ xk P τ´1ptx1uq ^ x P τ´1ptx0uq

pD approximated by the sum pDt,0 ` D0,rq)
ðñ Dkě0, Dx1 P X 1, Dx0,xk, Ddt,0 P Dt,0, Dd0,r P D0,r :$

&

%

x0 “ xt,0
k ´ kdt,0 ` d0,r

^ Gpx0q ^ Gpxkq
^ xk P τ´1ptx1uq ^ x P τ´1ptx0uq

(because Dt,0,D0,r and G are convex and x0,r
k P D0,r)
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Figure 5.8: Backward acceleration of a loop with translations and resets (Ex. 5.5) start-
ing from the initial set X 1. Right-hand side: τ´1pX 1q (dark gray) and

`
pτ´1pX 1q|t Õ

p´Dtq
˘

[ G (whole shaded area). Left-hand side: final result (whole shaded area).

ùñ Dαě0, Dx1 P X 1, Dx0,xk, Ddt,0 P Dt,0, Dd0,r P D0,r :"
x0 “ xt,0

k ´ αdt,0 ` d0,r

^ xk P τ´1ptx1uq ^ x P τ´1ptx0uq ^ Gpx0q
(dense approximation; Gpxkq implied by xk P τ´1ptx1uq)

ðñ x P τ´1
´`

pτ´1pX 1qqt,‚ Õ p´Dt,0q
˘

[ D‚,r [ G
¯

(because x P τ´1ptx1uq ñ x1 P D‚,rq

Example 5.5 (Polyhedral backward translation with resets) Consider the poly-
hedron X 1 “ tpx1, x2q | 4ďx1ď5 ^ 1ďx2ď4u and the transition

τ :

ˇ̌
ˇ̌ 3ďx1 ` x2ď5 ^

1 ď ξď3 ^ 0ďx2
Ñ

ˇ̌
ˇ̌ x1

1 “ x1 ` 1
x1
2 “ ξ

The polyhedron D is tpd1, d2q|d1 “ 1^1ďd2ď3u. As result of the backward acceleration
(Fig. 5.8), we obtain the polyhedron tpx1, x2q | ´1ď x1 ď 5 ^ 0ď x2 ^ x1 ` x2 ě 3
^ x1´x2ď4 ^ x1`3x2ď17u.

5.3 Evaluation and Comparison

This section discusses the advantages and shortcomings of abstract acceleration in com-
parison with more general abstract-interpretation-based methods like standard widening
[CC77] and the affine derivative closure method of Ancourt et al [ACI10].

5.3.1 Comparing Abstract Acceleration with Kleene Iteration

Abstract acceleration aims at computing a tight over-approximation of αp
Ť

kě0 τ
kpX0qq

where X0 is a convex polyhedron and τ is an affine transformation with an affine guard.
Since convex polyhedra are closed under affine transformations (αpτpX0qq“τpX0q), we
have αp

Ť
kě0 τ

kpX0qq “
Ů

kě0 τ
kpX0q. The latter formula is known as Merge-Over-All-

Paths (MOP) solution of the reachability problem [KU77], which computes the limit of
the sequence:

X0 X1 “ X0 \ τpX0q X2 “ X0 \ τpX0q \ τ2pX0q . . .
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59 5.3. Evaluation and Comparison

In contrast, the standard approach in abstract interpretation computes the fixed point
X 1

8 of X “ X0 \τpXq, known as the Minimal-Fixed-Point (MFP) solution. It proceeds
as follows:

X 1
0 “ X0 X 1

1 “ X 1
0 \ τpX 1

0q X 1
2 “ X 1

0 \ τpX 1
0 \ τpX 1

0qq . . .

The MOP solution is more precise than the MFP solution [KU77]. The reason is that,
in general, τ does not distribute over \ and we have τpX1q \ τpX2q Ď τpX1 \ X2q. For
instance, if X0 “ r0, 0s and τ : xď1 Ñ x1 “x`2, we have X2 “ r0, 0s \ r2, 2s \ K “ r0, 2s
and X 1

2 “ r0, 0s \ τpr0, 2sq “ r0, 3s. Since abstract acceleration should deliver a tight
over-approximation of the MOP solution, we should generally have the relationshipŮ

kě0 τ
kpX0q Ď τbpX0q Ď X 1

8, i.e., abstract acceleration should be more precise than
the standard abstract interpretation approach (MFP) even without widening.

Fig. 5.9 shows an example illustrating this issue: in the standard abstract inter-
pretation approach (MFP), each iteration translates the approximation added by the
convex union with the result of the previous iteration in each step and converges slowly.
Abstract acceleration translates only the intersection with the guard and takes the union
as a last step. Observe, however, that in the case where X0 is contained in the guard
G, MOP and MFP solutions give identical results for this example [LS07].

Non-flat systems. Generally, the invariants computed by abstract acceleration of
a single self-loop τ are not inductive, which implies that τb is not idempotent, i.e.,
τbpτbpX0qq ‰ τbpX0q. While this is not a problem for flat systems, it has negative
effects in the presence of nested loops.

For example, in the system pid ˝ τ˚q˚ we can apply abstract acceleration to the
innermost loop: pid˝τbq˚ “ pτbq˚. If τb is not idempotent (like in Fig. 5.9b), then the
outer loop might not converge and thus widening is needed. Thus, the considerations
w.r.t. MOP and MFP solutions for τ˚ above apply to pτbq˚ in the same manner.

Since this problem arises in particular when the initial set is not contained in the
guard G (like in Fig. 5.9b), Leroux and Sutre [LS07] propose to accelerate translations
by the formula τbpXq “ τpX Õ Dq, i.e., without initially intersecting with G, which
is idempotent and hence convergence without widening can be expected more often.
However, this formula is clearly less precise and should not be used for accelerating
non-nested loops.

5.3.2 Comparing Abstract Acceleration with Widening

In this section, we illustrate by some examples where abstract acceleration helps in-
creasing the predictability and the robustness of the analysis.

Widening in self-loops. We consider Ex. 5.3, which has the structure depicted in
Fig. 5.10 when analyzed with abstract acceleration or Kleene iteration with widening
and descending iterations respectively.

We try first an analysis with undelayed widening, i.e., N “0:

X 1
1 “ tpx1, x2q | x1`x2ě1u (result of converged widening sequence)

X2
1 “ tpx1, x2q | x1`x2ě1 ^ 2x1`x2ď10 ^ x2ď4 ^ 0ďx1ď6 ^ 3x1`5x2ě3u

. . .
X2

3 “ tpx1, x2q | x1`x2ě1 ^ 2x1`x2ď10 ^ 3x2´2x1ď6 ^ 3x2´4x1ď3^
5x1´22x2ď8 ^ 29x1´157x2ď29u Ą τbpXq

. . . (descending sequence)
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x1

x2

1

1
X G

1
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∞

(a) MFP: X dark gray, iteration 1 medium gray,
iterations 2 and 3 dashed, final result whole
shaded area.

x1

x2

1

1
X G

≥ 1
⊗

(b) Abstract acceleration: X dark gray, iterations
ě 1 medium gray, final result whole shaded area.

Figure 5.9: Comparison between standard abstract interpretation (MFP) (a) and
abstract acceleration (b): τ : G Ñ px1

1, x
1
2q “ px1`1, x2`1q with G and X as given in

the figures.

X '1
1 '1

τb

X '1

τ

Figure 5.10: Analysis with
acceleration (left-hand side)
and with widening (right-hand
side) for Ex. 5.3.

X '0 '1
1 '1

x3ď20 τb

$G Ñ x1
3“x3`1

X '0 '1
x3ď20

τ

$G Ñ x1
3 “x3`1

Figure 5.11: Analysis with acceleration (left-
hand side) and with widening (right-hand side) for
Ex. 5.6. G “ p2x1`2x2ďx3q.

Here, the descending iterations do not converge and improve the result slowly. See
Fig. 5.6 for X2

3 .
By increasing the delay to N “ 1, we can improve the result, and we get the same

result as with abstract acceleration: X2
1 “ τbpXq. However, this is not guaranteed in

general, because widening is not monotonic. Moreover, abstract acceleration is more
efficient computationally: delaying widening and a long descending sequence increase
the number of iterations. In flat programs, like in Ex. 5.3, abstract acceleration does
not even require convergence tests.

Widening in nested loops. In the previous example, delayed widening and descend-
ing iterations allowed to get the same result as with abstract acceleration. However,
this is less likely if the loop is embedded in an outer loop as in Fig. 5.11: descending
iterations cannot be applied during the ascending iterations, but only after convergence
of the widening sequence of the whole program, otherwise convergence would not be
guaranteed.

Example 5.6 (Widening in nested loops) We consider the program depicted in
Fig. 5.11 in which the inner loop τ is adapted from Ex. 5.2:

τ :

ˇ̌
ˇ̌ 2x1 ` 2x2ďx3

0 ď ξď1 Ñ

ˇ̌
ˇ̌
ˇ̌
x1
1 “ x1`ξ`1

x1
2 “ ξ

x1
3 “ x3

X “
"

px1, x2, x3q
ˇ̌
ˇ̌ 0ďx1 ^ 1ďx2
x1`x2ď2 ^ x3 “3

*

The analysis without abstract acceleration yields for any widening delay N ě 1
(widening point '1) and any number of descending iterations N2 ě 1 the following very
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61 5.3. Evaluation and Comparison

weak invariant:

X 1
1 “ tpx1, x2, x3q | 0ďx1 ^ 3ďx3u X2

1 “ tpx1, x2, x3q | 0ďx1 ^ 1ďx1 ` x2 ^ 3ďx3u

Abstract acceleration with widening delay N ě 1 (widening point '1) and one de-
scending iteration gives much better results: we give here a simplified (over-approxi-
mated) invariant, because the actual result consists of more constraints:

X2
1 “ tpx1, x2, x3q | 0ďx1ď12 ^ 0ďx2ď3 ^ 3ďx3ď20 ^ 1ďx1 ` x2u

One can also consider widening with thresholds (see §3.4.2). A natural threshold
set for our example is the postcondition of the guard of τ by the body of τ : τpJq “
tpx1, x2q | 0ďx2ď1u. Yet, this does improve the result.

Extending the threshold set with the postcondition of the guard of the outer loop
x3ď 21 improves the result (all variables are bounded), but it is still less precise than
the result obtained by combining abstract acceleration and widening (in particular the
descending iteration does not converge).

5.3.3 Comparing Abstract Acceleration with the Affine Derivative
Closure Algorithm

The affine derivative closure algorithm of Ancourt et al. [ACI10] is another abstract
interpretation-based analysis method. The idea is to compute an abstract transformer,
i.e., a relation between variables x and x1, independently of the initial state of the
system. The abstract transformer abstracts the effect of the loop by a polyhedral trans-
lation

true Ñ x1 “ x ` DR with DR “ td | Dx, ξ,x1 : Rpx, ξ,x1q ^ x1 “ x ` du

where R is the concrete transition relation. The polyhedron DR is called the“derivative”
of the relation R. The effect of several self-loops with relations R1, . . . , Rk is abstracted
by considering the convex union

Ů
iDRi .

Then, the reflexive and transitive closure

R˚ “ tpx,x1q | Dkě0 : x1 “x`kd ^ DRpdqu

is applied to a polyhedron X of initial states:

R˚pXq “ tx1 | Dx : R˚px,x1q ^ Xpxqu

The final result is obtained by computing one “descending” iteration, in the same way
as it is done in standard abstract interpretation after widening.

The affine derivative closure algorithm is implemented in the code optimization tool
Pips2.

In single self-loops with translations or translations/resets, the method works sim-
ilarly to abstract acceleration, as illustrated by the following example involving resets
and inputs:

2http://pips4u.org
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X

G

x1

x2

1

1

(a) Derivative closure
method: R˚ applied to X

(whole shaded area), final
result (dark gray).

X

G

x1

x2

1

1

(b) Abstract acceleration: it-
erations ě 1 (dark gray), final
result (whole shaded area).

Figure 5.12: Comparison between the affine derivative
closure algorithm (a) and abstract acceleration (b), Ex. 5.7.

x1 ≤ 9 →
x′
1 = x1 + 1 ∧ x′

2 = 0

x2 ≤ 9 →
x′
1 = x1 ∧ x′

2 = x2 + 1

x′
1 = 0 ∧ x′

2 = 0

Figure 5.13: Ex. 5.8.

Example 5.7 (Single loop)

τ :

ˇ̌
ˇ̌
ˇ̌

x1ď 4
x2ď 4

0 ď ξď 1
Ñ

ˇ̌
ˇ̌ x1

1 “ x1`ξ`1
x1
2 “ ξ`2

X “
"

px1, x2q
ˇ̌
ˇ̌ x1ď1 ^ x2ď1
x1`x2ě1

*

The transition relation
R “ tpx1, x2, ξ, x1

1, x
1
2q | x1

1 “ x1`ξ`1 ^ x1
2 “ ξ`2 ^ x1 ď 4 ^ x2 ď 4 ^ 0 ď ξ ď 1u

expressed in terms of derivatives is
DR “ tpd1, d2q | Dx1, x2, ξ, x1

1, x
1
2 : Rpx1, x2, ξ, x1

1, x
1
2q ^ x1

1 “ x1`d1 ^ x1
2 “ x2`d2u

“ tpd1, d2q | 1ďd1ď2 ^ d1´d2ď3u
The closure of the loop starting from X gives

R˚pXq “ tpx1
1, x

1
2q | Dkě0, x1, x2 : x1

1ěx1 ` k ^ x1
1ďx1 ` 2k^

x1
1 ´ x1

2ďx1 ´ x2 ` 3k ^ Xpx1, x2qu “
“ tpx1

1, x
1
2q | 0ďx1

1 ^ 2x1
1 ` x1

2 ě 1u
Finally, a descending iteration is computed:

X \ τpR˚pXqq“tpx1
1, x

1
2q | x1

1`x1
2ě1 ^ x1

1´2x1
2ď1 ^ x1

1´x1
2ď3^

x1
2ď3 ^ x1

1´x1
2ě´1u

This result equals the one obtained by abstract acceleration (see Fig. 5.12).

Resets cannot be expressed as polyhedral translations: for instance, if Rpx, x1q “
px1 “ 0q, then DR “ td |Dx, x1 : x1 “ 0 ^ x1 “ x ` du “ J. However, this information is
recovered during the descending iteration. Hence, similarly to widening, these descend-
ing iterations may fail (cf. §3.4.2) in the presence of multiple loops:

Example 5.8 (Multiple loops) For the CFG in Fig. 5.13, the derivatives for the
upper and the lower loop are DR1

“ pd1 “ 1q and DR2
“ pd1 “ 0 ^ d2 “ 1q respectively.

Their convex union is DR1,2 “ p0ďd1ď1q. The transitive closure applied to X “ px1 “
x2 “ 0q gives R˚

1,2pXq “ px1 ě 0q, and the final result after the descending iteration is
X 1 “ px1ě0 ^ x2ď10q. Here, in the same way as in Ex. 3.3, the descending iteration
fails to recover the upper bound of x1.

In contrast, abstract acceleration converges after two ascending iterations with the
invariant X2 “ p0ďx1ď10 ^ 0ďx2ď10q.

62
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Forward acceleration:
Translations τbpXq “ X \ τ

`
pX [ Gq Õ D

˘

Translations/resets τbpXq “ X \ τpXq \ τ
´`

pτpXq [ Gqt,0 Õ Dt,0
˘

` D0,r
¯

Backward acceleration:
Translations τ´bpX 1q “ X 1 \

`
pτ´1pX 1q Õ p´Dq

˘
[ G

Translations/resets τ´bpX 1q “ X 1 \ τ´1pX 1q\
\τ´1

´`
pτ´1pX 1qt,‚ Õ p´Dt,0q

˘
[ D‚,r [ G

¯

with

τ : p

G0px, ξqhkkkkkkkikkkkkkkj
Ax ` Lξ ď b^

G1pξqhkkikkj
Jξ ď kq ÝÑ x1 “ Cx ` Tξ ` u C diagonal with 0 or 1 only

Gpxq “ Dξ : G0px, ξq D “ td | Dξ : d “ T ξ ` u ^ G1pξq ^ Dx : G0px, ξqu
Approximations:
In all cases dense and convex approximation
L ‰ 0 G and D are decoupled.
Translations/resets D is approximated by the Cartesian product Dt ˆ Dr.

Table 5.1: Overview of abstract acceleration formulas

Hence, even though the derivative closure method elegantly deals with multiple loops
by taking the convex union of the derivatives, it is also less precise than abstract acceler-
ation for such programs. However, the main advantage of the derivative closure method
is that it is more general than abstract acceleration, because it automatically approxi-
mates any kind of transformations. Moreover, since it computes abstract transformers,
it is modular and can be used in the context of interprocedural analyses.

5.4 Conclusions and Perspectives

We have presented an extension of abstract acceleration to numerical inputs for forward
and backward analysis. Table 5.1 shows a summary of the formulas. This extension is
less straightforward than supposed – most notably due to the observation that inputs
can be used to turn translations into arbitrary affine transformations; also, resetting
variables to input values may cause some subtle behavior. Regarding approximations,
Table 5.1 shows the cases where our method is precise in the sense that we perform only
dense and convex approximations, and the more complex cases for which additional
approximations are necessary to abstract away the number of iterations.

Abstract acceleration can be elegantly integrated into an abstract interpretation-
based verification tool, where it is normally used in combination with widening: as
pointed out in §5.3.2, it is possible to accelerate the innermost loops precisely while
using widening for the outer loops in nested loop situations. Thus, better invariants can
be computed for programs for which a lot of information is lost when using widening
only (cf. experimental results in §8.4).

In comparison to other abstract interpretation-based transitive closure methods,
for instance the affine derivative closure algorithm [ACI10], abstract acceleration deals
only with some frequently occurring types of self-loop transitions and needs to resort
to widening in the general case. However, the derivative closure may be less precise in
nested loops since it ultimately relies on descending iterations to recover the information
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about loop guards, whereas abstract acceleration can precisely accelerate the innermost
loops.

Improving precision. Regarding integer (e.g., divisibility) properties, our tech-
niques based on convex polyhedra cannot express them and Rem. 4.1 discusses the
effect of the induced dense approximation. To improve on this, we could combine our
techniques with the linear congruence abstract domain introduced in [Gra91]. This do-
main satisfies the finite ascending chain condition, hence it does not require widening
nor acceleration. By this means we could tighten the results.

For instance, when px1, x2q is iteratively translated by p4, 2q starting from p1, 0q, we
know from the linear congruences domain that x1 “ 1 mod 4 ^ x2 “ 0 mod 2. Then,
assuming that the abstract acceleration results in a convex polyhedron 1 ď x1 ^ 0 ď
x2 ^ x1`x2ď4, we can tighten this polyhedron to x1“1 ^ 0ďx2ď2.

Compared to Presburger arithmetic, we still limit ourselves to convex sets with such
a technique.

Periodic affine transformations with inputs. In this chapter we dealt only with
translations (e.g., x1 “ x`2) and resets (e.g., x1 “ 1). Yet, our experiments showed that
there are other kinds of transitions in synchronous programs that would be worthwhile to
accelerate: variable exchanges (e.g., x1

1 “x2; x1
2 “x1) and delays (e.g., x1

1“x2; x1
2“x3)

result in transitions that fall into the category of (ultimately) periodic transformations;
hence, we know how to accelerate them by applying Thm. 4.6.

We can extend the abstract acceleration of these transformations to inputs based on
Eq. (4.2) τ˚pXq “

Ť
0ďjďq´1pτ qq˚pτ jpXqq, where, in the case of inputs, τ q is defined as:

Ź
0ďiďq´1

´
ACix ` LCiξi `

ř
0ďjďi´1TCjξj´Cju ď b

¯
^ Jxďk Ñ

´
x1 “ Cqx `

ř
0ďjďq´1TCjξj´Cju

¯

Then we can accelerate each τ q by relaxing the guard according to §5.1.3 and apply-
ing respectively the theorems for translations with inputs (Thm. 5.1) and translations
with resets and inputs (Thm. 5.2) in the eigenbasis of Cq according to Lem. 4.1. Mind
that we need to duplicate the inputs q times.

Another interesting case of transitions we encountered are dependencies on unmod-
ified variables (e.g., x1

1“x1`x2; x1
2 “x2) which we will deal with in the next chapter.
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Chapter 6

Revisiting Acceleration

In chapter 5 we considered abstract accelerations of translations and translations with
resets, and discussed shortly the general case of (ultimately) periodic transformations.
Yet, in our experiments, we encountered transitions which involve dependencies on un-
modified variables (e.g., x1

1 “ x1`x2; x1
2 “ x2) that are not (ultimately) periodic and

hence they are not considered accelerable in exact acceleration theory. Nonetheless,
intuitively, we should be able to accelerate them. This observation led us to revisit the
concept of linear accelerability.

Outline. We start with a motivating example below. Then we restate the defini-
tion of linear accelerability using a characterization based on the Jordan form (§6.1)
of homogenized affine transformations and we show that it is more general than finite
monoid acceleration (§6.2). In §6.3 we generalize abstract acceleration to our linear ac-
celerability criterion. We conclude with a discussion about the practical implications of
these results and further research directions in generalizing abstract acceleration (§6.4).
Fig. 5.1 illustrates the organization of the chapter.

linear accelerability of linear transformations §6.1

comparison to finite monoid acceleration §6.2

generalizing abstract acceleration §6.3

conclusions and perspectives §6.4

Figure 6.1: Chapter organization

Motivating example

We give a simple example that is not finite-monoidal:

Example 6.1 (Dependencies on unmodified variables I)

τ : tt Ñ x1 “
ˆ

1 1
0 1

˙
x with X0 “ p0ďx1 “x2q
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x1

x2

0

1

2

3

0 1 2 3 4 5 6 7

τbpXq

X

G

Figure 6.2: Dependencies on unmodified variables: τ : x1̀ x2ď7 Ñ x1
1“x1̀ x2 ^ x1

2 “
x2 with X0 “ p0ďx1 “x2ď 4q: reachable integer points and polyhedron computed by
abstract acceleration.

We have Ck “
ˆ

1 k
0 1

˙
, which means that it is not finite-monoid (Def. 4.2), and thus

not accelerable. And indeed, although the example seems trivial, its transitive closure is
not Presburger-definable because of the multiplicative term kx2:

τ˚pX0q “ tx1 | Dkě0 : x1
1“x1`kx2^x1

2“x2^X0px1, x2q^@0ďk1ăk : Gpx1`k1x2, x2qu

By substituting a dense coefficient α for k (dense approximation) we obtain

Dα P Rě0 : 0ďx2 “x1 ^ x1
1“x1`αx2 ^ x1

2 “x2

“ Dα P Rě0 : 0ďx1
2ďx1

1 ^ x1
1“x1

2`αx1
2

“ Dα P Rě0 : 0ďx1
2ďx1

1 ^ x1
2“ 1

1`αx
1
1

“ x1
1“x1

2 “0 _ 0ăx1
2ďx1

1

We observe that the topological closure of this set, i.e., 0ďx1
2ďx1

1, is a convex polyhe-
dron. Hence, a precise abstract acceleration should be possible.

Fig. 6.2 illustrates the example with a guard and the result we obtain by abstract
acceleration using Prop. 6.1 which we are going to formulate in §6.3.

6.1 Linear Accelerability of Linear Transformations

We propose the following definition of linear accelerability:

Definition 6.1 (Linear accelerability) A transition τ is linearly accelerable iff its
reflexive and transitive closure τ˚ can be written as a finite union of sets

τ˚ “ λX.
ď

l

tAlx`kbl | kě0,x P Xu

In Def. 4.2 we gave the accelerability criterion based on the matrix C of an affine
transformation x1 “ Cx ` d, i.e., tCk | kě0u is finite (“finite monoid”). This charac-
terization is merely based on the matrix C and it does not takes into account possible
correlations between the coefficients of C and d, neither the initial set X.
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In this chapter, we give an alternative characterization based on the homogeneous
form of affine transformations: any affine transformation of dimension n can be written
as a linear transformation

ˆ
x1

x1
n`1

˙
“

ˆ
C d

0 1

˙

looooomooooon
C1

ˆ
x

xn`1

˙

of dimension n`1 and with xn`1“1 in the initial set X.
Our criterion considers the Jordan normal form J P Cn of C1 P Rn which can

be obtained by a similarity transformation J “ Q´1C1Q with a nonsingular matrix
Q P Cn as described in §4.1. J is a block diagonal matrix consisting of Jordan blocks
Ji associated with the eigenvalues λi P C of C1.

Furthermore, we have J
k “ Q´1C

1kQ and thus:

J
k “

¨

˚̋
Jk
1 . . . 0

. . .
. . . . . .

0 . . . Jk
j

˛

‹‚

We will now examine the linear accelerability of a Jordan block w.r.t. its size and
associated eigenvalue:

Lemma 6.1 (Jordan block of size 1) A transition τpXq : x1 “ Jx where J is a
Jordan block of size 1 is linearly accelerable iff its associated eigenvalue is either zero or

a complex root of unity, i.e., λ P t0u Y tei2π
q
p | p, q P Nu.

Proof A Jordan block of size m “ 1 consists of its associated eigenvalue: J “ pλq. The
linear acceleration for τ is thus

τ˚pXq “
ď

kě0

tλkx | x P Xu “
ď

l

talx`blk | kě0, x P Xu

This means that we have to look for values of λ such that there is a finite number of values
for the coefficients al, bl as solutions of the equation @kě0, x P X : λkx “ alx` blk. We
distiniguish cases according to k:

• k“0: λ0 “ 1 for any λ, hence a0“1, b0 “0.
• kě1: By writing λk in polar form ρkeiθk we get the solutions#

λ“0, a0“0, b0“0 (i.e., 0keiθk “ 0x ` 0k)

λ “ e
i2π q

p , ak “e
i2π q

p
k
, bk “0, p, q P N (i.e., 1kei2π

q
p
k
x “ e

i2π q
p
k
x ` 0k).

For the second solution, the number of values for ak is finite because they are pe-

riodic: e
i2π q

p “ e
ip2π q

p
`2πqjq

, j P Z. Hence, there are p distinct values for ak with
0ďkďp´1.

This yields:

λ“0: τ˚ “ λX.X Y t0u
λ“ei2π

q
p : τ˚ “ λX.

Ť
0ďlďp´1t

´
ei2π

q
p
lx

¯
| x P Xu

Lemma 6.2 (Jordan block of size 2) A transition τpXq : x1 “ Jx where J is a
Jordan block of size 2 is linearly accelerable iff its associated eigenvalue is
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– either zero (λ “ 0) or

– a complex root of unity (λ P tei2π
q
p | p, q P Nu) and if in this case the variable

associated to the second dimension of the block has only a finite number of values
in X.

Proof A Jordan block of size m “ 2 has the form J “
ˆ
λ 1
0 λ

˙
. The linear accelera-

tion for τ is

τ˚pXq “ X Y
Ť

kě1

"ˆ
λk kλk´1

0 λk

˙ ˆ
x1
x2

˙
|

ˆ
x1
x2

˙
P X

*

“
Ť

l

"ˆ
al,1 al,2
al,3 al,4

˙ ˆ
x1
x2

˙
` k

ˆ
bl,1
bl,2

˙
| kě0,

ˆ
x1
x2

˙
P X

*

The case k “ 0 is the identity for any eigenvalue λ, thus, we concentrate on kě 1: We
have to find values of λ such that there is a finite number of values for the coefficients
al,¨, bl,¨ in the equation

@kě1,x P X :

"
λkx1̀ kλk´1x2 “ al,1x1`al,2x2`bl,1k

λkx2 “ al,3x1`al,4x2`bl,2k

We distinguish cases by values of k:
• k“1: The left-hand side of the first equation reduces to λx1`x2. Hence, we can

match left and right-hand sides for any values of λ: a0,1 “ a0,4 “ λ, a0,2 “ 1, all
other coefficents are 0.

• k ě 2: In this case we cannot match kλk´1x2 with al,2x2, but we can match it
with bl,1k under the assumption that x2 has a finite number of values in X, which
gives us (besides λ“0) the following solution (p, q P N):

@kě2,x P X :

$
’’’&

’’’%

e
i2π q

p
kloomoon

λk

x1̀ k e
i2π q

p
pk´1qloooomoooon

λk´1

x2 “ e
i2π q

p
kloomoon

akx2,1

x1` 0loomoon
akx2,2

¨x2`e
i2π q

p
pk´1q

x2loooooomoooooon
bkx2,1

k

e
i2π q

p
kloomoon

λk

x2 “ 0loomoon
akx2,3

¨x1`e
i2π q

p
kloomoon

akx2,4

x2` 0loomoon
bkx2,2

¨k

As in the proof for Lem. 6.1 there is a finite number of values for ei2π
q
p
k because

it is periodic.
This yields:

λ“0: τ˚ “ λX.X Y
"ˆ

x2
0

˙
,

ˆ
0
0

˙*

λ“e
i2π q

p : τ˚ “

$
’&

’%

λX.XY
Ť

1ďlďp,x2

#˜
e
i2π q

p
l
x1`kle

i2π q
p

pl´1q
x2

ei2π
q
p
lx2

¸

| x P X, kě0

+

Lemma 6.3 (Jordan block of size ą 2) A transition τpXq : x1 “ Jx where J is a
Jordan block of size ą 2 is linearly accelerable iff its associated eigenvalue is zero.

Proof Jordan blocks of size m ą 2 have the form: J “

¨

˚̊
˚̊
˚̋

λ 1 0 . . . 0
0 λ 1 . . . 0

. . . . . .
. . .

. . . . . .
0 . . . 0 λ 1
0 . . . 0 0 λ

˛

‹‹‹‹‹‚
.
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Their powers have the form:

Jk “

¨

˚̊
˚̊
˚̊
˝

λk Ck
1λ

k´1 Ck
2λ

k´2 . . . Ck
ḿ 1λ

k´m`1

0 λk Ck
1λ

k´1 . . . Ck
ḿ 2λ

k´m`2

. . . . . .
. . .

. . . . . .

0 . . . 0 λk Ck
1λ

k´1

0 . . . 0 0 λk

˛

‹‹‹‹‹‹‚

where Ck
j are the binomial coefficients.

For any value of λ‰0 we have polynomials in k of order m, hence we cannot match
the coefficients with a linear form in k.

Thus, we have only λ“0: τ˚ “ λX.
Ť

0ďkďmtJkx | x P Xu

We summarize these results:

Theorem 6.1 (Accelerable linear transformations) A linear transformation τpXq :
x1 “ C1x is linearly accelerable iff its Jordan form consists of Jordan blocks J satisfying
the following criteria:

• J is of size 1 and its associated eigenvalue λ P t0u Y tei2π
q
p | p, q P Nu.

• J is of size 2 and its associated eigenvalue λ “ 0 or λ P tei2π
q
p | p, q P Nu, and in

the latter case the variable associated with the second dimension of the block has
only a finite number of values in X in the Jordan basis.

• J is of size greater than 2 and its associated eigenvalue λ “ 0.

6.2 Comparison with Finite Monoid Acceleration

The background of the “finite monoid” criterion of Def. 4.2 is the following characteriza-
tion of Boigelot (Theorem 8.53, [Boi98]): x1 “ Cx ` d is accelerable if Dqą0 such that
Cq is diagonizable and all its eigenvalues are in t0, 1u. In other words: the eigenvalues
are either zero or roots of unity and all Jordan blocks of non-zero eigenvalues have size 1.

Theorem 6.2 (Jordan form of finite monoid affine transformations) The Jor-

dan form of the homogeneous transformation matrix

ˆ
C d

0 1

˙
, where tCk | kě0u is

finite, consists of
– Jordan blocks of size 1 with eigenvalues which are complex roots of unity,
– at most one block of size 2 with eigenvalue 1 where the variable associated with the

second dimension is a constant equal to 1, and
– blocks with eigenvalue 0 of any size.

Proof We will show that
(1) extendingC to the homogeneous form adds the eigenvalue 1 to the spectrum. Hence,

only the Jordan blocks in the Jordan form of C associated with an eigenvalue 1 are
affected by homogenization, and

(2) the Jordan form of the homogenized matrix has at most one Jordan block of size 2
associated to an eigenvalue 1.
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(1) follows from the fact that the characteristic polynomial of the homogeneous form
is the characteristic polynomial of C multiplied by 1´λ:

det

ˆ
C´λI d

0 1´λ

˙
“ p1´λq ¨ detpC´λIq

(because the left-hand side matrix is triangular). The variable corresponding to the
dimension added during homogenization is known to equal the constant 1.

(2) We show that the Jordan form of C1 has at most one Jordan block of size 2
associated with an eigenvalue 1: Assume that the Jordan form of the pn´1q-dimensional
matrix C has m´1 blocks of size 1 associated with eigenvalue 1. Then, the homogeneous
form C1 has
‚ exactly 1 Jordan block of size 2 (with eigenvalue 1) and m´2 blocks of size 1 (with

eigenvalue 1) if kerpC1 ´ Iq has dimension m´1, i.e., rankpC1´Iq “ n´m`1;
‚ no Jordan block of size 2 (with eigenvalue 1) and m blocks of size 1 (with eigenvalue 1)

if kerpC1 ´ Iq has dimension m, i.e., rankpC1´Iq “ n´m.
Since the eigenvalues 1 of C have all geometric multiplicity 1, C´I has n´m linearly

independent column vectors. Hence, C1 ´ I has n´m linearly independent column

vectors iff the additional column vector

ˆ
d

0

˙
is not linearly independent from the

others; otherwise it has n´m`1 linearly independent column vectors. Hence, we have
n´mďrankpC1´Iqďn´m`1.

Example 6.2 (Jordan form characterization) Consider C “

¨

˝
0 1 0
0 0 1
1 0 0

˛

‚and d “

p0, 1, 2qT . C has the eigenvalues t1,´1
2 ˘ 1

2 i
?
3u. Hence, the homogeneous form C1 has

4 dimensions (n“4) and an eigenvalue 1 with algebraic multiplicity m“2.

The matrix C1 ´I “

¨

˚̊
˝

´1 1 0 0
0 ´1 1 1
1 0 ´1 2
0 0 0 0

˛

‹‹‚ has n´m`1 “ 3 linearly independent

column vectors, hence the Jordan form has one block with size 2 associated with the
eigenvalue 1.

Assume that d“p´1, 0, 1qT , then C1´I would have only ń m“2 linearly independent
column vectors, hence the Jordan form would have 2 blocks of size 1 associated with the
eigenvalue 1.

Table 6.1 gives the Jordan form characterization of the homogeneous transformation
for the different types of transformations.

Non-finite monoid case.

The only Jordan blocks of size two with non-zero eigenvalue that are considered accel-
erable by the finite monoid characterization are those with eigenvalue 1 and the second
dimension of the block equal to 1 in the initial set X (w.r.t. the Jordan basis).

The criterion of Thm. 6.1 is slightly more general : It identifies furthermore those
transformations as accelerable where the eigenvalue is a root of unity and the second
dimension of the block has a finite set of values in the initial set X.

We give two examples for such transformations and show how to accelerate them:
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71 6.2. Comparison with Finite Monoid Acceleration

transition type ult. per. Jordan form
Translations

x1 “ Ipnqx ` d, d ‰ 0 p“0, l“1
‚ 1 translation block
‚ n´1 identity blocks

Translations with resets

x1 “
ˆ
0pmq0
0 Ipn´mq

˙
x`

ˆ
d

d1

˙
, d1 ‰0 p“1, l“1

‚ m nilpotent blocks of size 1
‚ 1 translation block
‚ n´m´1 identity blocks

Purely periodic transformations

x1 “ Cx ` d, Cl “ I p“0
‚ rotation (by θ “ 2π qi

pi
) blocks

‚ zero or one translation blocks
(depending on d)

Ultimately periodic transformations

x1 “ Cx ` d, Cp`l “ Cp pą0

‚ rotation (by θ “ 2π qi
pi
) blocks

‚ nilpotent blocks with maximum
size p

‚ zero or one translation blocks
(depending on d)

Legend:
ult. per.: ultimate periodicity characterization Cp`l “ Cp, pě0, lą0

Jordan form: direct product of

$
’’&

’’%

identity block λ“1, size 1
translation block λ“1, size 2, 2nd dimension ” 1
nilpotent block λ“0, size m pJm “0q
rotation block λ“ei2π

q
p , size 1

Apkq denotes a square matrix of size k.

Table 6.1: Jordan form characterization of finite monoid transformations

Example 6.3 (Dependencies on modified variables II)

τ : x1`2x2ď6 Ñ x1 “
ˆ

1 1
0 1

˙
x with X0 “ px1 “0 ^ x2 P t2, 3, 4uq

We can exactly accelerate the loop τ by enumerating the values of x2 in X0 and trans-
lating x1 by each of these values:

τ˚pX0q “ tpx1
1, 2q | Dkě0 : x1

1“x1`2k ^ X0pxq ^ @0ďk1ăk : x1
1ď2uY

tpx1
1, 3q | Dkě0 : x1

1“x1`3k ^ X0pxq ^ @0ďk1ăk : x1
1ď0uY

tpx1
1, 4q | Dkě0 : x1

1“x1`4k ^ X0pxq ^ @0ďk1ăk : x1
1ď´2u

“ tp0, 2q, p2, 2q, p4, 2q, p0, 3q, p3, 3q, p6, 3q, p0, 4qu
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Example 6.4 (Rotation with translation by rotated variables) The linear trans-
formation

C “

¨

˚̊
˝

0 ´1 1 0
1 0 0 1
0 0 0 ´1
0 0 1 0

˛

‹‹‚

is a rotation by π
2 in dimensions 3 and 4, and it also rotates dimensions 1 and 2 by π

2

while translating them by dimensions 3 and 4 respectively.
C has conjugate complex eigenvalues p˘iq4 “ 1 with algebraic multiplicity 2 and

geometric multiplicity 1, i.e., it is not finite-monoidal. The Jordan form is

J “

¨

˚̊
˝

´i 1 0 0
0 ´i 0 0
0 0 i 1
0 0 0 i

˛

‹‹‚

Let us consider the loop τ : ´9 ď x1`x2 ď 9 ^ ´5 ď x1 ď 10 Ñ x1 “ Cx with X0 “
tp0, 0, 1, 2qu. Since the values for x3 and x4 are finite in X0, the transition is accelerable
according to Thm. 6.1.

The matrix C is of the form C “
ˆ

J I
0 J

˙
, thus its powers have the form Ck “

ˆ
Jk kJk´1

0 Jk

˙
. Moreover, J has periodicity p“4.

With this information, x1 “Cx can be accelerated by enumerating the powers of J and
the values of x3, x4 in X0 as follows (cf. proof of Lem. 6.2):

px1 “Cxq˚ “ λX.X Y
ď

1ďlďp,x3,x4

$
’’&

’’%

¨

˚̊
˝

Jl

ˆ
x1
x2

˙
`klJpl´1q

ˆ
x3
x4

˙

Jl

ˆ
x3
x4

˙

˛

‹‹‚ | x P X, kě0

,
//.

//-

Using this formula and taking into account the guard G, τ˚ is computed by

τ˚pX0q “ tpx1
1, x

1
2, 1, 2q | Dkě0 : x1

1 “xk1 ^ x1
2 “xk2^

xk1 “x1`2 ¨ 4k ^ xk2 “x2´1 ¨ 4k
^Xpx1, x2, 1, 2q ^ @0ďk1ăk : Gpxk1

1 , x
k1

2 , 1, 2qu Y
tpx1

1, x
1
2,´2, 1q | Dkě0 : x1

1 “xk1 ^ x1
2 “xk2^

xk1 “´x2`1p4k`1q ^ xk2 “x1`2p4k`1q
^Xpx1, x2,´2, 1q ^ @0ďk1ăk : Gpxk1

1 , x
k1

2 ,´2, 1qu Y
tpx1

1, x
1
2,´1,´2q | Dkě0 : x1

1 “xk1 ^ x1
2 “xk2^

xk1 “´x1´2p4k`2q ^ xk2 “´x2`1p4k`2q
^Xpx1, x2,´1,´2q ^ @0ďk1ăk : Gpxk1

1 , x
k1

2 ,´1,´2qu Y
tpx1

1, x
1
2, 2,´1q | Dkě0 : x1

1 “xk1 ^ x1
2 “xk2^

xk1 “x2´1p4k`3q ^ xk2 “´x1´2p4k`3q
^Xpx1, x2, 2,´1q ^ @0ďk1ăk : Gpxk1

1 , x
k1

2 , 2,´1qu
We obtain the result

τ˚pX0q “ tp0, 0, 1, 2q, p8,´4, 1, 2q, p1, 2,´2, 1q, p5, 10,´2, 1q,
p´4, 2,´1,´2q, p´3,´6, 2,´1qu

See Fig. 6.3 for a plot of these points.
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2

4

6

8

10

´2

´4

´6

2 4 6 8´2´4´6
x1

x2

τbpXq

X

G

px3, x4q“p´2, 1q

px3, x4q“p´1,´2q

px3, x4q“p2,´1q
px3, x4q“p1, 2q

Figure 6.3: Rotation with translation by rotated variables: reachable integer points
and polyhedron computed by abstract acceleration (dark gray, bold frame) projected
on plane x1, x2; guard G (light gray), the four sets involved in the union (bold lines)
with their associated values of x3 and x4.

6.3 Generalizing Abstract Acceleration

Thanks to the work of Gonnord et al. [GH06, Gon07], abstract acceleration can handle
finite monoid transformations. In this section, we will generalize abstract acceleration to
the additional case of linearly accelerable transformations we identified in the previous
sections, i.e., Jordan blocks of size two with eigenvalues that are roots of unity.

We consider transitions of the form τ : Ax ď b Ñ x1 “
ˆ

J I
0 J

˙

looooomooooon
C

x where the

transformation matrix is in real Jordan form (§4.1), i.e., J “

˜
cos 2π q

p ´ sin 2π q
p

sin 2π q
p cos 2π q

p

¸

for conjugate complex eigenvalues ei2π
q
p , p, q P N, and J “ p1q for the eigenvalue 1.

We use notations similar to §5.1.2 where we partitioned the dimensions into trans-
lated and reset dimensions. Here, we distinguish the translated dimensions T from the
non-translated ones N . In the case of conjugate complex eigenvalues, T is t1, 2u and
N “t3, 4u, for the eigenvalue 1 we have T “t1u and N “t2u. Then, X‚,N for example,
denotes the projection of the polyhedron X onto the non-translated dimensions. xT

and xN denote the subvectors of translated and non-translated dimensions respectively.

Proposition 6.1 Let τ : Ax ď b Ñ x1 “
ˆ

J I
0 J

˙
x be a transition as explained

above. Then

τbpXq “ X \
ğ

0ďlďp´1

τ
`
pτ lpXq [ Gq Õ Dplq

˘

is a sound over-approximation of τ˚, where
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‚ τ l is expressed as in Eq. 4.3, i.e.:

τ l “
ľ

0ďiďl´1

˜

ACix `
ÿ

0ďjďi´1

Cjd ď b

¸

Ñ x1 “ Clx `
ÿ

0ďjďl´1

Cjd

‚ Dplq “
ˆ

0 Jl1

0 0

˙
¨
`
pX [ Gq‚,N

˘
with l1 “pl´1q mod p.

This means that we enumerate the powers of J and translate the dimensions T by the
polyhedronDplq corresponding to the pĺ 1qth power of J. The polyhedronDplq originates

from the right upper block in Ckx“
ˆ

JkxT kJk´1xN

0 JkxN

˙
where it over-approximates

the set tJl´1xN | x P Xu by which the dimensions T are translated.

Proof
The formula is trivially correct for 0 iterations. It remains to show that our formula
yields an over-approximation for kě1 iterations:

x1 P
Ť

kě1 τ
kpXq

ðñ Dkě0, Dx0 P X, Dxk :
x1 P τpxkq ^ xk “Ckx0 ^ @k1 P r0, ks : Gpxk1q

ðñ Dkě0, Dx0 P X, Dxpk`l, Dl P r0, p´1s :
x1 “

Ť
l τpxpk`lq ^ xpk`l“Cpk`lx0 ^ @k1 P r0, pk`ls : Gpxk1q

ðñ Dkě0, Dx0 P X, Dxpk`l, Dl P r0, p´1s :
x1 “

Ť
l τpxpk`lq ^ xT

pk`l“JlxT
0 `ppk`lqJl1xN

0 ^ xN
pk`l“JlxN

0 ^
@k1 P r0, pk`ls : Gpxk1q
pwith l1 “pl´1q mod pq

ùñ Dkě0, Dx0 P X, Dxpk`l, Dl P r0, p´1s, DdplqT P DplqT “Jl1pX [ GqN :

x1 “
Ť

l τpxpk`lq ^ xl “τ lpx0q ^ xT
pk`l“xT

l `ppk`lqdplqT ^ xN
pk`l“xN

l ^
@k1 P r0, pk`ls : Gpxk1q
(over-approximation of Jl1xN

l by dplqT q
ùñ Dαě0, Dx0 P X, Dxpk`l, Dl P r0, p´1s, DdplqT P DplqT “Jl´1pX [ GqN :

x1 “
Ů

l τpxpk`lq ^ xl “τ lpx0q ^ xT
pk`l“xT

l `αdplqT ^ xN
pk`l“xN

l ^Ź
l Gpxlq ^ Gpxpk`lq

(dense and convex approximations)
ðñ x1 P

Ů
0ďlďp´1 τ

`
pτ lpXq [ Gq Õ Dplq

˘

The first approximation (ùñ) in the proof due to the projection on the non-translated
dimensions occurs only if the non-translated dimensions are not independent from the
translated dimensions in the initial set X.

Mind that we do not require as in Thm. 6.1 that the variables corresponding to
the non-translated dimensions have a finite number of values in the initial set: this
generalization is justified by the dense approximation that we perform (second ùñ in
the proof).

Figures 6.2 and 6.3 depict the result of the application of Prop. 6.1 to Examples 6.1
and 6.4 respectively.
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6.4 Conclusions and Perspectives

In this chapter we have seen that the Jordan normal form is a powerful theoretical
tool which made us gain more insight into the accelerability of linear transformations.
However, there are two challenges in exploiting these results in a practical abstract
acceleration approach:

First, we have to build the Jordan form, i.e., we have to compute the eigenvalues of
the transformation matrix and their algebraic and geometric multiplicities. Determining
the eigenvalues requires finding the roots of the characteristic polynomial, which is a
hard problem: by the theorem of Abel-Ruffini there is no solution based on radicals for
polynomials of degree 5 and higher. Hence, in general only numerical approximations
can be computed (see, e.g., [Wil88]). However, for our characterization it is essential
to know whether an eigenvalue (exactly) equals zero or one. Nevertheless, a solution
might be possible, because we are only interested in eigenvalues which are 0 or roots of
unity.

Second, we have to find and apply an abstract acceleration formula. We have to
remark that our theorems and those of Gonnord et al. for abstract acceleration – in
contrast to exact acceleration – require to perform a basis change in order to reduce
the acceleration problem to the simple cases of translations, resets and the new case
introduced in §6.3. However, for above-mentioned reasons this basis change is hard to
implement: for instance also the tool Aspic [Gon] does not fully implement Thm. 4.6,
but only the case C2 “ C, where no change of basis is necessary. It has not been
considered so far, whether there is an abstract acceleration formula of periodic affine
transformations for instance which can do without a basis change.

Detecting accelerable sub-transformations. Another direction for future re-
search could be to detect the maximal linearly accelerable sub-transformations within a
general linear transformation or even in a general transition function. Then, the tran-
sition function can be decomposed w.r.t. the accelerable dimensions which are treated
using abstract acceleration and the non-accelerable dimensions which can be handled
with widening or the derivative closure technique.

We will use a similar idea in §8 for accelerating transition functions involving nu-
merical and Boolean variables.

Acceleration of not linearly accelerable transformations. At last, it would
be of great interest to generalize the abstract acceleration concept to not linearly ac-
celerable linear transformations: for example, to compute a reasonably simple, but
precise, convex, polyhedral over-approximation of the transitive closure of the self-loop
xď10 Ñ x1 “ 2x which has an exponential trajectory as a function of time. Computing
precise approximations of such behavior is also of high importance in the analysis of
hybrid systems (see §10), of which the time-continuous behavior is often specified by
linear dynamics 9x “ Cx.

75



Chapter 6. Revisiting Acceleration 76

76



Part II

Verification of Logico-Numerical
Systems
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Chapter 7

Logico-Numerical Program
Analysis: Our Approach

We call programs with numerical and Boolean variables logico-numerical programs. Syn-
chronous data-flow programs, e.g., Lustre programs, count among such programs. We
model them as logico-numerical discrete transition systems (§7.1).

Symbolic representations (§7.2) for such programs and abstract domains for their
analysis, as e.g., implemented in the library BddApron [Jea], make use of binary de-
cision diagrams. Such logico-numerical abstract domains are constructed by combining
Boolean and numerical abstract values so as to build product or power domains.

State space partitioning (§7.3) allows CFG representations of discrete dynamical
systems to be generated. The overall abstract domain associated with a CFG is a power
domain. Hence, the choice of the partition determines the abstract domain, and thus,
influences precision and efficiency of the analysis.

Finally, we discuss related work w.r.t. the analysis of logico-numerical programs (§7.4).

7.1 Logico-Numerical Programs

We model logico-numerical programs as deterministic discrete transition systems (see
§2.1.1). We include the assertion observer A (see §2.3) in the definition:

Definition 7.1 (Logico-numerical discrete transition system) A logico-numerical
discrete transition system xΣ,Υ,f ,A,Iy over the state space Σ and the input space Υ

is defined as
! Ipsq

Aps, iq Ñ s1 “ fps, iq where

– f : Σ ˆ Υ Ñ Σ is the vector of transition functions,
– Aps, iq Ď pΣ Ñ ℘pΥqq is an assertion constraining the inputs depending on the current

state, and
– Ipsq Ď Σ defines the initial states.

We use the following notations:
s “ pb,xq : state variable vector, with b Boolean and x numerical subvectors
i “ pβ, ξq : input variable vector, with β Boolean and ξ numerical subvectors
Cpx, ξq : vector of constraints over numerical variables (for short C)

The semantics of such a system is defined in the style of Def. 2.2:
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Definition 7.2 (Semantics) An execution of such a system is a sequence

s0
i0ÝÑ s1

i1ÝÑ . . . sk
ikÝÑ . . .

such that Ips0q and for any k ě 0: Apsk, ikq ^
`
sk`1 “ fpsk, ikq

˘
.

Example 7.1 (Logico-numerical program) The following program computes in x1
the sum over the input ξ for 10 time steps after receiving an input β“ tt provided that
the input ξ is between 1 and 3.

$
’’’’’’’&

’’’’’’’%

Ipb, x1, x2q “ $b ^ px1 “x2 “0q

1 ď ξ ď 3 Ñ

¨

˚̊
˚̊
˝

b1

x1
1

x1
2

˛

‹‹‹‹‚
“

¨

˚̊
˚̊
˝

$b ^ β _ b ^ x2ă9"
x1 ` ξ if b
x1 else"
0 if β
x2 ` 1 else

˛

‹‹‹‹‚

We distinguish the Boolean and numerical components of the transition function:

ˆ
b1

x1

˙
“

ˆ
f bps, iq
fxps, iq

˙

A Boolean transition function is written as a Boolean formula ϕ involving Boolean
variables and numerical constraints:

f bps, iq “ ϕpb,β, Cq

A numerical transition function is written as a disjunction of guarded actions:

fxps, iq “
ł

j

`
ajpx, ξq if gjpb,β, Cq

˘

with
Ž

j gj and $pgi ^gjq for i ‰ j. The guards gj are Boolean formulas involving Bool-
ean variables and numerical constraints and the actions aj are arithmetic expressions
without tests. The program in Ex. 7.1 conforms to these notations.

7.2 Symbolic Representations

The library BddApron [Jea] provides symbolic representations for logico-numerical
programs and abstract domains for their analysis.

It exploits the well-known efficiency of Bdds (§7.2.1) for representing logico-numerical
formulas, functions (§7.2.2) and abstract values, (§7.2.3).

7.2.1 Introduction to Binary Decision Diagrams

Binary decision diagrams (Bdds) were introduced by Bryant [Bry86, Bry92] as a repre-
sentation of Boolean functions Bm Ñ B. In this section we briefly summarize the most
important concepts. For further details we refer to textbooks, e.g., [MT98].

The basic idea is to recursively apply the Shannon expansion f “ f rbÐ tts _ f rbÐ
ffs to the variables b occurring in f in order to build a decision tree (Fig. 7.1a): the
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b1

b2 b2

b3 b3 b3 b3

tt ff tt ff tt ff ff tt

(a) Shannon decision tree

b1

b2

b3 b3

ff tt

(b) Bdd (reduced, ordered binary decision diagram)

Figure 7.1: Representations of the Boolean function fpb1, b2, b3q “ b1 ^
pb2 ô b3q _ $b1 ^$b3: solid edge = tt, dashed edge = ff (cf. [Jea00]).

inner nodes of the tree are labeled with the variables b, the leaves (terminal nodes) are
labeled with the truth values tt, ff, and the edges are labeled with the truth value of the
decision on the parent node tt, ff. Such a decision tree can be structurally represented
as a formula with the help of the if-then-else operator itepb, f rbÐ tts, f rbÐ ffsq.

If the Shannon expansion is applied using the same order of variables on all branches,
then the binary decision diagram is called ordered (OBDD).

In order to obtain a Bdd in the narrow sense, it must be compressed to a reduced, or-
dered binary decision diagram (ROBDD, Fig. 7.1b): (1) Identical subgraphs are merged,
and (2) nodes of which both children are identical subtrees are removed.

The result is a directed, acyclic graph such that (a) all non-terminal nodes have two
children, (b) there is a single root (which has no parent), and (c) there are two terminal
nodes (without children).

Variable ordering. Given a variable ordering, a Bdd is a canonical representation
of a Boolean function. However, the size of the Bdd depends on the ordering of the
variables.

Example 7.2 (Variable ordering) For example (cf. [Bry86]) the function

fpb1, . . . , b2nq “ b1 ^ b2 _ b3 ^ b4 _ . . . _ b2n´1 ^ b2n

has
– Θp2nq nodes with the variable ordering b1ăb3ă . . .ăb2n´1ăb2ăb4ă . . .ăb2n, and
– Θpnq nodes for b1ăb2ă . . .ăb2n´1ăb2n.

A rule of thumb is that variables related by conjunctions should be close to each
other. Finding the best order, though, is an NP-complete problem [BW96]. In practice
heuristics, e.g., [Rud93], are used to find a variable ordering minimizing the size of a set
of Bdds. Nonetheless, some functions, e.g., the binary encoding of integer multiplica-
tion [Bry91], have always an exponential Bdd representation regardless of the variable
ordering.

Operations. The operations are implemented by recursive traversal of the operand
Bdds and by using hashtables to store and reuse already computed subgraphs (see
[Bry86]). The basic operations are the following (the computational complexity is given
in terms of the number of nodes ni of the operands):
– apply2 lifts any binary operator BˆB Ñ B like ^, _ or ñ toBdds: pBm Ñ BqˆpBm Ñ

Bq Ñ pBm Ñ Bq. Complexity: Opn1n2q.
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– apply1 applies any unary operator B Ñ B, e.g., $, to the terminal nodes of the Bdd.
Complexity: Optq, where t is the number of terminal nodes.

– cofactor f rbÐ cs substitutes the constant c for the variable b. Complexity: Opnq.
We can compose these operators to define:
– Function composition: f1rbÐ f2s “ f1rbÐ tts ^f2 _ f1rbÐ ffs ^$f2. Complexity:

Opn2
1n2q.

– Existential quantification Db.f “ f rbÐ tts _ f rbÐ ffs. Complexity: Opn2q.
Some other operations are trivial:
– Equality f1 ô f2: since a Bdd is a canonical representation of a Boolean function,

it suffices to compare physical equality in memory (pointer equality). Complexity:
Op1q.

– Validity f ô tt and unsatisfiability f ô ff amounts to comparing with the constant
Bdds for tt and ff respectively. Complexity: Op1q.

Partial evaluation. An important operation in our context is the partial evaluation
(see e.g., [JGS93]) of a Boolean formula f by a Boolean formula g, denoted f Ò g. This
can be seen as the generalization of the cofactor operation (f rbÐ cs “ f Ò pb ô cq) to
formulas.

Partial evaluation is implemented by a generalized cofactor operator [CBM89]:

Definition 7.3 (Generalized cofactor) A generalized cofactor f Ò g of a formula f
w.r.t. a formula g is a formula h such that

g ñ pf ô hq

and h is a “smaller” formula than f .

We use the variant of the operator proposed by Raymond [Ray91].

Example 7.3 (Generalized cofactor) Using this operator we have for example:

pb1 ^ b2q Ò pb1 _$b2q “ b2

We can easily verify the validity:

$
&

%

pb1 _$b2q ñ ppb1 ^ b2q ô b2q
ðñ $b1 ^ b2 _ pb1 ^ b2 _ $b1 ^$b2 _ $b2q
ðñ tt

Multi-Terminal Binary Decision Diagrams. These are Bdds with more than
two terminal nodes [CMZ`93], i.e., they represent functions Bm Ñ E. E can be any
type, but in order to preserve canonicity and for implementation reasons it must be
equipped with an equality operator and a hash function.

Most operations can be transferred directly from Bdds to MtBdds: for example,
apply2 lifts a binary operator E1 ˆ E2 Ñ E to pBm Ñ E1q ˆ pBm Ñ E2q Ñ pBm Ñ Eq.

However, some operations need to be adapted to be meaningful: Existential quantifi-
cation for Bdds combines terminal nodes using _ (see above). In the case of MtBdds
we need to use an operator adapted to the type E: A generic solution for combining
terminal nodes is the set union Y: then, existential quantification becomes an operator
transforming an MtBdd pBm Ñ Eq into an MtBdd pBm Ñ 2Eq. In the case where E
is an abstract domain, for example, then the adequate operation is \.
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Boolean expressions:

xBexpry ::= tt | ff | xBvary | $xBexpry | xBexpry (^ | _ | . . . ) xBexpry
| xexpry = xexpry | xIexpry (< | <=) xIexpry | xAconsy

Arithmetic expressions:

xAexpry ::= cst | xAvary | (-|
‘
)xAexpry | xAexpry (+|-|*|/|%) xAexpry

| if xBexpry then xAexpry else xAexpry

Arithmetic conditions:

xAconsy ::= xAexpry (< | <=) xAexpry

Enumerated types:

xEexpry ::= label | xEvary | if xBexpry then xEexpry else xEexpry

Bounded integers:

xIexpry ::= xcsty | xIvary | xIexpry (+ | - | *) xIexpry | xIexpry (<< | >>) n
| if xBexpry then xIexpry else xIexpry

Expressions:

xexpry ::= xBexpry | xEexpry | xIexpry | xAexpry

Table 7.1: Expressions available in BddApron (subset).

Another operation which we are going to use is the product of MtBdds pBm Ñ
E1q ˆ pBm Ñ E2q Ñ pBm Ñ pE1 ˆ E2qq, which can again be implemented using the
generic apply2 operator.

The library CUDD. The library Cudd1 implements Bdds, MtBdds and other
variants of binary decision diagrams and many operations on them. The actual im-
plementation of Bdds uses so-called typed decision graphs [Bil87] which allow Bdds to
be compressed even further by merging subgraphs that are isomorphic up to negation.
Moreover, isomorphic subgraphs are shared among the set of Bdds being manipulated.

7.2.2 Formulas and Functions

In this section we explain the representations and operations for logico-numerical for-
mulas and functions offered by the BddApron library.

Variables of the following types are supported: Boolean, enumerated types, bounded
integers and numerical types (integer, rationals, . . . ). Tab. 7.1 lists the (simplified)
grammar of expressions of these types. Enumerated types (Etype “ label1| . . . |labeln)
and bounded integers are only syntactic sugar: they are encoded as bit arrays and thus
treated as vectors of Booleans – in the following we will employ the term “Boolean” to
refer to all these finite data types.

Hence, we can concentrate on four types of expressions:

1http://vlsi.colorado.edu/~fabio/CUDD/
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– purely arithmetic expressions xaAexpry, e.g., x`1;
– purely Boolean expressions xbBexpry, e.g., b1 ^$b2;
– Boolean expressions xBexpry with arithmetic constraints xAconsy, e.g., b _ xě0;
– arithmetic expressions xAexpry with tests on Booleans and arithmetic constraints,

e.g., if b _ xě0 then x`1 else 0.

Purely arithmetic expressions.

xaAexpry ::= cst | xAvary | (-|
‘
)xAexpry | xaAexpry (+|-|*|/|%) xaAexpry

Affine arithmetic expressions, i.e., of the form
ř

i aixi ` b, are canonically represented
by the array of the coefficients pa1, . . . , an, bq. Other expressions are represented as
operator trees.

Purely Boolean expressions.

xbBexpry ::= tt | ff | xBvary | $xbBexpry | xbBexpry (^ | _ | . . . ) xbBexpry

Purely Boolean expressions are represented by a Bdd pBm Ñ Bq.

Boolean expressions with arithmetic constraints. xBexpry are represented by
mixed (or interpreted) Bdds pBm ˆ xAconsy˚ Ñ Bq.

This means that the numerical constraints xAconsy are mapped to additional (in-
terpreted) Boolean variables: for example the constraint xě0 will be mapped to a new
variable pb; this implies that its negation x ă 0 is mapped to $pb. See Fig. 7.5 for an
example of a mixed Bdd.

Operations on such expressions are simply those defined for Bdds. Mind that exis-
tential quantification cannot be applied to a numerical variable but only to a numerical
constraint.

However, the problem is that these interpreted Booleans are not semantically inde-
pendent, i.e., they may be redundant resp. contradictory (see Fig. 7.2). Removing such
decisions from such a mixed Bdd is expensive, because it requires a decision procedure
w.r.t. the arithmetic theory corresponding to the constraints.

Jeannet [Jea00] proposes a more light-weight solution using a “care set”, i.e., a
Boolean formula that is the disjunction of some valid implications between the numerical
constraints occurring in the expressions. This formula is computed on demand using
a decision procedure. Then, certain redundant/contradictory decisions can be removed
from a mixed Bdd with the help of the generalized cofactor operator.

Arithmetic expressions with tests. Analogously to xBexpry, xAexpry are rep-
resented by mixed MtBdds with arithmetic expressions as terminal nodes: Bm ˆ
xAconsy˚ Ñ xaAexpry.

With the help of the operators apply1 and apply2 operations are lifted from purely
arithmetic expressions to arithmetic expressions with tests. Fig. 7.3 shows as an example
the addition of two arithmetic expressions with tests f1 ` f2.

Fig. 7.4 shows an example of creating the Boolean expression fą0 of an arithmetic
expression with tests f .

Transition functions. Boolean transition functions f bpb,β, Cq are represented
as Boolean expressions xBexpry. Numerical transition functions fxpb,β, C,x, ξq are
represented as arithmetic expressions with tests xAexpry. A guard g is a Boolean
expression xBexpry, and an action a is a purely arithmetic expression xaAexpry. Initial
states I and error states E are also represented by xBexpry.
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xě10

xě0

ff tt

Figure 7.2: In this
mixed Bdd, the decision
xě 0 is redundant (w.r.t.
tt branch) and contradic-
tory (w.r.t. ff branch).

b

x1 x2
`

b

x1ą0

x2 2x2 x1

“

b

x1ą0

x1`x2 3x2

Figure 7.3: Addition of arithmetic expressions
with tests f1 ` f2 represented as mixed MtBdds.

´ b

x1 x2
ą 0

¯
“

b

x1ą0 x2ą0

ff tt

Figure 7.4: Boolean expression fą0 (represented as a mixed Bdd) of an arithmetic
expression with tests f (represented as a mixed MtBdd).

Further operations on formulas and functions

Vectorization of transition functions with factorization of their guards. In
some cases we need to vectorize the actions aj of the numerical transition functions and
factorize their common guards, i.e., to transform the system of transition functions

$
&

%

x1
1 “ fx

1 ps, iq
. . .
x1
n “ fx

nps, iq
into a vector transition function x1 “

ł

j

`
ajpx, ξq if gjpb,β, Cq

˘

This operation is in fact the MtBdd product
Ś

j f
x
j (§7.2.1) of the numerical transition

functions.

Numerically convex formulas. Sometimes we need to decompose a Boolean
formula ϕpb, Cq into a disjunction of numerically convex formulas: decomp convexpϕq “Ž

j ϕ
b
jpbq^ϕx

j pCq where ϕb
j are general purely Boolean formulas and ϕx

j are conjunctions
of numerical constraints. This operation can be implemented efficiently by imposing a
variable ordering of the Bdd such that the Boolean and numerical variables are sep-
arated: for example with a variable order b1 ă . . . ă bm ă C1 ă . . . ă Cp (Boolean
variables towards the root and numerical constraints towards the leaves), the formulas
ϕx
j are simply the formulas represented by the paths leading from the nodes with the

lowest constraint indices to terminal node tt, and ϕb
j are the formulas guarding these

nodes. See Fig. 7.5.

Partial evaluation of a formula by a polyhedron ϕ Ò X. This operation (cf.
[Jea00]) simplifies a Bdd or MtBdd by evaluating the numerical decisions (interpreted
Booleans) over the polyhedron X along the paths of the decision diagram. Decisions
that are valid or unsatisfiable are removed and their predecessor edges are redirected to
the respective child nodes.
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b0

b1

b2 b2

xě10

xą0

ff tt

“

$
&

%

pb0 ^ b2 _ $b0 ^ b1q ^ xě10 _
pb0 ^ b2 _ $b0 ^ b1q ^ 0ăxă10 _
b1 ^$b2 ^ xą0

Figure 7.5: Decomposition of a Boolean expression into a disjunction of numerically
convex formulas: framed nodes are nodes with the lowest numerical constraint indices.

7.2.3 Abstract Domains

We abstract sets ℘pBm ˆ Rnq by an abstract domain that combines Boolean formulas,
which exactly represent sets ℘pBmq, and a numerical abstract domain N abstracting
℘pRnq. We will consider the following two combinations (cf. §3.3.5):
– the power domain N pBmq (also written Bm Ñ N ), and
– the product domain ℘pBmq ˆ N .

Power Domain Bm Ñ N

Values of this domain have the natural representation as MtBdds pBm Ñ N q (cf.
[BCC`03]).

The definitions of the domain operations are summarized in Table 7.2. Operations
inherited from the numerical domain are marked with the superscript x.

Our programs use mixed Boolean formulas with numerical constraints ϕpb, Cq P
xBexpry to specify the concrete values of initial and error states. Hence, abstraction
and concretization operators allow us to convert abstract values into such formulas and
vice versa:
– α : xBexpry Ñ pBm Ñ N q
– γ : pBm Ñ N q Ñ xBexpry
The γ operator converts the MtBdd into a Bdd by “replacing” the numerical ab-
stract value in the terminal nodes of the MtBdd by the Boolean formula represent-
ing the numerical abstract value: γpSq “

Ž
pgbjÑXjqPS gbj ^ to constraintspXjq, where

to constraints : N Ñ xBexpry turns a numerical abstract value into a Boolean expres-
sion: for a convex polyhedron, for instance, this is the conjunction of the constraints of
its constraint representation.

The binary operators and predicates (Ďx, \x, [x, ∇x) on numerical abstract do-
mains are lifted to MtBdds with the help of the apply2 operator, e.g., S1 \ S2 :“
apply2pλX1,X2.X1 \x X2qpS1, S2q. Complexity is Opn1n2q for the Bdd operations and
Opt1t2q joins of numerical abstract values (where ni are the number of nodes and ti are
the number of terminal nodes).

Existential quantification of a numerical variable Dx : S corresponds to apply-
ing existential quantification to the numerical abstract values of the terminal nodes:
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Inclusion S1 Ď S2 = apply2pλpX1,X2q.X1 Ďx X2qpS1, S2q
Abstraction αpϕpb, Cqq = J [g ϕpb, Cq
Concretization γpSq see text

Emptyness pS ô Kq = pS ô λb.Kxq
Union S1 \ S2 = apply2pλpX1,X2q.X1 \x X2qpS1, S2q
Intersection S1 [ S2 = apply2pλpX1,X2q.X1 [x X2qpS1, S2q
Guard intersection S [g g see text

Transformation

ˆ
f b

fx

˙
pSq,

ˆ
f b

fx

˙´1

pSq see text

Projection Dx : S = apply1pλX.Dx : XqpSq
Db : S = apply2pλpX1,X2q.X1 \x X2qpSrb Ñ tts, Srb Ñ ffsq

Widening S1∇S2 = apply2pλpX1,X2q.X1∇xX2qpS1, S2q

Table 7.2: Operations of the logico-numerical power domain Bm Ñ N .

apply1pλX.Dx : XqpSq. Mind that we can existentially quantify a numerical variable
in a mixed Boolean formula (approximately w.r.t. an abstract domain) by computing
γpDx.αpϕpb, Cqqq.

Existential quantification of a Boolean variable is almost identical to existential quan-
tification in Bdds, except that we have to use \x (instead of _) to combine the terminal
nodes.

Intersection with a guard (a Boolean formula with numerical constraints) S[ggpb, Cq
is implemented by the following recursion:

– Base cases:
‚ S [g tt “ S
‚ S [g ff “ K
‚ No constraint in g: S [g gpbq “ S [ itepg,J,Kq
‚ Single constraint in g: S [g C “ apply1pλS.S [x αpCqqpSq

– Recursion:

‚
b

S´ S`
[g

b

g´ g`
“

b

S´ [g g´ S` [g g`

‚ S [g
C

g´ g`
“ pS [g $Cq [g g´ \ pS [g Cq [g g`

Transformations (image and pre-image computation) work in a similar manner as
the guard intersection.

The widening operator of the numerical abstract domain is applied to the termi-
nal nodes using apply1. The Boolean component does not actually need to be widened
because the corresponding lattice has finite height Op2mq, thus we simply take the
disjunction of the formulas. Moreover, it is difficult to define a reasonable widening
operator: as already mentioned, widening supposes that there is some regularity in the
operations as, e.g., translations, but there is no such regularity in Boolean operations.
Moreover, Boolean extrapolation operators on Bdds are highly dependent on the vari-
able ordering. Mauborgne [Mau98] proposes an operator that over-approximates a Bdd
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Inclusion pB1,X1q Ď pB2,X2q :“ B1 ñ B2 ^ X1 Ďx X2

Abstraction αpϕpb, Cqq :“ cvxpJ [g ϕpb, Cqq
Concretization γpB,Xq :“ B ^ to constraintspXq

Canonicalization canpB,Xq :“
"

K if B ô ff _ X “Kx

pB, canxpXqq else
Emptiness pB,Xq ô K :“ pB,Xq ô K
Union pB1,X1q \ pB2,X2q :“ pB1 _ B2,X1 \x X2q
Intersection pB1,X1q [ pB2,X2q :“ canpB1 ^ B2,X1 [x X2q
Guard intersection S [g g :“ cvxpS [g gq

Transformation

ˆ
f b

fx

˙ ˆ
B
X

˙
:“

ˆ
pf b Ò Xq Ò BŮ

j!aj"7pX [ pgj Ò Bqq

˙

ˆ
f b

fx

˙´1 ˆ
B
X

˙
:“

ˆ
BrbÐ pf b Ò XqsŮ

j!aj"7´1pXq [ pgj Ò Bq

˙

Projection Db, Dx : pB,Xq :“ pDb : B, Dx : Xq
Widening pB1,X1q∇pB2,X2q :“ pB1 _ B2,X1∇xX2q

Table 7.3: Operations of the logico-numerical product domain ℘pBmq ˆ N .

by another Bdd that has at most a given number of nodes.

Product domain ℘pBmq ˆ N

This domain approximates a set of states coarsely by a conjunction of a Boolean formula
and a single abstract value. For example, Jeannet [Jea00] considers the product domain
℘pBmq ˆPolpRnq. In such a domain the formula pb^xď2q _ p$b^xď4q is abstracted
by tt ^ xď 4. This domain is not implemented in BddApron, but its operations can
be easily derived from those of the power domain.

The definitions of the domain operations are summarized in Table 7.3. The oper-
ations for union and intersection are applied component-wise. Inclusion must hold for
both components. The value K requires a canonicalization.

Guard intersection by a Boolean formula with numerical constraints can be imple-
mented by the corresponding operator of the power domain followed by a convexifi-
cation of the result (cvx): All non-K terminal nodes are joined (\x) resulting in an
MtBdd of the form itepϕpbq,X,Kxq, which is then transformed into the pair pB,Xq
with B “ itepϕpbq, tt,ffq in constant time.

Transformations can be composed from the previously defined operators using guard
intersection and partial evaluation: The postcondition operators, for example, are com-
puted as follows: the numerical constraints in the Boolean transition function are eval-
uated over the numerical abstract value X and its Boolean variables are evaluated over
the Boolean states B; the numerical image is obtained by the convex union of applying
the numerical actions aj associated with each case of the if-then-else to the numerical
abstract value X constrained by the associated guard gj evaluated over the Boolean
states B.

We will mainly use the product domain. Since this abstract domain provides only
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relatively coarse approximations, we follow the approach of building a power domain by
partitioning the program as explained in the next section §7.3.

7.3 State Space Partitioning

Static analysis is usually performed over the CFG of a program. This allows us to
assign an abstract value from an abstract domain A to each location ' P L of the graph,
inducing the power domain AL. However, the basic CFG of a data-flow program, e.g., a
Lustre program, consists of a single location.

In order to conduct a classical analysis of such programs using numerical abstract
domains, it is necessary to explicitly unfold the Boolean control structure by enumer-
ating the Boolean state space and encoding the Boolean states in locations of a CFG.
In addition, by interpreting Boolean input variables as non-deterministic choices, one
obtains a CFG that has only numerical transition relations (Fig. 7.6b).

The problem is that this enumeration becomes intractable with larger programs be-
cause the number of locations and arcs grows exponentially with the number of Boolean
state and input variables respectively (state space explosion problem).

Since we perform a logico-numerical analysis, such an enumeration is not required.
Nevertheless, when using the logico-numerical product domain, we would like to benefit
from the power domain induced by a CFG in order to enable more precise analyses.

Considering a partition of the state space of a system allows us to generate a CFG
(§7.3.1) by associating to each partition element (equivalence class) to a location. Defin-
ing a partition (§7.3.2) is usually based on heuristics. §7.3.3 describes the partitioning
process in practice.

7.3.1 Control Flow Graphs Induced by State Space Partitioning

We extend the definition of a control flow graph (Def. 2.3) by labeling each location '
with a location definition (or location invariant) ϕ#. We view ϕ# alternatively as the
predicate ϕ#psq or the set tϕ#psq | s P Σu.

Definition 7.4 (Partition-induced CFG) A partition-induced CFG xΣ,Υ, L,!,Σ0y
is a directed graph where
– Σ and Υ are the state and input spaces,
– L is the set of locations; each location ' P L is labeled with its location definition
ϕ#psq such that the sets ϕ#psq form a partition of Σ, i.e., ϕ# X ϕ#1 “ H for '‰ '1 andŤ

# ϕ# “ Σ.
– ! Ď L ˆ R ˆ L defines arcs between the locations. The arcs are labeled with a

transition relation R P R “ pΣ ˆ Υ ˆ Σq.
– Σ0 : L Ñ Σ defines, for each location ', the set of initial states, such that Σ0p'q Ď
ϕ#psq.

We take into account this location definition in the semantics of Def. 2.3:

Definition 7.5 (Semantics) An execution of a partitioned CFG is a sequence

p'0, s0q i0ÝÑ p'1, s1q i1ÝÑ . . . p'k, skq ikÝÑ . . .

such that for any k ě 0 : Dp'k, R, 'k`1q P!: Rpsk, ik, sk`1q ^ ϕ#k`1
psk`1q where ' P L

and s P Σ.
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b1 $b1
'1 '2

(a)

b1 ^ b2 $b1 ^$b2

b1 ^$b2

(b)

b1
2 “ tt ^ x1

1 “0 ^ x1
2 “0 b2 ^ x1ą9 ^ b1

2 “ff

b1
2 “ $b2 ^ x2ą9 x1

1 “
"

x1`1 if b2 ^ x1ď9
x1 if $b2

x1
2 “

$
&

%

0 if b2 ^ x1ď9
x2`1 if $b2 ^ x2ď9
x2 if $b2 ^ x2ą9loooooooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

x1
1 “0 ^ x1

2“0 x1ą9

x2ď9 ^ x1
2“x2`1

x1ď9^
x1
1 “x1`1 ^ x1

2 “0
x2ą9

Figure 7.6: Two CFGs of the logico-numerical program in Ex. 7.4 obtained by state
space partitioning.

Example 7.4 (Partition-induced CFG) Let us consider the following logico-numerical
program: $

’’’’’’’’’’&

’’’’’’’’’’%

Ipb1, b2, x1, x2q “ pb1 ^ b2 ^ x1 “0 ^ x2 “0q
b1
1 “ b1 ^$b2 _ b1 ^ b2 ^ x1ď9
b1
2 “ b1 ^$b2 ^ x2ą9

x1
1 “

"
x1`1 if b1 ^ b2 ^ x1ď9
x1 else

x1
2 “

$
&

%

x2`1 if b1 ^$b2 ^ x2ď9
0 if b1 ^ b2 ^ x2ď9
x2 else

Fig. 7.6a shows a CFG of this program induced by the partition tb1,$b1u. Fig. 7.6b
depicts the CFG obtained by the enumeration of the (reachable) Boolean state space,
i.e., induced by the partition tb1 ^ b2, b1 ^ $b2,$b1 ^ $b2u ($b1 ^ b2 is trivially not
reachable, see §7.3.3).

A partition-induced CFG can be transformed into an equivalent discrete transition
system (Def. 2.1.1) xΣ,Υ, R1,Iy with R1ps, i, s1q “

Ť
p#,R,#1qP!Rps, i, s1q X ϕ#1 ps1q and

I “
Ť

#PLΣ0p'q.

Analysis. The use of a CFG implies the power abstract domain pL Ñ Aq where
the concrete states S are connected to their abstract counterparts S7 by the Galois
connection:

S7 “ αpSq “ λ' . αpS X ϕ#q S “ γpS7q “
ď

#PL

γpS7
#q
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reachpS70q is the least fixed point of

S7 “ S70 \ λ' .
ğ

#1PL

´
post7pS7

#1q [ ϕ#

¯

where S7, S70 P pL Ñ Aq.

Example 7.5 (Analysis) We analyze the CFG in Fig. 7.6a (Ex. 7.4) using the logico-
numerical power domain (with intervals) Bm Ñ IntpRnq with Kleene iteration and
widening pN “0q: We start with the initial state:
S0 “

´
!1 Ñ pb1 ^ b2 Ñ x1 P r0, 0s ^ x2 P r0, 0sq, !2 Ñ K

¯

The widening sequence converges with

S1
5 “

´
!1 Ñ

"
pb1 ^ b2 Ñ x1 P r0,8r^x2 P r0,8rq _
pb1 ^"b2 Ñ x1 P r1,8r^x2 P r0,8rq

, !2 Ñ pb1 ^"b2 Ñ x1 P r10, 8r^x2 P r0,8rq
¯

We get the final result after the descending iterations:

S2
3 “

´
!1 Ñ

"
pb1 ^ b2 Ñ x1 P r0,8r^x2 P r0, 10sq _
pb1 ^"b2 Ñ x1 P r1,8r^x2 P r0, 10sqq

, !2 Ñ p"b1 ^"b2 Ñ x1 P r10,8r^x2 P r0, 10sq
¯

The analysis using the logico-numerical product domain ℘pBmq ˆ IntpRnq yields the
weaker result:

´
!1 Ñ pb1 ^ x1 P r0,8r^x2 P r0,8rq, !2 Ñ p"b1 ^"b2 ^ x1 P r10,8r^x2 P r0,8rq

¯

7.3.2 Defining Partitions

Techniques for defining partitions were developed in the context of model checking
(cf. §3.1) for minimizing and abstracting systems.

Our approach for generating a partition follows the idea of predicate abstraction
[GS97, FQ02], which considers the truth values of a finite set of predicates Ψ usually
obtained by heuristics. Hence, the generated partition consists of Op2|Ψ|q equivalence
classes, i.e., the possible combinations of conjunctions of the predicates and their nega-
tions.

The basic partition we use for verification [Jea00] divides the system into initial and
error states and those that are neither initial nor error states. The set of predicates
is Ψ “

Ť
jtIju Y

Ť
jtEju where the initial states I and error states E are decomposed

into (disjoint) convex formulas Ij and Ej respectively in order to represent them exactly
– taking simply αpIq and αpEq would lead to a coarse approximation if I and E have
non-convex numerical parts. Fig. 7.7 shows the schema of such a CFG.

Then, we can further partition the location $I^$E by another set of predicates ob-
tained by a partitioning heuristics. We will propose such heuristics for discrete systems
in §8.3 and then for hybrid systems in §13.2.

It can be considered to alternate analysis and partitioning so as to iteratively re-
fine the partition in case the analysis was inconclusive (see §7.4). Such techniques are
orthogonal to the one-shot partitioning/analysis approach considered in this thesis.

7.3.3 Partitioning Process

In this section we describe how we implement state space partition of a logico-numerical
program.

Boolean analysis. Before starting the actual partitioning process, we perform a
cheap reachability analysis of the Boolean abstraction of the system in order to restrict
the state space Σ that is going to be partitioned. This analysis ignores the numerical
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I1 E1

. . . $I ^$E . . .

Ip Eq

Figure 7.7: Partitioning by initial and error states.

transition functions, but it takes into account the numerical constraints represented by
interpreted Booleans in the Bdds:

postbpϕpb, Cqq “ Db,β, C : pb1 ô f bpb, Cqq ^ ϕpb, Cq ^ Apb,β, Cq
prebpϕpb1, Cqq “ Db1,β, C : pb1 ô f bpb, Cqq ^ ϕpb1, Cq ^ Apb,β, Cq

reachbpIq “ lfpλϕ.I _ postbpϕq
co-reachbpEq “ lfpλϕ.E _ prebpϕq

The reachability computation is guaranteed to converge in a finite number of steps
because the state space is finite.

Example 7.6 (Boolean analysis) We analyze the following program:

$
’’&

’’%

Ipb1, b2, xq “ p$b1 ^ b2 ^ x“0q
b1
1 “ $b1 ^ xě0
b1
2 “ b2 ^ xă0
x1 “ . . .

After two iterations we reach the fixed point $b1 _$b2. Hence, the system has at most
three reachable Boolean states.

Incremental partitioning. Partitioning is done by incrementally dividing the loca-
tions of the CFG. For all predicates ψ P Ψ, each location ' is tried to be split by ψ.
A location can be divided only if ψ splits the location definition ϕ# into two formulas
that are neither ϕ# itself nor ff, i.e., pϕ# ^ ψ ñ ϕ#q ^ pϕ# ^ $ψ ñ ϕ#q. The splitting
algorithm is listed in Fig. 7.8 and illustrated in Fig. 7.9.

Mind that this splitting algorithm results in a fully connected graph. However,
many transitions are not feasible. Hence, the CFG is simplified during incremental
partitioning:

Simplification of transition functions by origin location. We simplify the tran-
sition function f associated to an arc '! '1 by partial evaluation: f Ò ϕ#.

Example 7.7 (Simplification by origin location) We simplify the following tran-
sition function associated with an outgoing arc of location ' with ϕ# “ $b1:

¨

˚̊
˝

x1 “
"

x ` 1 if b1 ^ xď9
0 if $b1 _ xą9

b1
1 “ b1 ^$b2 ^ xą5
b1
2 “ $b2

˛

‹‹‚Ò $b1 ô

¨

˝
x1 “ 0
b1
1 “ false
b1
2 “ $b2

˛

‚
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split location(CFG,',ψ):
if pϕ# ^ ψ ñ ϕ#q ^ pϕ# ^$ψ ñ ϕ#q then
begin
add locations '1 with ϕ#1 “ ϕ# ^ ψ and '2 with ϕ#2 “ ϕ# ^$ψ
duplicate arcs:
for all incoming (non-loop) arcs p'p, R, 'q: add p'p, R, '1q and p'p, R, '2q
for all outcoming (non-loop) arcs p', R, 'sq: add p'1, R, 'sq and p'2, R, 'sq
for all loop arcs p', R, 'q: add p'1, R, '1q, p'2, R, '2q, p'1, R, '2q and p'2, R, '1q

remove '
end
return CFG

Figure 7.8: Incremental partitioning: algorithm for splitting a location ' by a predi-
cate ψ.

ϕ#
R#p,# R#,#s

R#,#

ϕ# ^ ψ

ϕ# ^$ψ

R#p,#

R#p,#

R#,#s

R#,#s

R#,#

R#,#

R#,#R#,#

(a) (b)

Figure 7.9: Incremental partitioning: splitting a location (a) by a predicate ψ into
two locations (b).

Removal of infeasible arcs. A transition ' ! '1 is feasible iff Dx, i : ϕ#psq ^ s1 “
fps, iq ^ ϕ#1 ps1q. If an arc is proved to be infeasible it is removed. This can be done by
checking the satisfiability of the above formula using

– an Smt solver,
– the abstract post-condition post7, or
– the Boolean post-condition postb.

The latter method removes the least number of arcs, but it is also the least expensive.
Observe that the infeasible arcs have been removed in the CFGs in Fig. 7.6.

Arc assertions. An arc assertion is the condition that must be satisfied in order to
reach the destination location definition ϕ#1 of a transition. We can over-approximate
this condition by computing the Boolean pre-image of the destination location by an
arc: gpb,β, Cq “ Db1 : pb1 ô f bpb, Cqq ^ ϕ#1pb1, Cq ^ Apb,β, Cq.

The arc assertion can also be viewed as a factorization of the guards in the transition
function: g Ñ ps1 “ f Ò gq. Fig. 7.10 gives an example for the computation of arc
assertions.
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R “

$
’’&

’’%

b1
1 “ $b1
b1
2 “ xď9

x1 “
"

x`1 if xď9
x if xą9

(a)

$b1 ^$b2

b1

$b1 ^ b2

(b)

xą9 Ñ x1 “x

xď9 Ñ x1 “x`1

Figure 7.10: Arc assertions and refinement of the location definition by the destination
location: (a) original transition relation associated to the two outgoing arcs of location
b1 in (b); (b) refinement of the transitions by arc assertions.

7.4 Alternative Approaches

In this section we discuss related work w.r.t. alternative logico-numerical abstract do-
mains, partition refinement techniques and alternative (not abstract-interpretation-
based) approaches to the analysis of logico-numerical programs.

Logico-numerical abstract domains

Mixed BDD domain. Mauras [Mau96] proposes mixed Bdds (Boolean formulas
with numerical constraints) as a logico-numerical abstract domain. The problem is that
the representation is exact, i.e. there is no abstraction. Moreover, mixed Bdds are not
well-suited as abstract domain representation, because they have no canonical form and
their manipulation is less efficient than the convex representations used by numerical
abstract domains. At last, it is difficult to define a widening operator.

Presburger arithmetic and BDDs. Another approach originates from model check-
ing logico-numerical systems. Bultan et al. [BGP97, BGL00, YKTB01] propose a com-
bination of Bdds and Presburger arithmetic as implemented by the library Omega.
Omega uses disjunctions of convex polyhedra and divisibility constraints to represent
Presburger formulas. However, in order to contain the explosion in number of polyhedra
they bound the number of disjunctions and they force the convex hull when the bound
is exceeded.

Partition Refinement

The goal of partition refinement is to improve precision in case the analysis result is
inconclusive.

Avoiding convex unions. Apart from widening, the main reason for losing precision
is the convex approximation in the abstract domain.

Identifying in the CFG the convex unions that lose most precision requires an ef-
ficiently computable quantitative measure for precision loss. Jeannet [Jea00], for in-
stance, suggests to count the number of equalities lost in the constraint representation
of a polyhedron.

Trace partitioning [HT98, RM07] avoids convex unions by distinguishing program
paths according to the history of program states and control flow.
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Property-based refinement. The prevalent partition refinement methods try to
identify the locations where the decisive information to prove the property is lost by the
abstraction.

The classical method in model checking for such a property-based, systematic parti-
tion refinement uses spurious counterexamples, i.e., behavior that is only present in the
abstraction but not in the concrete program. The abstraction is refined by eliminating
this behavior.

The well-known CEGAR-method ([CGJ`00], cf. §3.1) is based on computing con-
crete counterexamples traces corresponding to a spurious abstract counterexample in
order to determine the first location where the abstract trace starts to exhibit spu-
rious behavior. Then this location is split such that the spurious counterexample is
eliminated. Since finding the coarsest refinement is an NP-hard problem (reduction to
partition-into-cliques problem) [CGJ`00], they propose a heuristic algorithm for deriv-
ing an appropriate splitting predicate.

In the abstract interpretation context, such a refinement has already been proposed
by Wong-Toi [WT94]. However, his method makes use of an under-approximated back-
ward analysis – which is difficult to compute – in order to check whether the a coun-
terexample is spurious or not.

Jeannet [JHR99, Jea00, Jea03] proposes heuristic methods for property-based parti-
tion refinement (dynamic partitioning) implemented in the tool Nbac. Again, the idea
is to split locations based on abstract counterexamples such that potentially “danger-
ous” paths from initial to error states are cut: the locations privileged are those which
allow strongly connected components to be cut in the graph. Candidates for splitting
predicates are the arc assertions. Since the only numerical constraints considered for
refinement are those occurring in the program source, there is a “finest” partition with
a finite number of locations. Thus, in contrast to CEGAR, these heuristics guarantee
the termination of the partitioning process.

SMT-based approaches

Alternative approaches for verifying properties about discrete logico-numerical data-flow
programs rely on bounded model-checking (cf. [CBRZ01]) or k-induction (cf. [SSS00])
techniques, which both exploit the efficiency of modern SMT solvers (see [BHvMW09]).

Hagen and Tinelli [HT08] describe the application of these two approaches to the
verification of Lustre programs. The transition relation Rpnq “ psn “ fpsn´1, inqq
and the observers Apnq “ Apsn, inq and Gpnq “ Gpsnq are unrolled k times and then a
k-induction-based proof is tried using an SMT-solver:
– Base case (i.e., bounded model checking up to k):

ľ

n“0...k

Rpnq ^ Apnq ùñ
ľ

n“0...k

Gpnq

– Induction step m Ñ pm`1q:
ľ

n“m...m`k`1

Rpnq ^ Apnq ^
ľ

n“m...m`k

Gpnq ùñ Gpm`k`1q

If the proof fails, it is retried with increasing values of k.
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This technique has been implemented in the tool Kind2 and has proved powerful
[HT08, Hag08, DHKR11].

Like abstract interpretation, k-induction provides unbounded verification. However,
there are several differences: k-induction does not explicitly compute the reachable state
space, which on the one hand can be an advantage in terms of performance, but on the
other hand, the method cannot be used for computing invariants, but only for verifying
them. Moreover, there is in general no guarantee for termination. Yet, in combination
with bounded model checking, one can falsify properties and obtain counterexamples.

2http://clc.cs.uiowa.edu/Kind/
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Chapter 8

Logico-Numerical Abstract
Acceleration

In this chapter we extend abstract acceleration from purely numerical programs to
logico-numerical ones.

The classical approach to applying the abstract acceleration concepts of Gonnord
et al. [GH06, Gon07] to logico-numerical programs relies on the enumeration of the
Boolean state space (see §8.1). However, this technique suffers from the state space
explosion. In contrast, our approach alleviates this problem with the help of an analysis
in a logico-numerical abstract domain (§7.2.3) and state space partitioning (§7.3).

For this purpose we present an efficient method for (i) building an appropriate
CFG without resorting to Boolean state space enumeration, and (ii) analyzing it using
abstract acceleration. Our methods allow us to treat these two problems independently
of each other. Our contributions can be summarized as follows (Fig. 8.1):

1. We propose methods for accelerating self-loops in the CFG of logico-numerical
data-flow programs (§8.2).

2. We define Boolean partitioning heuristics, (§8.3) which favor the applicability of
abstract acceleration and enable a reasonably precise reachability analysis.

3. We provide experimental results (§8.4) on the use of abstract acceleration enhanc-
ing the analysis of logico-numerical programs.

analysis using abstract acceleration §8.1

logico-numerical abstract acceleration §8.2 partitioning techniques §8.3

experimental evaluation §8.4

conclusion and perspectives §8.5

Figure 8.1: Chapter organization
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b1 ¬b1

b0∧
x1 = 0∧
x2 = 0

x1 ≤ 9 →
x1 ++;x2 ++

x1 ≤ 9 →
x1 ++;x2 ++; b2 := ¬b2

x1 > 9 →
x1 := 0; b1 := ¬b1

x1 > 9 →
x1 := 0;x2 := 0; b1 := ¬b1

Figure 8.2: Self-loop ready to be accelerated (location b1). Acceleration not applicable
(location $b1).

8.1 Analysis Using Abstract Acceleration

In this section, we describe the classical approach to applying abstract acceleration to
the analysis of logico-numerical programs, as followed by the tool Aspic [Gon], for which
we propose major enhancements.

Example 8.1 We will try to infer invariants on the following running example:

Ipb,xq “ $b0 ^$b1 ^ x0“0 ^ x1“0 ^ x2“0

tt Ñ

$
’’’’’’’’’’’’&

’’’’’’’’’’’’%

b1
0 “ b0 _ p$b0 ^ x0ą10 ^ x1ą10q
b1
1 “ b1 _ p$b1 ^ x0ą20q

x1
0 “

$
&

%

x0 ` 1 if p$b0 ^$b1 ^ x0ď10 ^ βq _ pb0 ^$b1 ^ x0ď20q
0 if $b0 ^$b1 ^ x0ą10 ^ x1ą10
x0 otherwise

x1
1 “

"
x1 ` 1 if $b0 ^$b1 ^ x1ď10 ^$β
x1 otherwise

x1
2 “

"
x2 ` 1 if p$b0 ^$b1 ^ px0ď10 ^ β _ x1ď10 ^$βqq _ pb0 ^$b1q
x2 otherwise

Numerical acceleration can be applied to self-loops where the numerical state evolves
while the Boolean state does not, i.e., the Boolean part of the transition function is the
identity (see Fig. 8.2 for an example and a counterexample):

Definition 8.1 (Accelerable logico-numerical transition) A transition τ is accel-

erable if it has the form gbpb,βq^gxpCq Ñ
ˆ

b1

x1

˙
“

ˆ
b

apx, ξq

˙
, where gxpCq Ñ x1 “

apx, ξq is accelerable.

First, Boolean states are enumerated using the techniques described in §7.3, which
trivially induce a CFG in which the Boolean part of the transition functions of the
self-loops is the identity. However, the guards of the loops might still be non-convex.
Transforming the guard into a minimal disjunctive normal form (DNF) and splitting the
transition into several transitions, one for each disjunct, yields a CFG with self-loops
accelerable according to Def. 8.1. A single self-loop, like in location b0 ^$b1 in Fig. 8.3b
can now be “flattened” into a transitive closure transition as done in Fig. 4.1b.

In case of multiple self-loops, like in location $b0 ^ $b1 in Fig. 8.3b, a simple
“flattening” of the loop is not possible: For the fixed point computation, we must take
into account all sequences of self-loop transitions in this location. For the two accelerable
loops we have to compute: τb

1 pXq \ τb
2 pXq \ τb

2 ˝ τb
1 pXq \ τb

1 ˝ τb
2 pXq \ τb

1 ˝ τb
2 ˝
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b0 ∨ ¬b1

τ

(a) Initial CFG

¬b0 ∧ ¬b1 b0 ∧ ¬b1 b0 ∧ b1

x0 ≤ 10 →
x′
0 = x0 + 1;x′

2 = x2 + 1

x1 ≤ 10 →
x′
1 = x1 + 1;x′

2 = x2 + 1

x0 > 10 ∧ x1 > 10 →
x′
0 = 0

x0 ≤ 20 →
x′
0 = x0 + 1;x′

2 = x2 + 1

x0 > 20 →
x′
2 = x2 + 1

(b) CFG after Boolean enumeration and removal of the Boolean inputs.
(Identity transition functions are implicit.)

Figure 8.3: Transformation of the program of Example 8.1. τ is the global transition.
The guards are already convex in the obtained CFG.

τb
1 pXq \ τb

2 ˝ τb
1 ˝ τb

2 pXq \ . . . This infinite sequence may not converge, thus in general,
widening is necessary to guarantee termination. However, in practice the sequence often
converges after the first few elements.

The technique implemented in Aspic involves expanding multiple self-loops into
a graph of which the paths represent these sequences, as shown in Fig. 8.4 in the
case of three self-loops, and to solve iteratively the fixed point equations induced by
the CFG, using widening if necessary. Moreover, there are also techniques [BFLP08,
Gon07, MG11] for detecting circuits of length greater than one and accelerating them
by concatenating their transitions. We focus here on self-loops.

8.2 Logico-Numerical Abstract Acceleration

Our goal is to exploit abstract acceleration techniques without resorting to a Boolean
state space enumeration in order to overcome the limitations of current tools (e.g.,
[Gon]) w.r.t. the analysis of logico-numerical programs.

In this section, we will first discuss some related issues in order to motivate our
approach, before presenting methods that make abstract acceleration applicable to a
CFG that now may contain loops with operations on both, Boolean and numerical,
variables.

8.2.1 Motivations for Our Approach

A first observation is that identifying self-loops is more complex when Boolean state
variables are not fully encoded in the CFG. Indeed, if a CFG contains a “syntactic” self-
loop p', τ, 'q with τ : gpb,x, ξq Ñ pb1,x1q “ fpb,x, ξq, there is an “effective” self-loop
only for those Boolean states b P ϕ# in location ' such that gpb,x, ξq ^ b “ f bpb,x, ξq
is satisfiable1. For instance, the self-loop around location $b1 in Fig. 8.2 is not an
“effective” self-loop.

This observation also applies to circuits, where, moreover, numerical inputs have to
be duplicated : If there is a circuit p', τ1, '1q and p'1, τ2, 'q with τi : gips, ξq Ñ s1 “ fips, ξq

1We assume here that Boolean inputs β have been encoded by non-determinism (cf. §7.3).
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i

1

2 3

o

τi

τi

τi

τo

τo

τo

τ⊗
1

τ⊗
2 τ⊗

1

τ⊗
3

τ⊗
2

τ⊗
3

Figure 8.4: Computation of three
accelerable self-loops τ1, τ2 and τ3. τi
and τo are the incoming resp. outgo-
ing transitions of the location.

b0 ∨ ¬b1

τ1 : ¬b0 ∧ ¬b1 ∧ x0 ≤ 10 →
x′
0 = x0 + 1;x′

2 = x2 + 1

τ2 : ¬b0 ∧ ¬b1 ∧ x1 ≤ 10 →
x′
1 = x1 + 1;x′

2 = x2 + 1

τ3 : b0 ∧ ¬b1 ∧ x0 ≤ 20 →
x′
0 = x0 + 1;x′

2 = x2 + 1τr

Figure 8.5: Acceleration of Ex. 8.1 in a CFG
with a single location: The upper three self-
loops are accelerable. The rest of the system
is summarized in the transition τr where the
Boolean equations are not the identity.

for i “ 1, 2, the composed transition has the form τ : gps, ξ, ξ1q Ñ s2 “ fps, ξ, ξ1q. This
limits in practice the length of circuits that can be accelerated. Here, we will not deal
with such circuits and we focus on self-loops.

A naive approach to our problem could be to partition the system into sufficiently
many locations, until we get self-loops that correspond to Def. 8.1. This approach is
simple-minded for two reasons: (i) There might be no such Boolean states in the program
at all; (ii) in the case of Fig. 8.2, simply ignoring the Boolean variable b2 would make
the (syntactic) self-loop accelerable without impacting the precision. More generally,
it may pay off to slightly abstract the behavior of self-loops in order to benefit from
precise acceleration techniques rather than relying on widening which may lose much
more information in the end.

Another important remark is that we do not necessarily need to partition the system
into locations to apply acceleration: it is sufficient to decompose the self-loops: Starting
from the basic CFG with a single location and a single self-loop, we could split the
loop into self-loops where the numerical transition function can be accelerated and the
Boolean transition is the identity and a last self-loop where this is not the case. Fig. 8.5
shows the result of the application of this idea to our running example of Fig. 8.3.

This allows us to separate the issue of accelerating self-loops in a symbolic CFG,
addressed in this section, from the issue of finding a suitable CFG, addressed in §8.3.

8.2.2 Decoupling Numerical and Boolean Transition Functions

We consider self-loops p', τ, 'q with τ : gps, iq Ñ
ˆ

b1

x1

˙
“

ˆ
f bps, iq
fxps, iq

˙
without any

restriction on f b. We use the abstraction ℘pEq “ ℘pBm ˆ Rnq ´́ Ñ́Ð́ ´́
π

id
℘pBmq ˆ ℘pRnq,

where π is the function that approximates a set S P E by a Cartesian product, e.g.,
πppB1ˆX1qYpB2ˆX2qq “ pB1YB2q̂ pX1YX2q. If τ is accelerable in the sense of abstract
acceleration, then π ˝ τ˚ Ď τb.

Our logico-numerical abstract acceleration method relies on decoupling the numerical
and Boolean parts of the transition function τ with

τb : gps, iq Ñ
ˆ

b1

x1

˙
“

ˆ
f bps, iq
λps, iq.x

˙
and τx : gps, iq Ñ

ˆ
b1

x1

˙
“

ˆ
λps, iq. b
fxps, iq

˙
.

We can approximate τ˚ as follows (Fig. 8.6):
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τ

Ď

τ˚
x

π ˝ τb
(Prop. 8.1)

Ď
π ˝ τ˚

x ˝ π
π ˝ τb

(Prop. 8.2)

Figure 8.6: Decoupling numerical and Boolean transitions

x

b

x′

b
′

b
′′

τ(S)

S′
S′′

S′′′

Figure 8.7: Illustration of the proof of
Prop. 8.1

gx

gb
S

S′

S′′′

x

b

Figure 8.8: Illustration of the proof of
Prop. 8.2 (S Ď S1 Ď S3)

Proposition 8.1 τ˚ Ď pπ ˝ τb ˝ τ˚
x q˚.

Proof We prove first τ Ď π ˝ τb ˝ pid Y τxq:
Let S“tpb,xqu, then τbpSq “ tpb1,xqu, τxpSq “ tpb,x1qu, and τpSq “ tpb1,x1qu:

tpb,xq, pb,x1qu Ď pid Y τxqpSq “ S1

ñ tpb1,xq, pb2,x1qu Ď τ bpS1q “ S2 with tpb2,x1qu “ τ bptpb,x1quq
ñ tpb1,x1qu Ď πpS2q “ S3

The graphical intuition of these steps is depicted in Fig. 8.7.
We conclude by

τ Ď π ˝ τb ˝ pid Y τxq
ñ τ Ď π ˝ τb ˝ τ˚

x pbecause of pid Y τxq Ď τ˚
x q

ñ τ˚ Ď pπ ˝ τb ˝ τ˚
x q˚

Now, we assume that τx is accelerable in the sense of Def. 8.1, which implies that
gps, iq “ gbpb,βq ^ gxpx, ξq and fxps, iq “ apx, ξq. By applying Prop. 8.1, we obtain
that pπ ˝ τb ˝ τb

x q˚ is a sound over-approximation of τ˚. However, this formula still
involves Kleene iteration and thus widening is required (cf. §5.3.1).

But, there exists an alternative in which numerical and Boolean parts are computed
in sequence, so that numerical acceleration is applied only once (Fig. 8.6):

Proposition 8.2 (Decoupling Boolean and numerical transition functions)
If τx is accelerable, then

(1) pπ ˝ τbq˚ ˝ π ˝ τ˚
x ˝ π is idempotent, and

(2) τ˚ Ď pπ ˝ τbq˚ ˝ π ˝ τ˚
x ˝ π

Proof The intuition for (1) is the following: If the guard gx ^ gb is satisfied, i.e., the
transition can be taken, then we compute first the transitive closure w.r.t. the numerical
states before saturating the Boolean states. The application of τb does not enable“more”
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b1
1 ^ b1

2 ^ x1 “0 xě2 Ñ id

τ : xă2 Ñ

$
&

%

x1 “ x`1
b1
1 “ pb2 ^ x“0q
b1
2 “ pb1 ^$b2 ^ x“1q

¬b1 b1

¬b2 / x = 0

b2

x = 1
x = 2

Figure 8.9: CFG of a counterexample (left-hand side) to show why the Boolean iter-
ations cannot be computed exactly: the state pff, tt, 2q contained in τ˚ptptt, tt, 0quq “
tptt, tt, 0q, ptt,ff, 1q, pff , tt, 2qu (dots in the right-hand side figure) is not part of π ˝ τ˚

b ˝
π ˝ τ˚

x ˝ πptptt, tt, 0quq “ tptt, ttq, ptt,ffq, pff,ffqu ˆ t0, 1, 2u.

behavior of the numerical variables; hence, re-applying the τ˚
x has no effect.

We first compute pπ ˝ τbq˚ ˝ π ˝ τ˚
x ˝ πpSq:

πpSq “ BˆX
τ˚
x ˝ πpSq “ pBˆXq Y

`
pB X pDβ : gbqqˆX 1

˘

with X 1 s.t. pDξ : appXYX 1q X gxqq Ď X 1 (i)
S1 “ π ˝ τ˚

x ˝ πpSq “ BˆpXYX 1q

pπ ˝ τbq˚ ˝ π ˝ τ˚
x ˝ πpSq “ S1 Y

S2hkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkj
B1ˆ

`
pXYX 1q X pDξ : gxq

˘

where B1 “
Ť

kě1 τ
k
b pB, pX Y X 1q X pDξ : gxqq

and with the property pπ ˝ τbqpS1 Y S2q Ď S2 (ii)

S3 “ pπ ˝ τbq˚ ˝ π ˝ τ˚
x ˝ πpSq “ pBYB1qˆpXYX 1q

Fig. 8.8 illustrates the sets S, S1, and S3. S3 is obviously stable by application of π.
We show that it is also stable by application of τx and π ˝ τb, which allows to conclude
that pπ ˝ τbq˚ ˝ π ˝ τ˚

x ˝ πpS3q “ S3, hence the idempotency of the function:

τxpS3q “ ppBYB1q X pDβ : gbqqˆX2

with X2 Ď X 1 because of property (i) above, hence
τxpS3q Ď S3, and

π ˝ τ˚
x pS3q “ S3

π ˝ τbpS3q “ π ˝ τbpS3 X pBmˆpDξ : gxqqq
“ π ˝ τbppBYB1q ˆ ppXYX 1q X pDξ : gxqqq
Ď π ˝ τbpS1YS2q
Ď S3 according to property (ii).

Now, we can prove (2): from Prop. 8.1 follows

τ˚ Ď pπ ˝ τb ˝ τ˚
x q˚

“ ppπ ˝ τbq˚ ˝ τ˚
x q˚

Ď ppπ ˝ τbq˚ ˝ π ˝ τ˚
x ˝ πq˚

“ pπ ˝ τbq˚ ˝ π ˝ τ˚
x ˝ π.

For the last step, we use the idempotency of the function and the fact that it includes
the identity.

Remark 8.1 (Why not τ˚
b ?) We cannot compute Boolean iterations exactly using τ˚

b

instead of pπ ˝τbq˚. Fig. 8.9 gives a counterexample where τ˚ Ę π ˝τ˚
b ˝π ˝τ˚

x ˝π, which
shows that using exact iterations τ˚

b would not give a sound decoupling.

102



103 8.2. Logico-Numerical Abstract Acceleration

The following theorem implements Prop. 8.2 in the logico-numerical product domain

A with the Galois connection ℘pBm ˆ Rnq ´́ Ñ́Ð́ ´́
α

id
℘pBmq ˆ PolpRnq (see §7.2.3).

Theorem 8.1 (Logico-numerical abstract acceleration) If a transition τ is such
that τx is accelerable, then τ˚ can be approximated in the logico-numerical product do-
main A with

τbpB,Xq “
´´
τ bb

“
Xb

‰¯˚
pBq , Xb

¯

where
• Xb “ pτxx qbpXq
• pτxx qb is the abstract acceleration of τxx : gxpx, ξq Ñ x1 “ apx, ξq
• τ bb rXspBq “ τbpB,Xb [g pDξ : gxqq
• pτ bb rXsq˚pBq “ lfppλB1 . B Y τ bb rXspB1qq.

pτ bb rXsq˚ converges in a finite number of iterations as it is the least fixed point of a
monotonic function in the finite lattice ℘pBmq.

In other words, we compute the reflexive and transitive closure Xb of τx using
numerical abstract acceleration and saturate τb partially evaluated over Xb.

Proof We prove that τbpSq over-approximates the result of the formula of Prop. 8.2,
i.e., ppπ˝τbq˚ ˝π˝τ˚

x ˝πqpSq Ď τb ˝αpSq with S Ď ℘pBmˆRnq. This over-approximation
is due to the convex approximations by the numerical abstract domain PolpRnq.

pπ ˝ τbq˚ ˝ π ˝ τ˚
x ˝ πpSq

“ p
Ť

kě0 τ
k
b pB, pX Y X 1q X pDξ : gxqq , X Y X 1q

with πpSq “ pB,Xq
and X 1 s.t. pDξ : appXYX 1q X gxqq Ď X 1 (see proof of Prop. 8.2)

Ď λpB,Xq.
`Ť

kě0 τ
k
b pB,Xb [g pDξ : gxqq , Xbq

˘
˝ αpSq

with τxx “ λX.Dξ : apX X gxq
due to the soundness of numerical abstract acceleration:

pX Y X 1q Ď pτxx qb ˝ αpXq “ Xb

“ λpB,Xq.ppτ bb rXbspBqq˚ , Xbq ˝ αpSq
with the notation τ bb rXspBq “ τbpB,X [g pDξ : gxqq

Then, by τ˚pSq Ď ppπ˝τbq˚˝π˝τ˚
x ˝πqpSq (Prop. 8.2), we conclude τ˚pSq Ď τb˝αpSq.

Mind that, due to the convex approximation of the numerical sets, τb is not idempotent
in general (cf. §5.3.1).

8.2.3 Discussion

At the first glance, the approximations induced by this partial decoupling seem to be
rather coarse. However, this is not severe in our context for two reasons:

1. The relations between Boolean and numerical variables that are lost by our method
are mostly not representable in the abstract domain A anyway. For example,
consider the loop x ď 4 Ñ pb1 “ $b;x1 “ x` 1q, where b could be the least
significant bit of a binary counter for instance: starting from pb, xq P tptt, 0qu
the exact reachable set is tttu ˆ t0, 2, 4u Y tffu ˆ t1, 3, 5u; its abstraction in A is
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tJu ˆ t0 ď xď 5u. Hence, these relations will also be lost in a standard analysis
merely relying on widening. Yet, due to numerical acceleration, we can even expect
a better precision with our method.

2. We will apply this method to CFGs (see §8.3) in which the Boolean states defining
a location exhibit the same numerical behavior and thus, decoupling is supposed
not to seriously affect the precision.

Until now we studied the case of a single self-loop. In the presence of multiple self-
loops, we expand the graph in the same way as with purely numerical transitions, e.g.,
as shown in Fig. 8.4, and we apply Thm. 8.1 to each loop. As in the purely numerical
case, widening must be applied in order to guarantee convergence.

Example 8.2 We give the results obtained for Ex. 8.1: Analyzing the enumerated CFG
in Fig. 8.3b using abstract acceleration gives 0ďx0ď21^ 0ďx1ď11^ x0 `x1ďx2ď44
bounding all variables2. Analyzing the system on a CFG with a single location using
decoupling and abstract acceleration still bounds two variables (0ď x0 ď 21 ^ 0ď x1 ď
11 ^ x0 ` x1ďx2), whereas, even on the enumerated CFG a standard analysis does not
find any upper bound at all: 0ďx0 ^ 0ďx1 ^ x0 ` x1ďx2.

8.2.4 Variants

Decoupling accelerable from non-accelerable and Boolean transition func-
tions. Theorem 8.1 applies only if the numerical transition functions are accelerable.
If this is not the case, we can reuse the idea of Prop. 8.1, but now by decoupling the
accelerable numerical functions (marked by the sub/superscript a) from Boolean and
non-accelerable numerical functions (sub/superscripts b and n respectively):

τa : gps, iq Ñ

¨

˝
b1

x1
n

x1
a

˛

‚“

¨

˝
λps, iq. b
λps, iq.xn

apx, ξq

˛

‚ , τn,b : gps, iq Ñ

¨

˝
b1

x1
n

x1
a

˛

‚“

¨

˝
f bps, iq
fnps, iq
λps, iq.xa

˛

‚

Proposition 8.3 (Decoupling accelerable and non-accelerable transitions)

τ˚ Ď pπ ˝ τn,b ˝ τ˚
a q˚ Ď pπ ˝ τn,b ˝ τb

a q˚

However, we cannot remove the Kleene iteration as in Prop. 8.2, because the function τa
depends on non-accelerated numerical variables updated by τn,b, and hence, widening
is needed.

Using inputization techniques. Inputization (see [BBBS02], for instance) is a
technique that treats some state variables as input variables. This method is useful to
cut dependencies between the state variables, and thus, to remove loops. For example, it
can be employed to reduce

`
pπ ˝τbq˚ ˝π

˘
to

`
π ˝τ 1

b ˝π
˘
in Prop. 8.2, where τ 1

b is obtained
by inputizing in τb those Boolean state variables that have a transition function that is
neither the identity nor constant.

Example 8.3 (Inputization) The loop τb can be approximated by the transition τ 1
b

where β0 and β2 correspond to b0 and b2 manipulated as Boolean inputs:

τb :

ˇ̌
ˇ̌
ˇ̌
b1
0 “ $b0
b1
1 “ b1
b1
2 “ b2 ^ xě0

τ 1

b :

ˇ̌
ˇ̌
ˇ̌
b1
0 “ β0
b1
1 “ b1
b1
2 “ β2 ^ xě0

2This is an over-approximated result: the actual polyhedron has more constraints.
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In our experiments (§8.4) we observed that the speed-up gained often pays off in com-
parison to the approximations it brings about.

8.3 Partitioning Techniques

The logico-numerical acceleration method described in the previous section can be ap-
plied to any CFG. However, in order to make it effective, we apply it to a CFG obtained
by a partitioning technique that aims at alleviating the impact of decoupling Boolean
and numerical transition functions on the precision. This section proposes such parti-
tioning techniques that generate CFGs in which those Boolean states that exhibit the
same numerical behavior (“numerical modes”) are grouped in the same locations.

Basic technique. In order to implement this idea, we generate a CFG that is char-
acterized by the following equivalence relation:

Definition 8.2 (Numerical modes)

b1 „ b2 ô

$
’’&

’’%

@β1, C : Apb1,β1, Cq ñ
Dβ2 : Apb2,β2, Cq ^ fxpb1,β1, Cq “ fxpb2,β2, Cq

^@β2, C : Apb2,β2, Cq ñ
Dβ1 : Apb1,β1, Cq ^ fxpb1,β1, Cq “ fxpb2,β2, Cq

The intuition of this heuristics is to make equivalent the Boolean states that can execute
the same set of numerical actions, guarded by the same numerical constraints.

Example 8.4 (Numerical modes) We illustrate the application of this method to Ex-
ample 8.1. We first factorize the numerical transition functions by actions:

px1
0, x

1
1, x

1
2q “

$
’’’’&

’’’’%

px0`1 , x1 , x2`1q if p$b0 ^$b1 ^ x0ď10q _ pb0 ^$b1 ^ x0ď20q
p x0 , x1`1 , x2`1q if $b0 ^$b1 ^ x1ď10
p 0 , x1 , x2 q if $b0 ^$b1 ^ x0ą10 ^ x1ą10
p x0 , x1 , x2`1q if b0 ^$b1 ^ x0ą20
p x0 , x1 , x2 q otherwise

Then by applying Def. 8.2, we get the equivalence classes t$b0 ^$b1, b0 ^$b1, b0 ^ b1u:
the obtained CFG is the one of Fig. 8.3b.

In the worst case, as in Ex. 8.4 above, a different set of actions can be executed in each
Boolean state, thus the Boolean states will be enumerated. In the other extreme case,
in all Boolean states the same set of actions can be executed, which induces a single
equivalence class. Both cases are unlikely to occur in larger, real systems.

From an algorithmic point, we vectorize the numerical actions and factorize their
common guards, which is equivalent to computing the product of the MtBdds repre-
senting the numerical transition functions (see §7.2.2):

fxpb,β, C,x, ξq “
Ž

1ďiďm

`
gipb,β, Cq Ñ aipx, ξq

˘

Then we eliminate the Boolean inputs β, and we decompose the results as follows

pDβ : gipb,β, Cqq “
Ž

1ďjďni
gbijpbq ^ gxijpCq
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where gxijpCq may be non-convex. The equivalence relation „ of Def. 8.2 can be refor-
mulated as

b1 „ b2 ðñ @i@j : gbijpb1q ô gbijpb2q.

This last formulation reflects the fact that, in the resulting CFG, the numerical function
fx specialized on a location ' does not depend any more on b, and hence, the precision
loss is supposed to be limited.

Reducing the size of the partition. An option for having a less discriminating
equivalence relation is to make equivalent the Boolean states that can execute the same
set of numerical actions regardless of the numerical constraints guarding them.

Definition 8.3 (Numerical modes (forgetting numerical guards))

b1 « b2 ô

$
&

%

@β1, C1 : Apb1,β1, C1q ñ
Dβ2, C2 : Apb2,β2, C2q ^ fxpb1,β1, C1q “ fxpb2,β2, C2q

and vice versa

We clearly have „Ď«. For example, if we have two guarded actions b^xď10 Ñ x1 “ x̀ 1
and $b^xď20 Ñ x1 “x`1, „ will separate the Boolean states satisfying resp. b and $b,
whereas « will keep them together.

Another option is to consider only a subset of the numerical actions, that is, we
ignore the transition functions of some numerical variables in Defs. 8.2 or 8.3. One can
typically focus only on variables involved in the property. According to our experiments,
this method is very efficient, but it relies on manual intervention.

Refining the partition by backward bisimulation. Given a partition, it can be
refined by Boolean backward bisimulation (cf. [BFH91]).

Definition 8.4 (Boolean backward bisimulation) Given an equivalence relation „,
its backward Boolean bisimulation equivalence „8 is defined by

b1 „0 b2 ô b1 „ b2 ^ pIpb1q“Ipb2qq

b1 „k`1 b2 ô

$
&

%

@β1, C1, b
1
1 such that Apb1

1,β1, C1q ^ b1 “ f bpb1
1,β1, C1q :

Db1
2,β2, C2 : Apb1

2,β2, C2q ^ b2 “ f bpb1
2,β2, C2q ^ b1

1 „k b1
2

and vice versa

The rationale behind this refinement is that partitioning the state space with Def. 8.2
(„) and stabilizing it by backward bisimulation yields a CFG with locations that group
together states that are reachable (in the graph sense) by the same sequence of numerical
actions from an initial state.

8.4 Experimental Evaluation

We have implemented the proposed methods in our experimentation tool ReaVer3 on
the basis of the logico-numerical abstract domain library BddApron.

Benchmarks. Besides some small, but difficult benchmarks, we used primarily bench-
marks that are simulations of production lines (see Fig. 8.10), as modeled with the

3A first version of the tool which implemented only logico-numerical abstract acceleration methods
was called nbACCel [SJ11].
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Figure 8.10: Schematic example of a production line with buffers, machines, and
splitting and combining material flows.

library Quest for the LCM language4, for evaluating scalability. These models consist
of building blocks like sources, buffers, machines, routers for splitting and combining
flows of material and sinks, that synchronize via handshakes. The properties we want
to prove depend on numerical variables, e.g., (1) maximal throughput time of the first
element passing the production line, or (2) minimal throughput of the production line.
Inputs could model non-deterministic processing and arrival times, but we did not choose
benchmarks with numerical inputs in order to enable a comparison with Aspic [Gon].

Results. We compared our tool ReaVer with NBac [JHR99, Jea00, Jea03] and
Aspic. The results are summarized in Table 8.1. The tools where launched with the
default options; for ReaVer we use the partitioning heuristics of Def. 8.3 and the
inputization technique of §8.2.4. We do not need the decoupling technique of Prop. 8.3
for our examples.

Discussion. The experimental comparison gives evidence about the advantages of
abstract acceleration, but also some potential for future improvement:
– ReaVer can prove a lot of examples where NBac fails: this is due to the fact

that abstract acceleration improves precision, especially in nested loops where the
innermost loop can be“flattened”, which makes it possible to recover more information
in descending iterations.

– ReaVer seems to scale better than NBac: First, abstract acceleration reduces the
number of iterations and fixed point checks. Second, our heuristics generates a par-
tition that is well-suited for analysis – though, for some of the larger benchmarks,
e.g., LCM quest 4-1, the dynamic partitioning of NBac starts to pay off, whereas
our static partition is more fine-grained than necessary, which makes us waste time
during analysis.

– Once provided with an enumerated CFG, Aspic is very fast on the smaller bench-
marks. However, the current version (3.1) cannot deal with CFGs larger than a few
hundred locations. We were surprised that some of the small examples were not
proved by Aspic. We found out that this is due to our fixed point iteration strategy
that uses a higher widening delay in strongly connected components resulting from
the unfolding of multiple self-loops.

– The analysis using logico-numerical acceleration proved twice as many benchmarks
and turned out to be 20% faster than a standard analysis of the same CFG with
widening with delay 2 and two descending iterations.

– Applying the more refined partition of Def. 8.2 to our benchmarks had only a minor
influence on performance and precision, and not applying inputization had no impact
on the verification of properties, but it slowed down the analysis by 25% on average.

– Generally, for the benchmarks LCM quest 1 to 4, property 2 was not proved by the
tools. Here, the combination of our heuristics with dynamic partitioning for further

4http://www.3ds.com
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refining the critical parts of the CFG could help.

8.5 Conclusions and Perspectives

We proposed techniques for accelerating logico-numerical transitions, that allow us to
benefit from the precision gain by numerical abstract acceleration as used in the tool
Aspic, while tackling the Boolean state space explosion problem encountered when
analyzing logico-numerical programs.

Experimentally, our tool ReaVer is often able to prove properties for the larger
benchmarks, unlike the two other tools we tested – and this on CFGs that are ten times
smaller than the CFGs obtained by enumeration of the reachable Boolean state space.

Although our method is based on the partial decoupling of the Boolean and nu-
merical transitions, the experiments confirm our intuition that our method generally
improves the precision. We attribute this to the following observations: first, numerical
abstract acceleration reduces the need for widening; second, the information that we
might lose by decoupling would often not be captured by the abstract domain any-
way; and at last, the CFG obtained by our partitioning method particularly favors the
application of our logico-numerical acceleration method.

Perspectives. Regarding abstract acceleration, the acceleration of multiple self-
loops deserves additional investigation: We explained that, in case of nested loops, we
have to resort to widening in order to guarantee convergence. Multiple self-loops, i.e.,
several self-loops around one location, are a special case of nested loops. Gonnord et
al [GH06, Gon07] developed abstract acceleration formulas for some special cases of
multiple self-loops. In the general case, they apply a graph transformation method
based on a partial unfolding (see §8.1) in order to compute more precise fixed points of
multiple self-loops. However, this graph transformation is costly since it transforms 1
location with n self-loops into n locations with npn´1q arcs.

In the context of applying Presburger-based acceleration to program parallelization,
Beletska et al. [BBBC09] propose an interesting approach which avoids this problem:
for multiple self-loops τi “ gi Ñ ai, they do not compute p

Ť
i τipXqq˚, but they use the

more efficient, though less precise formula:
Ť

i

´
τi

´Ť
j ajpXq

¯˚¯
. This computation

scheme resembles the one of the derivative closure method of Ancourt et al. [ACI10]
(cf. §5.3.3). This approach could be considered to improve the abstract acceleration of
multiple self-loops.

Concerning partition refinement, the combination of our approach with dynamic
partitioning à la [Jea03] seems to be worth pursuing. In particular, partitioning accord-
ing to numerical constraints is mandatory for proving properties relying on non-convex
invariants – our partitioning techniques partition only the Boolean state space. Such
improvements should allow a wider range of benchmarks to be tackled.
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Aspic ReaVer Nbac
vars size time size time size time

Gate 1 4/4/2 7 ? 5 0.73 24 ?
Escalator 1 5/4/2 12 0.14 (0.04) 9 0.49 22 ?
Traffic 1 4/6/0 18 0.14 (0.01) 16 0.19 5 3.49
Traffic 2 4/8/0 18 ? 16 0.35 28 ?
LCM Quest 0a-1 7/2/0 7 0.04 (0.01) 5 0.04 5 0.05
LCM Quest 0a-2 7/3/0 6 0.05 (0.01) 4 0.05 8 0.19
LCM Quest 0b-1 10/3/0 19 0.08 (0.01) 12 0.08 9 ?
LCM Quest 0b-2 10/4/0 17 0.09 (0.01) 11 0.20 33 ?
LCM Quest 0c-1 15/4/0 28 0.17 (0.01) 16 0.16 8 0.86
LCM Quest 0c-2 15/5/0 25 0.20 (0.05) 14 0.24 50 14.8
LCM Quest 1-1 16/5/0 114 1.99 (0.48) 42 0.92 6 2.45
LCM Quest 1-2 16/6/0 100 ? 34 ? ą156 ą
LCM Quest 1b-1 16/5/0 55 0.92 (0.04) 29 0.37 15 ?
LCM Quest 1b-2 16/5/0 45 0.76 (0.12) 23 0.47 61 ?
LCM Quest 2-1 17/6/0 247 c 82 7.84 9 12.8
LCM Quest 2-2 17/7/0 198 ą 62 ? ą76 ą
LCM Quest 3-1 25/5/0 483 26.5 (14.4) 58 8.49 12 3.76
LCM Quest 3-2 25/6/0 481 c 54 ? ą1173 ą
LCM Quest 3b-1 26/6/0 1724 ą 170 43.8 14 19.1
LCM Quest 3b-2 26/7/0 1710 ą 162 ą ą32 ą
LCM Quest 3c-1 26/6/0 1319 ą 130 34.2 9 ?
LCM Quest 3c-2 26/7/0 1056 c 98 ą ą70 ą
LCM Quest 3d-1 26/6/0 281 ą 81 5.43 49 ?
LCM Quest 3d-2 26/7/0 266 c 73 ? 446 ?
LCM Quest 3e-1 27/7/0 638 ą 140 20.6 49 ?
LCM Quest 3e-2 27/8/0 514 ą 110 6.46 ą28 ą
LCM Quest 4-1 27/7/0 4482 ą 386 186 9 50.1
LCM Quest 4-2 27/8/0 3586 ą 290 ą ą6 ą

vars : Boolean state variables / numerical state variables / Boolean inputs
size : number of locations of the CFG
time : in seconds (Aspic: total time (time for analysis))
? : “don’t know” (property not proved)
ą : timed out after 600s
c : out of memory or crashed

Table 8.1: Experimental comparison between Aspic, ReaVer and Nbac.
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Chapter 9

Logico-Numerical Max-Strategy
Iteration

In this chapter we present a method for applying max-strategy iteration to the analysis
of logico-numerical programs.

Strategy iteration methods (see §3.4.3) are able to solve the fixed point equation
associated with the reachability analysis without the need for a widening operator.
They can be applied to template domains, i.e., abstract domains with a priori fixed
constraints for which constant bounds are determined during the analysis. However,
these techniques are limited to numerical programs. In order to avoid the state space
explosion involved in transforming a logico-numerical program into a numerical one, we
will use the approach of state space partitioning and abstract interpretation with logico-
numerical abstract domains (see §7). Our method is based on max-strategy iteration,
to which we will give an introduction in §9.1.

Outline. Our contributions can be summarized as follows (see Fig. 9.1):

1. We describe a method for computing the set of reachable states of a logico-numerical
program based on max-strategy iteration (§9.2). The technique interleaves truncated
Kleene iterations over a logico-numerical abstract domain with numerical max-strategy
iterations. The method is optimal, i.e., it computes the least fixed point w.r.t. the
abstract semantics.
2. We give the results of an experimental evaluation (§9.3) examining various aspects
concerning the efficiency and precision of the approach.

numerical max-strategy iteration §9.1

logico-numerical max-strategy iteration §9.2

experimental evaluation §9.3

conclusions and perspectives §9.4

Figure 9.1: Chapter organization
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9.1 Numerical Max-Strategy Iteration

Preliminaries. We consider programs modeled as control flow graphs (§2.1.2) over a
state space Σ with transition relations R Ď Σ2. In the case of affine programs Σ “ Rn

and the relations R are convex polyhedra.

We use the abstract domain of template polyhedra PolT (§3.3.3). A template polyhe-
dron pTxďdq is defined by a template constraint matrix T P Rmˆn; an abstract value
is represented by the vector of bounds d P R

m
where R

m “ RY t´8,8u. The analysis
tries to find the smallest values of d representing a fixed point of the semantic equations.
J and K are naturally represented by the bound vectors 8 and ´8 respectively. The
domain operations can be performed efficiently with the help of linear programming
(LP) solvers.

Max-Strategy Iteration

Max-strategy iteration [GS07a, GS07b, GS08, GS10, GS11] is a method for computing
the least solution of a system of equations M of the form δ “ F pδq, where δ are
the template bounds, and Fi, 0ď iďn is a finite maximum of monotonic and concave
operators Rn Ñ R; in our case they are affine functions. The max-strategy improvement
algorithm for affine programs is guaranteed to compute the least fixed point of F , and
it has to perform at most exponentially many improvement steps, each of which takes
polynomial time.

Semantic equations. The equation system M is constructed from the abstract
semantics of the program’s transitions:

for each '1 P L : δ#1 “max
´

td0
#1u Y t!R"7pδ#q | p', R, '1q P Ru

¯

where d0 “ λ'.

"
8 for '“'0

´8 for '‰'0
denotes the initial values of the bounds, and

!R"7pd#q “ suptT#1x1 | T#x ď d# ^ Rpx,x1qu.

We will view d alternatively as the concatenated vector of the bound vectors of all
locations and the map L Ñ R

m
that assigns a vector of bounds d# to each location

': dp'q “ d#. Note, also, that we use δ for denoting the vector of bound variables
appearing in syntactic expressions, and d for the vector carrying the actual bounds. δ#,i
is the bound variable corresponding to the ith line of the template in location '.

Example 9.1 (Semantic equations) Using the template constraintsˆ
1

´1

˙
xď

ˆ
d#,1
d#,2

˙
in locations ', the equation system for location '1 of the example

in Fig. 9.2 consists of one equation for each template bound variable of which the argu-
ments of the max operator are the initial value ´8 and one expression !R"7 for each of
the three incoming arcs:
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113 9.1. Numerical Max-Strategy Iteration

'0 '1 '2
x1 “5

xď9 ^ px1 “x`1q
xě10 ^ px1 “xq

xď0 ^ px1 “xq

xě1 ^ px1 “x´1q

Figure 9.2: CFG of an affine program

δ1,1 “ max

$
’’&

’’%

´8,
supt x1 | x ď δ0,1 ^ ´x ď δ0,2 ^ x1 “5 u,
supt x1 | x ď δ1,1 ^ ´x ď δ1,2 ^ xď9 ^ x1 “x`1 u,
supt x1 | x ď δ2,1 ^ ´x ď δ2,2 ^ xď0 ^ x1 “x u

,
//.

//-

δ1,2 “ max

$
’’&

’’%

´8,
supt ´x1 | x ď δ0,1 ^ ´x ď δ0,2 ^ x1 “5 u,
supt ´x1 | x ď δ1,1 ^ ´x ď δ1,2 ^ xď9 ^ x1 “x`1 u,
supt ´x1 | x ď δ2,1 ^ ´x ď δ2,2 ^ xď0 ^ x1 “x u

,
//.

//-

Strategies. A strategy µ induces a “subsystem” δ “ pF pδq of M in the sense that
exactly one argument pFi of the max operator on the right-hand side of each equation
δi “maxp. . . , pFipδq, . . .q is chosen. Intuitively, this means that a strategy selects exactly
one “incoming transition” for each template bound variable in each location '1.

Example 9.2 (Strategy) A strategy in the example in Fig. 9.2 corresponds for in-
stance the following system of equations:

δ0,1 “ 8
δ0,2 “ 8
δ1,1 “ supt x1 | xďδ1,1 ^ ´xďδ1,2 ^ xď9 ^ x1 “x`1 u
δ1,2 “ supt ´x1 | x ď δ0,1 ^ ´x ď δ0,2 ^ x1 “5 u
δ2,1 “ ´8
δ2,2 “ ´8

We see that for δ1,1 we have chosen the third and for δ1,2 the second argument of the
max operators in the equations of Example 9.1.

One has to compute the least solution lfp!M" of the system M, where !M" is defined
as

!M"pdq “ max
µ in M

!µ"pdq

and with !µ"pdq “ !δ “ pF pδq"pdq “ pF pdq.

Max-strategy improvement. lfp!M" is computed with the help of the max-strategy
improvement algorithm (see Fig. 9.3) which iteratively improves strategies µ until the
least fixed point lfp!µ" of a strategy equals lfp!M".

The least fixed point lfp!µ" of a strategy µ can be computed by solving the LP
problem with the constraint system

for each
`
δ#1 “!R"7pδ#q

˘
in µ : d#1 ď T#1x1 ^ T#x ď d# ^ Rpx,x1q
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initial strategy: µ :“ tδ#0 “8, δ# “´8 for all '‰'0u

initial bounds: d :“ λ'.δ# Ñ
"

8 for '“'0
´8 for '‰'0

while not d is a solution of M do
µ :“ max improveMpµ,dq
d :“ lfp!µ"

done
return d

Figure 9.3: Max-strategy iteration algorithm

(where x and x1 are auxiliary variables) and the objective function max
ř

i di, i.e., the
sum of all bounds d.

µ1 is called an improvement of µ w.r.t. d, i.e., µ1 “ max improveMpµ,dq iff

1. µ1 is “at least as good” as µ: !µ1"pdqě!µ"pdq, and
2. µ1 is “strictly better for the changed equations”: if pδi “ pFipδqq in µ and pδiě pF 1

i pδqq
in µ1 and pFi ‰ pF 1

i , then pF 1pdq ą pF pdq.

Example 9.3 (Max-strategy iteration) We illustrate some steps of the analysis of
the example in Fig. 9.2. Assume the current strategy is:

µ1 “

$
’’’’’’&

’’’’’’%

δ0,1 “ 8
δ0,2 “ 8
δ1,1 “ supt x1 |x ď δ0,1 ^ ´x ď δ0,2 ^x1 “5 u
δ1,2 “ supt ´x1 |x ď δ0,1 ^ ´x ď δ0,2 ^x1 “5 u
δ2,1 “ ´8
δ2,2 “ ´8

,
//////.

//////-

and the current template bounds are:

d1 “

$
&

%

δ0,1 Ñ 8 δ0,2 Ñ 8
δ1,1 Ñ 5 δ1,2 Ñ ´5
δ2,1 Ñ ´8 δ2,2 Ñ ´8

,
.

-

The strategy can only be improved w.r.t. δ1,1:

µ2 “

$
’’’’’’&

’’’’’’%

δ0,1 “ 8
δ0,2 “ 8
δ1,1 “ supt x1 | xďδ1,1 ^ ´xďδ1,2 ^ xď9 ^x1 “x`1 u
δ1,2 “ supt ´x1 |x ď δ0,1 ^ ´x ď δ0,2 ^x1 “5 u
δ2,1 “ ´8
δ2,2 “ ´8

,
//////.

//////-

We compute the new fixed point w.r.t. µ2:

d2 “ lfp!µ2" “

$
&

%

δ0,1 Ñ 8 δ0,2 Ñ 8
δ1,1 Ñ 10 δ1,2 Ñ ´5
δ2,1 Ñ ´8 δ2,2 Ñ ´8

,
.

-

In the next step we can improve the strategy w.r.t. δ2,1 and δ2,2, a.s.o.

An improving strategy is selected by testing for each equation whether an argument
of its max-operator leads to a greater bound. Since the arguments of the max-operator
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115 9.2. Logico-Numerical Max-Strategy Iteration

are required to be monotonic, the bounds are always monotonically increasing and, thus,
arguments that have already been selected in previous strategies need not be considered
again.

9.2 Logico-Numerical Max-Strategy Iteration

We will present an algorithm which enables the use of max-strategy iteration in a logico-
numerical context, i.e., programs with a state space Bp ˆ Rn.

Example 9.4 An example for such a logico-numerical program is the following C pro-
gram:

b1=true; b2=true; x=0;

while(true)

{

while(x<=19) { x = (b1 ? x+1 : x-1); }

while(x<=99) { x = (b2 ? x+1 : x); b2 = !b2; }

if (x>=100) { b1 = (x<=100); x = x-100; }

}

Fig. 9.5 in §9.2.2 shows a CFG corresponding to this program. Note that we allow
numerical constraints in assignments to Boolean variables. A program property we want
to prove is for instance the invariant 0ďxď100.

9.2.1 Abstract Domain

We consider the logico-numerical abstract domain A “ ℘pBpq ˆ R
m

which combines
Boolean formulas with template polyhedra. An abstract value S7 “ pB,dq consists of
the cartesian product of valuations of the Boolean variables B (represented as Boolean
formulas using Bdds for example) and the template bounds d. We define the domain
operations:

– Abstraction: αTpSq “
ˆ

tb | Dx : pb,xq P Su
mintd | pb, γx

T
pdqq P Su

˙

– Concretization: γTpS7q “ B ^ γx
T

pdq

– Join:

ˆ
B
d

˙
\T

ˆ
B1

d1

˙
“

ˆ
B _ B1

d \x
T
d1

˙

– Image: !R#,#1"7

ˆ
B
d

˙
“

ˆ
tb1 | T#xďd ^ b P B ^ Rpb, b1,x,x1qu

sup tT#1x1 | T#xďd ^ b P B ^ Rpb, b1,x,x1qu

˙

J and K are defined as

ˆ
tt
8

˙
and

ˆ
ff

´8

˙
respectively.

Since we are analyzing a CFG with locations L, we have the overall abstract domain
Σ7 “ L Ñ A. An abstract value S7 “ λ'.pB#,d#q P Σ7 assigns to each location a value
of the above logico-numerical domain. Note that the dimension m of d# may depend on
' if the templates differ from location to location.
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1 S :“ S0

2 S1 “ postpSq
3 while $stablepS, S1q do
4 while $p stablepS, S1q do

S :“ S1

S1 “ postpSq
done

,
//.

//-
phase (1): truncated logico-numerical Kleene iteration

5
6
7
8 S :“ S1

9 M “ generatepSq
10 µ :“ pδ “ dq
11 µ1 “ max improveMpµ,dq
12 while µ1 ‰ µ do

µ :“ µ1

d :“ lfp!µ"
µ1 “ max improveMpµ,dq

done

,
////.

////-

phase (2): numerical max-strategy iteration
13
14
15
16
17 S1 “ postpSq
18 done
19 return S

Figure 9.4: Logico-numerical max-strategy iteration algorithm

9.2.2 Algorithm

Our analysis is based on alternating (1) a truncated Kleene iteration over the logico-
numerical abstract domain and (2) numerical max-strategy iteration, see Fig. 9.4.

The truncated Kleene iteration (phase (1)) explores the system until a certain cri-
terion is satisfied; we say that the system preliminarily stable. We use the following
criterion: we stop Kleene iteration if for all locations the set of reachable Boolean states
does not change whatever transition we take. The underlying idea is to discover a sub-
system, in which Boolean variables are stable during a presumably larger number of
iterations. In such a subsystem numerical variables evolve, while Boolean transitions
switch only within the system, i.e., they do not “discover” new Boolean states, until
numerical conditions are satisfied that make Boolean variables leave the subsystem.

We use max-strategy iteration (phase (2)) to compute the fixed point for the nu-
merical variables for such a subsystem. Then Kleene iteration (phase (1)) continues
exploring the next preliminary stable subsystem. The algorithm terminates in a finite
number of steps, as soon as the Kleene iteration of phase (1) has reached a fixed point.

Formal description. See Fig. 9.4. Since we only manipulate abstract quantities, we
will omit the superscript 7 in the sequel in order to improve readability.

For phase (1) we use the definitions:

– Initial abstract value: S0 “ λ'.

"
J for '“'0
K for '‰'0

– Post-condition: postpSq “ λ'1.Sp'1q \
Ů

#!R#,#1"pSp'qq
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117 9.2. Logico-Numerical Max-Strategy Iteration

'0 '1

'2

b1
1 ^ b1

2 ^ x1 “0
pb1

1 “b1q ^ pb1
2 “b2q ^ xď19 ^ x1 “

"
x`1 if b1
x´1 if $b1

pb1
1 “b1q ^ pb1

2“b2q ^ xě20 ^ px1 “xqpb1
1 “pxď100qq ^ pb1

2 “b2q
^ xě100 ^ px1 “x´100q

$
&

%

pb1
1 “b1q ^ pb1

2 “$b2q ^ xď99^

x1 “
"

x`1 if b2
x if $b2

Figure 9.5: CFG of the program in Example 9.4

– Condition for preliminary stability: p stablepS, S1q “ p@' : B# “B1
#q

– Condition for stability (global convergence): stablepS, S1q “ pS“S1q

For phase (2) we define the following:
– The max-strategy improvement operator max improveM is defined as described in

§9.1.
– The operator generate dynamically derives the system of equations for the current

preliminary stable subsystem: this means that we restrict the system to those tran-
sitions that stay within the subsystem defined by the current Boolean states λ'.B#.
For this purpose we conjoin the term b P B# ^b1 P B#1 to the transition relation in the
definition below. Strategies may only contain convex constraints: thus, we transform
the relation into disjunctive normal form and generate one strategy per disjunct:

generatepSq “
ď

#1,#

decomp convexpDb, b1 : R#,#1pb,x, b1,x1q ^ b P B# ^ b1 P B#1q

where decomp convexpR#,#1q “
Ť

j

`
δ#1 “ !Rj

#,#1"pδ#q
˘
with R#,#1 “

Ž
j R

j
#,#1 and Rj

#,#1

convex.

Remark 9.1 Since the bounds d are monotonically increasing, we use the constant
strategy δ“d (where d are the previously obtained bounds) as initial strategy for phase
(2) (see line 10 in Fig. 9.4). This prevents the numerical max-strategy improvement
from restarting with δ“´8 each time.

We illustrate this algorithm by applying it to the CFG in Fig. 9.5:

Example 9.5 We use the template constraint matrix

ˆ
1

´1

˙
which corresponds to an

interval analysis. In order to make the presentation more concise, we will write states

p' Ñ
ˆ

B
d

˙
q P Σ as ' Ñ

ˆ
ϕpb1, b2q

r ´ δ#,2, δ#,1s

˙
where ϕ is a Boolean formula.

The initial state in '0 is

ˆ
tt

r´8,8s

˙
. We start exploring the system by taking

transition p'0, R, '1q: '1 Ñ
ˆ

b1 ^ b2
r0, 0s

˙
. We continue propagating through p'1, R, '1q:
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'1 Ñ
ˆ

b1 ^ b2
r0, 1s

˙
. Now, we have reached preliminary stability because none of the

transitions makes us discover new Boolean states in the next iteration (p'0, R, '1q and
p'1, R, '1q yield nothing new w.r.t. Boolean states and the other transitions are infeasible,
i.e., they give K). Hence, we go ahead to phase (2) and extract the numerical equation
system for each p', R, '1q. E.g. for p'1, R, '1q, we compute:

Db, b1 : R ^ b1 ^ b2 ^ b1
1 ^ b1

2 “ px1 “x`1 ^ xď19q

which gives us the partial equations:

δ1,1 “supt x1 | x ď δ1,1 ^ ´x ď δ1,2 ^ x1 “x`1 ^ xď19 u
δ1,2 “supt ´x1 | x ď δ1,1 ^ ´x ď δ1,2 ^ x1 “x`1 ^ xď19 u

which have to be completed by the other incoming arcs of '1. We start the max-strategy
iteration with the strategy corresponding to the values obtained in phase (1):

µ “ tδ0 “8, δ1,1“1, δ1,2 “0, δ2 “´8u

We observe that we can improve this strategy w.r.t. δ1,1:

µ1 “

$
&

%

δ1 “8
δ1,1“suptx1 | x ď δ1,1 ^ ´x ď δ1,2 ^ x1 “x`1 ^ xď19u, δ1,2 “0
δ2 “´8

,
.

-

The max-strategy iteration terminates with: '1 Ñ
ˆ

b1 ^ b2
r0, 20s

˙
.

We continue propagating (phase (1)): By p'1, R, '2q we get '2 Ñ
ˆ

b1 ^ b2
r20, 20s

˙
; then

p'2, R, '2q results in

ˆ
b1 ^$b2
r21, 21s

˙
; by joining these values we get '2 Ñ

ˆ
b1

r20, 21s

˙
.

Taking p'2, R, '2q a second time does not change the Boolean state: '2 Ñ
ˆ

b1
r20, 22s

˙
.

Taking any other transition does not discover new Boolean states either, thus, we move
on to phase (2) and compute the numerical equation system w.r.t. the current Boolean
state: For example for p'2, R, '2q, we compute

pDb, b1 : R ^ b1 ^ b1
1q “

`
px1 “x`1 _ x1 “xq ^ xď99

˘

which results in the partial equations

δ2,1 “max

"
supt x1 | x ď δ2,1 ^ ´x ď δ2,2 ^ x1 “x`1 ^ xď99 u,
supt x1 | x ď δ2,1 ^ ´x ď δ2,2 ^ x1 “x ^ xď99 u

*

δ2,2 “max

"
supt ´x1 | x ď δ2,1 ^ ´x ď δ2,2 ^ x1 “x`1 ^ xď99 u,
supt ´x1 | x ď δ2,1 ^ ´x ď δ2,2 ^ x1 “x ^ xď99 u

*

which have to be completed by the other incoming arcs of '2. The only possible improve-

ment w.r.t to the current state is w.r.t. δ2,1; phase (2) results in '2 Ñ
ˆ

b1
r20, 100s

˙
.

We continue with phase (1), which filters the above value through p'2, R, '1q aug-

menting the abstract value in '1 to

ˆ
b1

r0, 20s

˙
. Then, none of the transitions makes

the reachable state sets increase (neither Boolean nor numerical), hence we have reached
the global fixed point:

'0 Ñ J, '1 Ñ
ˆ

b1
r0, 20s

˙
, '2 Ñ

ˆ
b1

r20, 100s

˙
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Note that a logico-numerical analysis in the same domain with widening and descending
iterations yields no information about this example: S “ λ'.J.

Application to data-flow programs. For our experiments in §9.3, we used Lustre
programs. We generated a CFG using the state space partitioning technique of Def. 8.2.
Then, the transition relations are constructed from the transition functions as follows:

R#,#1 “ Dβ :

"
x1 “ fxpb,x,β, ξq
b1 “ f bpb,x,β, ξq

*
^ ϕ#px, bq ^ ϕ#1 px1, b1q ^ Apb,x,β, ξq

where ϕ# are the location definitions. Boolean input variables β are simply quantified
existentially. Numerical inputs ξ appear as auxiliary variables (i.e., variables with-
out associated bounds) in the max-strategy iteration, hence, they are treated without
modification of the algorithms.

9.2.3 Properties

Theorem 9.1 (Termination) The logico-numerical max-strategy algorithm terminates
after a finite number of iterations.

Proof Termination follows from these observations:
(a) Phase (1) only propagates as long as new Boolean states are discovered; the number

of Boolean states is finite.
(b) Max-strategy iteration is called at most once for each subset of Boolean states. The

number of subsets of Boolean states is finite.
(c) There is a unique system of numerical equations (built by generate) for each subset

of Boolean states.
(d) Max-strategy iteration terminates after a finite number of improvement steps, be-

cause there is a finite number of strategies and each strategy is visited at most once
[GS07b].

(e) Max-strategy iteration returns the unique least fixed point w.r.t. the given system
of equations [GS07b].
Thus, as soon as all reachable Boolean states have been discovered and the associated

numerical fixed point has been computed, the overall fixed point has been reached and
the algorithm terminates.

Theorem 9.2 (Soundness) The logico-numerical max-strategy algorithm computes a
fixed point of λS.S0 \ !R"7pSq.

Proof Let us denote
‚ F “ λS.S0 \ !R"7pSq.
‚ λS.plfpB F qpSq the truncated Kleene iteration phase (1)

(lines 4 to 7 in Fig. 9.4),
i.e., λS.

`
while B‰B1 do S :“ S1;S1 “ F pSq end; return S1

˘
.

‚ λpB,dq.pB, plfpX FXqpdqq the max-strategy iteration in phase (2)
(lines 9 to 16 in Fig. 9.4),
i.e., λS.

`
M “ generatepSq;µ :“ pδ “ dq;µ1 “ max improveMpµ,dq;
while µ1 ‰ µ do µ :“ µ1;d :“ lfp!µ";µ1 “ max improveMpµ,dq done;
return S

˘
.
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Then, we can write the whole algorithm as lfpppidB , lfpX FXq ˝ plfpB F q ˝ F q.
Since lfpB F and pidB , lfpX FXq are both extensive, we can under-approximate them

by id “ λS.S. Hence, we conclude from

lfp F Ď lfpp idloomoon
idĎpidB ,lfpXFXq

˝ idloomoon
idĎplfpBF q

˝ F q

that our algorithm computes an over-approximation of the least fixed point, i.e., it is
sound.

Theorem 9.3 (Optimality) The logico-numerical max-strategy algorithm computes
the least fixed point of λS.S0 \ !R"7pSq.

Proof Additionally to Thm. 9.2, we have to show that
lfpppidB , lfpX FXq ˝ plfpB F q ˝ F q Ď lfp F .

(a) Phase (1) computes a certain number of iterations F kpKq “ plfpB F q ˝F pKq taking
into account the whole transition system. We trivially have F kpKq Ď lfp F pKq.

(b) Phase (2) pidB , lfpX FXq iterates over the transitions of a subsystem. It is known
[GS07b] that it computes the least fixed point w.r.t. this subsystem. Hence, the re-
sult of phase (2) cannot go beyond the fixed point of the whole system: pidB , lfpX FXq˝
F kpKq Ď lfp F .

(c) We can repeat arguments (a) and (b) for the outer loop:
. . . ˝ pidB , lfpX FXq ˝ F k2 ˝ pidB , lfpX FXq ˝ F k1pKq Ď lfp F
where kn is the number of iterations in the nth phase (1).
Thus, we have ppidB , lfpX FXq ˝ F knqnpKq Ď lfp F for ně0.

Hence, we conclude from lfpppidB , lfpX FXq ˝ plfpB F q ˝ F q Ď lfp F and Thm. 9.2 that
our algorithm computes the least fixed point, i.e., it is optimal.

9.2.4 Discussion

An important observation is that, since the overall abstract domain is of the form
L Ñ ℘pBpq ˆ R

m
, the choice of the CFG has two effects on the performance: first, it

determines the set of representable abstract properties, and second, it influences the
approximations made in the generation of the numerical equation system for the max-
strategy iteration phase (2), because there is only one template polyhedron per location.

Generalization. The structure of the algorithm we presented is quite general. In
particular, it does not depend on the method used to compute the numerical least fixed
point in phase (2). We conjecture that the algorithm makes every method, that is able
to compute the least fixed point of a numerical system by ascending iterations, compute
the least fixed point of a logico-numerical system.

For example, we suppose that our algorithm can be used without any modifica-
tion with the variant of max-strategy iteration for quadratic programs and quadratic
templates proposed in [GS10].

If a method computes the fixed point by descending iterations, as for example min-
strategy iteration [CGG`05, GGTZ07], our algorithm can still be used, but requires
a small adaptation because the abstract value computed in phase (1), which is an
under-approximation of the least fixed point, cannot be used to initialize phase (2),
which requires an over-approximation: hence, line 10 in Fig. 9.4 must be replaced by

120



121 9.2. Logico-Numerical Max-Strategy Iteration

guessing appropriate initial bounds and an initial strategy for phase (2). This makes
the algorithm less elegant and the analysis, probably, less efficient.

Logico-numerical max-strategy iteration using a power domain. The algo-
rithm is also rather generic w.r.t. the kind of logico-numerical abstract domain we
use. For example, we could consider the logico-numerical power domain Bp Ñ ℘pRnq
(cf. 7.2.3) where ℘pRnq is abstracted by any domain that is supported by strategy itera-
tion. Then, the overall domain for our method is L Ñ Bp Ñ R

m
. This domain implicitly

dynamically partitions each location into sub-locations corresponding to Boolean valu-
ations sharing a common numerical abstract value. The construction of the equation
system (generate in our algorithm, Fig. 9.4) must take into account these partitions.

This domain is more precise than the product domain described in §9.2, however, the
drawback is that the number of partitions might explode if only few Boolean valuations
share a common numerical abstract value.

Comparison with logico-numerical min-strategy iteration. The power domain
Bp Ñ R

m
is also used by Sotin et al [SJVG11] who propose an approach to analyzing

logico-numerical programs using min-strategies. In accordance with the form of the
abstract domain, they consider logico-numerical strategies Bp Ñ Π (where Π is the
set of min-strategies), which dynamically associates the numerical min-strategies to the
reachable Boolean states during analysis. They start with an initial logico-numerical
strategy P p0q “ λb.πp0q with a chosen numerical min-strategy πp0q and compute a fixed
point using logico-numerical Kleene iteration with widening and descending iterations.
Then they iteratively improve the min-strategies in P piq and recompute the fixed point.

This approach does not integrate well with mathematical programming because the
only known method for computing the fixed point of a logico-numerical strategy is
logico-numerical Kleene iteration (with widening). Hence, in contrast to our approach,
there is no guarantee to compute the least fixed point.

Comparison with abstract acceleration. Numerous methods have been developed
to alleviate the problem of bad extrapolations due to widening, e.g., abstract accelera-
tion (see §§4–6 and 8), a method for computing the transitive closure of numerical loops.
These methods are able to accelerate some cases of self-loops and cycles with certain
types of affine transformations, and they rely on widening in the general case. However,
due to the use of general convex polyhedra, they are able to“discover”complex invariant
constraints.

In contrast, max-strategy iteration is able to “accelerate” globally the whole tran-
sition system regardless of the graph structure or type of affine transformation, and it
effectively computes the least fixed point. However, this is only possible on the simpler
domain of template polyhedra.

Although the use of template polyhedra is a restriction, this kind of (static) ap-
proximation is much more predictable than the (dynamic) approximations made by
widening.

Remark 9.2 Guided static analysis [GR07] is a framework for analyzing monotoni-
cally increasing subsystems, which makes it possible to reduce the impact of widening by
applying descending iterations “in the middle” of an analysis. Our algorithm proceeds in
a similar fashion – although for different technical reasons – by applying max-strategy
iteration on monotonically increasing subsystems.

121



Chapter 9. Logico-Numerical Max-Strategy Iteration 122

Figure 9.6: Scalability of logico-numerical max-strategy iteration in comparison with
numerical max-strategy iteration on the enumerated CFG, using octagonal constraints.
The timeout was set to 3600 seconds. Note the logarithmic scales.

Alternative approach handling Booleans as integers. A naive approach to
treating Booleans is to encode them as integers P t0, 1up. The advantage is that max-
strategy iteration can be used“as is” by adding template constraints for those Booleans.
Yet, such an analysis will yield very rough approximations because templates can only
describe convex sets, whereas Boolean state sets are usually highly non-convex.

9.3 Experimental Evaluation

We implemented our method in our tool ReaVer (§14) based on the logico-numerical
abstract domain library BddApron [Jea] and the max-strategy iteration solver of Gawl-
itza et al [DG11a]. Since template polyhedra are not yet implemented in the Apron
library [JM09], we emulated template polyhedra operations in phase (1) with the help
of general polyhedra, which certainly impaired the efficiency – nonetheless we obtained
encouraging results.

Benchmarks. We took 18 of the benchmarks used in §8.4, which are Lustre pro-
grams of up to a few hundred lines of code, 27 Boolean and 7 numerical variables, which
produce enumerated CFGs of up to 650 locations and 5000 transitions after simplifi-
cation by Boolean reachability. The focus of the experiments was on comparing the
precision of the inferred invariants rather than proving properties.

Results. We performed experiments with octagonal constraints (˘xi, xi ˘ xj) in
order to evaluate efficiency and precision. We compared max-strategy iteration on
the enumerated CFGs (MSI) with logico-numerical max-strategy iteration (LNMSI)
on CFGs obtained by the static partitioning method by “numerical modes” described
in §8.3. The resulting CFGs are on average five times smaller than the enumerated
CFGs for the medium-sized benchmarks.

– LNMSI scales clearly better than MSI (see Fig. 9.6): our method was on average
9 times faster – for those benchmarks where both methods terminated before the
timeout: MSI hit the timeout in 8 out of 18 cases (versus 3 for our method). The
gain in efficiency grows with increasing benchmark sizes.
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– The precision is almost preserved: only 0.38% (!) of the bounds were worse but
still finite, and 0.16% were lost. This precision loss did not impact the number of
proved properties. Due to the better scalability we were even able to prove 3 more
benchmarks (10 as opposed to 7).

– We compared the precision of LNMSI with octagonal constraints with a logico-
numerical analysis with octagons using the standard approach with widening (N “2)
and 2 descending iterations on the same CFG. 18% of the bounds of our invariants
were strictly better than those computed using the standard analysis. In two cases,
these improvements made the difference to prove the property. However, the standard
analysis was 19 times faster on average.

Furthermore, we experimented with different templates and CFG sizes:
– Thegain in speed increases with the template size: 3.3 for interval analysis (˘xi), 5

for zones (˘xi, xi´xj) and 9 for octagons (for those benchmarks which did not run
into timeouts).

– The precision of LNMSI depends on the CFG size: the general trend is “the bigger
the more precise”, but the results are less clear: CFGs of the same size seem to have
very different quality w.r.t. precision. Partitioning methods that find good partitions
matter!

– A smaller CFG does not automatically mean faster analysis: the fact that a smaller
graph means more complicated logico-numerical transition functions and more nu-
merical strategies per location outweighs the advantage of dealing with less locations.

– It is interesting that LNMSI scales also better on the enumerated CFG: it seems to be
advantageous to start with a small system with few strategies, iteratively increase the
system, and finally, when computing the numerical fixed point of the full system, most
of the strategies are already known not to improve the bounds, and thus max-strategy
iteration converges faster.
We also experimented with LNMSI using the logico-numerical power domain dis-

cussed in §9.2.4, which performed on our CFGs still 6 to 7 times faster and with a 100%
preservation of bounds compared to MSI.

9.4 Conclusions

We presented logico-numerical max-strategy iteration, a solution to the intricate problem
of combining numerical max-strategy iteration with techniques that are able to deal with
Boolean variables implicitly and therefore allow to trade off precision for efficiency.

In contrast to the previous attempt of Sotin et al [SJVG11] of extending strategy
iteration to logico-numerical programs, which relies on widening operators to converge,
our method enables the use of mathematical programming and hence, it indeed computes
the best logico-numerical invariant w.r.t. the chosen abstract domain.

The effectiveness of our method depends on two factors:
(1) The choice of the templates: in our experiments, we used mainly octagonal con-

straints, but we could have used methods for inferring template constraints, e.g.,
[SSM05].

(2) The considered CFG (either of the imperative program, or the one obtained by par-
titioning in the case of data-flow programs) which determines the abstract domain:
the partitioning method by “numerical modes” turned out to be surprisingly effec-
tive: compared to the solution based on an enumeration of the reachable Boolean
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states, the obtained CFGs were 5 times smaller on average, still the precision loss
was negligible, i.e., almost zero, and we gained at least one order of magnitude
w.r.t. efficiency.

Furthermore, we deliver the first experimental results of applying numerical max-
strategy iteration to larger programs: on the one hand max-strategy iteration is guaran-
teed to compute more precise invariants than standard techniques in the same domain;
on the other hand our implementation is not (yet) able to compete with standard tech-
niques w.r.t. efficiency.

Perspectives. Our algorithm is quite generic w.r.t. the numerical analysis method
and logico-numerical abstract domain. Yet, in order to tackle efficiency issues evoked
above, it would be interesting to design a more integrated logico-numerical max-strategy
solver. This would enable us to share more information between subsequent calls to the
max-strategy iteration, e.g., to avoid the retesting of strategies that will definitely not
lead to an improvement. Beyond that, we could more extensively use SMT-solvers. For
instance, checking whether a strategy is an improvement is currently done after having
constructed the numerical equation system; it would be beneficial to find the improving
strategies already on the logico-numerical level.

We will apply the method presented in this chapter to the analysis of logico-numerical
hybrid automata (see §11.2) by extending the hybrid max-strategy iteration method of
Dang and Gawlitza [DG11b, DG11a] (see also §12.2.2).
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Chapter 10

Hybrid System Modeling

This chapter gives on overview of concepts and languages for hybrid system modeling.
As explained in the introduction, an embedded system (Fig. 1.1) consists of a com-

puter system interacting with its physical environment – in terms of control theory: a
(discrete-time) controller and a (continuous-time) plant – which form together a hybrid
system. The plant is modeled using differential equations (the physical laws) (§10.1),
whereas the controller is a computer program represented by a discrete transition sys-
tem. The prevalent model for hybrid system verification is the hybrid automaton (§10.2),
which combines these models.

Numerical simulation languages and tools (§10.3), e.g., Simulink, are most widely
used for hybrid systems modeling. They provide an integrated environment supporting
simulation, code generation and test automation. However, their semantics has some
peculiarities.

The hybrid synchronous programming language Zelus (§10.4) tackles these seman-
tical issues. Its semantics is based on non-standard analysis, which allows to specify
a deterministic hybrid system semantics independently of numerical integration issues.
Moreover, it integrates elegantly with synchronous languages.

10.1 Dynamical Systems

We recall a few concepts from continuous dynamical systems. For further details we
refer to textbooks, e.g., [SB02].

Ordinary Differential Equations. An ordinary differential equation (ODE) of order
n is of the form

dnx

dtn
“ F

ˆ
t, x,

dx

dt
,
d2x

dt2
, . . . ,

dn´1x

dtn´1

˙

with x P R, t P Rě0. An ODE of order n can be written as a system of n ODEs of first
order:

$
’&

’%

x1 “ x
dxk
dt “ xk`1 for k P r1, n´1s
dxn
dt “ F pt, x1, x2, . . . , xnq

in vector notation: 9xptq “ F pt,xptqq

The existence and uniqueness of a solution to an ODE depends on the continuity of F :
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Figure 10.1: Trajectory of the solution
for x1ptq of the LTI system in Ex. 10.1
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Figure 10.2: Set of solu-
tions of the differential inclusion
in Ex. 10.2

Definition 10.1 (Lipschitz continuous) A function f is Lipschitz continuous iff

DK P Rě0 : @x1,x2 P Rn : ||fpx1q ´ F px2q|| ď K ¨ ||x1 ´ x2||

Theorem 10.1 (Picard-Lindelöf) If F is Lipschitz continuous, then 9xptq “ F pt,xptqq
has a unique solution xptq for a given initial condiiton xp0q“x0.

Linear time-invariant systems. A system of ODEs is time-invariant if F does not
depend on t: 9xptq “ F pxptqq. The function F can be viewed as a constant vector field
Rn Ñ Rn, which maps each point x to its derivative vector 9x.

Definition 10.2 (Linear time-invariant system) A linear time-invariant (LTI) sys-
tem is characterized by the linear ODE system with constant coefficients

9xptq “ Axptq ` Bξptq

with state variables x P Rn, input variables ξ P Rm and matrices A P Rnˆn,B P Rnˆm.

The solution of such a system for the initial conditions xp0q“x0 is given by:

xptq “ eAtx0 `
ż t

0

eApt´t1qBξpt1qdt1 (10.1)

Example 10.1 (LTI system) (see Fig. 10.1)

$
&

%

x1p0q “ 0 x2p0q “ 0
ξptq “ 1
9x1ptq “ x2ptq 9x2ptq “ ξptq´x1ptq´ 1

2x2ptq

Differential inclusions. A differential inclusion is given by a relation 9xptq P F pt,xq.
For time-invariant systems we denote this relation V px, 9xq. A linear differential inclusion
with constant coefficients is defined by Axptq ` C 9xptq ď d, i.e., V px, 9xq is a convex
polyhedron.

The set of solutions of the ODE system 9x “ F px, ξq generated by all inputs ξ

satisfying a predicate Apx, ξq and the initial conditions xp0q P I equals the set of
solutions of the linear differential inclusion

V px, 9xq “ Dξ : p 9x“F px, ξqq ^ Apx, ξq

with initial conditions xp0q P I.
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Example 10.2 (Differential inclusions) (see Fig. 10.2)

xp0q“1
@tě0 : 3ďξptqď4
9xptq “ xptq`ξptq

,
.

- ðñ
"

xp0q“1
3ď 9xptq´xptqď4

10.2 Hybrid Automata

Hybrid automata [ACHH92, ACH`95, Hen96, HHWT97] are a well-established formal-
ism for specifying hybrid systems in the context of verification.

Definition 10.3 A hybrid automaton (HA) is a directed graph defined by xL,F, J,Σ0y
where
– L is the finite set of locations;
– F : L Ñ V maps a flow relation (a differential inclusion) V px, 9xq P V to each stat;
– J Ď LˆRˆL defines a finite set of arcs between locations with the discrete transition

relation Rpx,x1q P R over the state variables x; and
– Σ0 : L Ñ X maps to each state the set of initial states X0 P X , which satisfy the

condition @' : @x : Σ0p'qpxq ñ D 9x : F p'qpx, 9xq.

Further notations:
– C#pxq“D 9x :V#px, 9xq is the staying condition of the flow V# “F p'q.
– G#,#1pxq“Dx1 :Rpx,x1q is the guard of the arc p', R, '1q P J .

Semantics. We use the following definitions: Let Tr0,δs be the set of differentiable
trajectories τ : r0, δs Ñ Rn. The function flowV!

returns the set of end states of
trajectories τ starting in the given state x and that obey the flow relation V#:

flowV!
pxq “

$
’’&

’’%
x1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

Dδą0, Dτ P Tr0,δs :
τp0q “ x ^ τpδq “ x1 ^
@δ1 P r0, δs : C#pτpδ1qq ^
@δ1 P p0, δq : V#pτpδ1q, 9τpδ1qq

,
//.

//-

Definition 10.4 (Semantics) An execution of a hybrid automaton is a (possibly) in-
finite trace p'0,x0q Ñ p'1,x1q Ñ p'2,x2q Ñ . . . with Ñ“Ñc Y Ñd and

p',xq Ñc p'1,x1q ô '“'1 ^ V# “F p'q ^ x1 P flowV!
pxq

p',xq Ñd p'1,x1q ô Dp', R, '1q P J : Rpx,x1q ^ C#1px1q

Fig. 10.3 depicts a hybrid automaton and Fig. 10.4 shows some of its possible exe-
cutions.

Note that the concrete semantics of hybrid automata exhibit three kinds of non-
determinism:
– Non-determinism w.r.t. flow transitions, i.e., the choice between different continuous

evolutions compatible with the differential inclusions V .
– Non-determinism w.r.t. flow and jump transitions: The choice between flow and jump

transitions due to an overlapping of staying condition and guards.
– Non-determinism w.r.t. jump transitions, which is the choice between several jump

transitions.
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30ď 9x`xď40
xď22

0ď 9x`xď10
xě16
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18ďx1ď20

xě20
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Figure 10.3: Hybrid automaton: Thermostat example (cf. [ACH`95])
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Figure 10.4: Example execution of the hybrid automaton in Fig. 10.3: staying con-
ditions (whole shaded area) and intersection of staying and guards (dark gray).

Verification. We will discuss the verification of hybrid automata in §12.

Modeling languages. Hybrid automata are a very low-level formalism and it is cum-
bersome to use them as a specification or programming language for large systems. How-
ever, they can be decomposed into the synchronous product of several hybrid automata
in order to enable modular specification in form of hierarchical networks of communi-
cating hybrid automata. This idea is used for example in the languages/tools Shift1,
HyVisual2 [LZ05] (based on the Ptolemy II framework) and Charon3 [ADE`03].
They offer tools for simulation; Charon has also verification support.

Conceptually close to these languages are hybrid process calculi, like Hybrid CC4

(“concurrent constraints”) [GJS95], ϕ-calculus [RS03], and Hybrid Chi5 [vBMR`06].
These languages generally support simulation. Hybrid Chi also provides a translation
of subsets of the language to input formats for hybrid and timed automata verification
tools, e.g., Uppaal [BLL`95].

10.3 Simulation Languages

Although the hybrid automaton model is well-suited for verification, the most widely
used modeling languages for hybrid systems are those provided by numerical simulation
tools like Simulink [Sim]. They offer features like modularity, hierarchy and a data-
flow or equational syntax. We shortly describe some languages and tools and sketch the

1http://path.berkeley.edu/SHIFT/
2http://ptolemy.eecs.berkeley.edu/hyvisual/
3http://rtg.cis.upenn.edu/mobies/charon/
4http://xenon.stanford.edu/~vgupta/hcc/hcc.html
5http://se.wtb.tue.nl/sewiki/chi/start
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(a) Bouncing ball (cf. Fig. 10.7a)

(b) Thermostat system

Figure 10.5: Hybrid system modeling with Simulink/Stateflow

continuous evolution discrete transitions
Ips1q

zero-crossing

no more zero-crossing

x1 “ x`δ ¨ f cpsq uppzq Ñ s1 “ fdpsq

Figure 10.6: Execution scheme of a numerical simulator

mode of operation of such simulators.
At last we will discuss some odd phenomena occurring in hybrid systems w.r.t.

discrete events and time: there might be an infinite number of discrete transitions in a
finite time interval.

Languages

Simulink [Sim] is an integrated tool platform for modeling, simulation, code-generation
and test automation of hybrid systems. It has a graphical data-flow-based input lan-
guage for specifying the continuous and discrete behavior (see Fig. 10.5a). Additionally
the Stateflow extension enables automata-based specification of the discrete behavior
(rightmost block in Fig. 10.5b).

Scicos6 has features similar to Simulink.
Modelica7 [FE98, OEM99] is a standardized language. Its particularity is that

it supports equation-based specifications of continuous behavior (differential algebraic
equations fpx, 9xq “ 0), which are common in physics, e.g., for conservation laws like
Kirchhoff’s laws. There are several commercial and open source simulator implementa-
tions.

Zelus [BCP10, BBCP12, BBCP11a, BBCP11b] (see §10.4) is a recent academic
hybrid synchronous data-flow language for modeling, simulation, code-generation and
verification (see §11).

Simulators

The simulation of such hybrid models uses numerical ODE solvers for handling continu-
ous evolution. Discrete execution steps that interrupt the continuous-time evolution are

6http://www.scicos.org
7http://modelica.org
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triggered by the activation of zero-crossings. A zero-crossing uppzq is an event occur-
ring during the integration of an ODE system 9xptq “ f cpxptqq, when some expression
zpxptqq changes sign from negative to positive. A zero-crossing may also be triggered
by a discrete execution step.

Such a simulator works as follows (Fig. 10.6): At start, the main simulation loop
initializes the ODE solver with an initial state x0, a system of ODEs 9xptq “ f cpxptqq,
and a finite set of zero-crossing expressions zj . Then the ODE solver integrates using
the specified integration method – in Fig. 10.6 an Euler scheme is indicated – until at
least one of the zero-crossings is activated. When this happens, the control is given
back to the main simulation loop, which executes one or several discrete execution steps
s1 “ fdpsq before reinitializing the ODE solver and continuing the integration.

For the detection of a zero-crossing, ODE solvers usually have to backtrack and de-
crease the integration step in order to accurately approximate the point of zero-crossing.
Since this is quite expensive and slows down simulation, e.g., Simulink/Stateflow
offers the option to execute discrete actions without zero-crossing detection, i.e., the
discrete equations s1 “ fdpsq are evaluated at every integration step. However, this can
easily result in unpredictable behavior.

Peculiar behaviors of hybrid systems

The plant model is often a hybrid system itself because of simplifications and idealiza-
tions: for example, fast behaviors like opening of a valve or highly non-linear behavior
like the one of diodes are often modeled as discontinuities (jumps), i.e., discrete transi-
tions. These (over-)simplifications of reality, but also the interaction with the discrete
controller, can result in peculiar behaviors.

Zeno behavior. Fig. 10.7 shows the model of a ball that bounces on a surface
losing energy: the time interval between the jump transitions decreases to zero. The
sum of the time intervals has a limit (the so-called “Zeno point”): time approaches this
point, but it cannot advance beyond it. Hence, there is an infinite number of discrete
transitions in a finite time interval.

Numerical simulators face difficulties in such “chattering” situations, because the
number of events (zero-crossings) explodes and the simulation advances very slowly.
Usually, the simulator issues a warning when a certain number of events per time interval
is exceeded. Moreover, simulation results are very unpredictible due to numerical errors
and the simulation might erroneously continue beyond the Zeno point.

There are methods for “regularizing” and extending certain types of systems beyond
the Zeno point [ZLA06], but there is no general theory. In practice, Zeno behavior
is avoided in design by introducing a threshold below which the system jumps to the
asympotic value.

Sliding modes. Chattering along a surface can also arise without time being blocked,
like in the following example:

Example 10.3 (Chattering) Assume a system where initially, xp0q“´1 and 9xptq“1;
then, every time when x becomes strictly greater than zero (uppxptq), x continues evolv-
ing according to the dynamics 9xptq “ ´1, and every time when x becomes strictly less
than zero upp´xptqq, x continues with the dynamics 9x “ 1. The resulting trajectory is
illustrated in Fig. 10.8a.

132



133 10.4. Zelus – A Hybrid Synchronous Language

9y“v^
9v“´9.81^
yě0

y1 “5^
v1 “0 vď0 ^ y“0^

v1 “´0.6v
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Figure 10.7: Bouncing ball: hybrid automaton (a) and zeno behavior (b)
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(b) Equivalent sliding mode

Figure 10.8: Sliding modes

Such infinitely fast switching between modes is the principle of sliding mode control,
used for non-linear and uncertain systems, e.g., anti-lock braking systems. The goal is
to control a system by chattering along the desired trajectory. This trajectory lying “in”
the intersection of the switching surfaces is called the sliding mode (Fig. 10.8b). For
certain cases of physical systems, the sliding mode behavior can be computed in closed
form [Fil60, Utk92, AB08].

In some applications, for example, if Ex. 10.3 represented a thermostat system, it
would not be desirable to incessantly switch on and off the gas boiler. In such cases one
introduces two switching thresholds, i.e., hysteresis, in the model (cf. Fig. 10.3).

Remark 10.1 Chattering in the context of sliding modes cannot be exactly modeled in
hybrid automata. We will discuss this issue in §11.1.

10.4 Zelus – A Hybrid Synchronous Language

Embedded controllers interact tightly with the plant. Hence, for validation purposes, it
is propitious to integrate a plant model into the development process and consider the
whole system. For this reason, simulation platforms, like Simulink, have become very
popular in industry, because they support such an approach.

However, the semantics of these hybrid simulators is not so well-understood: Usually
the semantics is induced by the simulation engine and the multitude of its parameters
like fixed or variable integration methods, zero-crossing detection, thresholds and step
sizes. Additionally numerical issues due to floating point arithmetics play an important
rule. Besides that, there are also strange semantical choices: e.g., in Simulink the
evaluation order of the block elements in a diagram depends on their graphical position.
All these issues sometimes result in hardly reproducible simulation results with limited
trustworthiness.
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xdecly ::= xtypedecly | xfundecly | xdecly xdecly
xtypedecly ::= type t = L | . . . | L

xfundecly ::= let [node | hybrid] f [xpaty] = xexpry
xpaty ::= v | (xpaty,...,xpaty)
xexpry ::= v | cst | op xexpry | f xexpry | (xexpry,...,xexpry)

| xexpry fby xexpry | xexpry -> xexpry | pre xexpry | last v | up xexpry | init
| xexpry on xexpry | let [rec] xequy in xexpry

xequy ::= v = xexpry | xequy and xequy
| der v = xexpry init xexpry reset xresy
| v = xresy init xexpry
| automaton (S [xpaty] -> xlocy unless xtransy | . . . | xtransy done)`

xresy ::= xexpry every xexpry | . . . | xexpry every xexpry
xlocy ::= local v in xlocy | do xequy until xtransy | . . . | xtransy
xtransy ::= xexpry (then | continue) S

Table 10.1: Zelus syntax (subset).

There are several attempts of designing languages that reconcile the requirements
for an easy-to-use all-in-one platform for programming, simulation, and verification of
an embedded (hybrid) system, e.g., Ptolemy II [LZ05] or Zelus [BCP10, BBCP12,
BBCP11a, BBCP11b]. The latter combines the synchronous programming language
Lucid Synchrone (§2.2) with ODEs.

We present the Zelus language in §10.4.1. Interesting is the aspect that the se-
mantics (§10.4.3) is based on non-standard analysis (§10.4.2), which allows an “ideal”
discretization of the evolution of continuous variables. Thus, it provides an elegant for-
mal definition of the semantics of hybrid systems, which is independent of numerical
integration methods.

Actually, non-standard analysis has already been employed by Iwasaki et al [IFS`95]
in the context of hybrid systems. Later, Bliudze et al [BK09, Bli06] have proposed non-
standard analysis as a semantic domain for specifiying and analyzing hybrid systems.
These ideas have then influenced the development of Zelus as well as the imperative
language Whiledt [SH11].

10.4.1 Syntax of Zelus

Zelus is a language in development and hence undergoes an evolution. We present here
roughly the (stable) subset of the language presented in [BBCP11b]. The syntax rules
are listed in Table 10.1).

Most of the constructs are similar to Lucid Synchrone (§2.2). We explain the
additional concepts with the help of examples:

Example 10.4 (Zelus program) The following program describes a ball that starts to
move from the initial position x0 with the initial speed v0 as soon as start is enabled.
The change of speed is governed by gravity. There is a floor at x “ 0 from which it
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rebounces with inverted and reduced speed until the speed on hitting the floor falls below
a threshold eps. In this case the speed is set to 0 in order to avoid Zeno behavior.

let hybrid bouncingball (x0,v0,start,eps) = x where

rec der x = v init x0

and der v = -9.81 init 0.0

reset v0 every start

| -0.6*(last v) every (up(-x))

| 0.0 every ((up(-x)) on (-v<eps))

In addition to stateless functions and stateful, discrete nodes, Zelus has also state-
ful, hybrid nodes. Only hybrid nodes may contain ODEs. der x = v init x0 defines
an ODE 9xptq “v with initial condition xp0q “x0.

Discontinuities (jumps) are defined by reset handlers: v0 every start states that v
will be set to v0 every time the zero-crossing start (here an input of the node) occurs.
In the second reset handler, the zero-crossing is defined by (up(-x)), meaning that v
will be set to -0.6*v every time x crosses zero from above. The third reset handler sets
v to zero if (up(-x)) is activated and the condition (-v<eps) is satisfied. If several
zero-crossings are enabled simultaneously, then the first enabled one appearing in the
list has priority.

Zelus has also hierarchical automata [BBCP11b] with the same features as in Lucid
Synchrone (cf. §2.2). Ex. 10.4 can be reformulated using this construct:

Example 10.5 (Zelus program) (cf. [BBCP11b])
let hybrid bouncingball (x0,v0,start,eps) = x where

rec init x = x0

and automaton

| Wait -> do der v = 0.0 until start then Bounce(v0) done

| Bounce(v00) ->

local z,v in

do der v = -9.81 init v00

and der x = v

and z = up(-x)

until (z on (-v<eps)) then Wait

| z then Bounce(-0.6*v)

done

end

In this example, jumps are defined by location parameters (v00 in Bounce(v00)) and
entry by reset (then): for instance, when the zero-crossing start is activated in location
Wait, then we switch to location Bounce where v is initialized with the value of v0 given
as parameter.

We will describe the semantics of Zelus in §10.4.3 after having introduced the basics
of non-standard analysis which it is based on.

10.4.2 Introduction to Non-Standard Analysis

Non-standard analysis was proposed by Robinson [Rob96] in the 1960s to allow the ex-
plicit manipulation of infinitesimals in analysis. Robinson’s formulation is an axiomatic
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approach. We follow here the constructive formulation of Lindstrøm [Lin88], which de-
fines non-standard numbers as equivalence classes of infinite sequences: this is similar
to the definition of R as the set of equivalence classes of Cauchy sequences xxny over ra-
tional numbers QN{ ” with the equivalence relation xxny ” xyny ô limnÑ8pxn´ynq“0.

Non-standard real numbers. Non-standard real numbers ‹R shall extend R with
infinitely large numbers and numbers infinitely close to zero (infinitesimals). Hence, an
equivalence relation ‹” must be defined such that ‹R “ RN{‹”.

For this purpose a finitely additive8 measure µ over N is fixed with the following
properties:
(1) µ : ℘pNq Ñ t0, 1u,
(2) µpXq “ 0 for all finite sets X,
(3) µpNq “ 1.
This measure partitions ℘pNq into two classes: “small” sets (which include all finite sets)
with µ“ 0 and “big” sets with µ“ 1. The existence of such a measure is proved using
Zorn’s lemma (see [Lin88] for details).

Definition 10.5 (‹”) [Lin88] xxny‹” xyny iff µtn | xn “ynu“1
i.e., xxny equals xyny almost everywhere.

Definition 10.6 (Infinitesimals and infinite numbers) [Lin88]

B P ‹R is infinitesimal if @a P Rą0 : ´aăBăa
x P ‹R is infinite if $Da P Rą0 : ´aăxăa

For example, x 1
ny is an infinitesimal, because for any a P R the set tn | ´ aă 1

n ăau is
infinite and thus µ“1. Observe that 0 is the only infinitesimal number in R. Conversely,
xn2y and x´ny, for instance, are positive and negative infinite numbers respectively.

The following proposition describes the relationship between finite real and non-
standard real numbers:

Proposition 10.1 (Standard part) [Lin88] Any finite x P ‹R can be written uniquely
as a sum x“a`B where a P R and B is an infinitesimal.

We denote a “ stpxq the standard part of x.

The real numbers are embedded within the non-standard reals: the non-standard
version ‹a of a P R is the constant sequence xa, a, a, . . .y.

See Fig. 10.9 for an illustration of the real and non-standard number lines.

Sets, functions and the transfer principle. A non-standard set X “ xAny can
be constructed by a sequence of An P R such that

xany P xAny iff µtn | an P Anu“1

Similarly, a non-standard function xfny : ‹R Ñ ‹R can be constructed by a sequence
of functions fn : R Ñ R such that

xfnypxxnyq “ xfnpxnqy

Sets and functions constructed in this way are called internal : the construction is ap-
plied componentwise to the elements of the sequence. This principle can be generalized
to first-order formulas:

8µpX Y Y q “ µpXq`µpY q for X X Y “H
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infinite negative
numbers

finite numbers infinite positive
numbers

x“a`B‹R

R

a“stpxq

st

Figure 10.9: Number line of non-standard reals and their relation to standard reals
(cf. [Lin88])

Theorem 10.2 (Transfer principle) [Lin88] Let denote ϕ a first-order formula over R,
and ‹ϕ its non-standard version, i.e., where all symbols have been replaced by their non-
standard versions. Then

xAny |ù ‹ϕðñ µtn | An |ù ϕu“1

In other words, a first-order formula ϕ is true iff its non-standard version ‹ϕ is true.

As a consequence all operations over subsets of R carry over to internal subsets of
‹R, for instance:

a`b xany ` xbny “ xan`bny
aăb xany ă xbny ðñ µtn | anăbnu“1
A X B xAny X xBny “ xAn X Bnyş
A fdx

ş
xAnyxfnydx “ x

ş
An

fndxy

Hyperfinite sets and non-standard calculus. In the same way as ‹R, we can
define non-standard natural numbers ‹N “ N{‹ ” that extend N by infinite natural
numbers represented by sequences xany of natural numbers an of which the limit is
infinity.

Definition 10.7 (Hyperfinite set) [Lin88] An internal set X “ xAny is called hy-
perfinite if µtn | An is finiteu“1.

A hyperfinite set is an infinite set with all the combinatorial structure of finite sets: in
particular, it has a smallest and greatest element and all other elements have a unique
predecessor and a unique successor.

Let us consider the hyperfinite set T “ xTny and an infinite number N “ xNny P ‹N:

Tn “
"
0,

1

Nn
,
2

Nn
,
3

Nn
, . . .

Nn ´ 1

Nn
, 1

*

and a continuous function f : R Ñ R: we compute the sum

ÿ

tPT

1

N
‹fptq “

C
ÿ

tPTn

1

Nn
fptnq

G

Since 1
Nn

converges towards 0, the right-hand side above converges to the Riemann

integral
ş1
0
fptqdt:

ż 1

0

fptqdt “ st

˜
ÿ

tPT

1

N
‹fptq

¸
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Hence, the Riemann integral in R is the standard part of a hyperfinite sum.
Now, consider the following standard initial value problem:

9a “ fpa, tq, ap0q “ a0

Assume that the ODE has a solution a : R Ñ R. We rewrite the ODE in its equivalent
integral form aptq “ a0 `

şt
0
fpapτq, τqdτ which equals the hyperfinite sum

aptq “ st

˜
‹a0 `

ÿ

tPT

1

N
‹fp‹aptq, tq

¸

By substituting B “ 1{N , we get T “ ttn “ nB | n “ 0, . . . , Nu and we can write the
solution aptq of the initial value problem for n “ 0, . . . , N as the standard part stpxqptq
of the solution of an equivalent non-standard “hyperdiscrete” dynamical system

xpt0q “ ‹a0
xptn`1q “ xptnq ` B ¨ ‹fpxptnq, tnq (10.2)

Hence, like the semantics of discrete systems, the semantics of continuous systems
can be described by a (non-standard) discrete sequence of states. This is exploited in
the semantics of Zelus.

10.4.3 Sketch of the Semantics of Zelus

As in Lucid Synchrone, discrete statements and nodes in Zelus execute on a logical
base clock. ODEs, however, execute on continuous (physical) time. The relation between
the two is established with the help of zero-crossings: discrete statements are activated
by zero-crossings, i.e., the “base clock” of a discrete statement in a hybrid program
consists of the instants when its associated zero crossings are enabled.

Example 10.6 (Relating physical and logical time)
let node cnt () = n where rec n = 0 fby n+1

let hybrid main () = x where

rec der t = 1 init 0 reset 0 every (up (t-10))

and x = (cnt ()) every init or (up (t-10))

One step of the discrete node cnt is executed at the initial instant (“zero-crossing”
init) and every time the physical clock t reaches 10. Observe that the output of cnt is
discrete, whereas x is a (piecewise-constant) continuous variable.

All discrete behaviors – discrete variable changes, discontinuities of continuous vari-
ables, and changes of the dynamics of continuous variables – happen on the activation of
a zero-crossing. Hence, an execution of a program starts with an initialization followed
by an alternation of a continuous evolution phase and a discrete transition phase. The
discrete transition phase may consist of several discrete transitons, because a discrete
transition may activate a zero-crossing and thus another discrete transition.

This operational semantics actually emulates the behavior of a simulator described
in §10.3 and depicted in Fig. 10.6. Non-standard analysis comes into the semantics
w.r.t. the following aspects:
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init uppt´10q
ptk´1´10ă0 ^ tk´10ě0q

‚ ‚ ¨ ¨ ¨ ‚ ‚ ¨ ¨ ¨

t0“0
x0“n0“0

t1“ t0`B tk “ tk´1`B tk`1“0
xk`1“nk`1“nk`1

tk`2“ tk`1`B

Figure 10.10: Execution of the program in Ex. 10.6

– The continuous evolution of an ODE is defined using §10.4.2 according to Eq. (10.2),
i.e., the continuous evolution phase is actually a non-standard infinite sequence of
infinitesimal integration steps x1 “ x̀ B¨f cpsq, i.e., in Fig. 10.6 the integration step δ P
Rą0 is replaced by a non-standard infinitesimal B. This allows us to describe the whole
execution of a program as a (non-standard) sequence of infinitesimal (continuous) and
discrete steps.

– The semantics of a zero-crossing is then defined as a predicate over two neighboring
configurations in the execution sequence . . . Ñ xk´1 Ñ xk Ñ . . ., e.g., upp10 ´ xq is
enabled if p10´xk´1ď0q ^ p10´xką0q.

Fig. 10.10 illustrates the execution of the program in Ex. 10.6.

In §11.1 we will present a basic hybrid data-flow formalism that can be obtained
from Zelus by replacing the syntactic sugar by the corresponding data-flow primitives
(see [Pou02, CPP05]). The semantics of this hybrid data-flow formalism can be defined
in ten lines (Def. 11.2). For a formal definition of the semantics over Zelus itself, we
refer to [BBCP12, BBCP11a].

Compilation

The current Zelus compiler [BBCP11a] targets simulation. It features type inference,
initialization and causality analysis (inherited from Lucid Synchrone (§2.2)) and it
ensures the proper combination of discrete and continuous statements.

After these passes, the compiler performs a source-to-source compilation, which
translates the hybrid program into a discrete one. This transformation extends the
function signatures in order to enable communication with the ODE solver. Currently,
the variable-step numerical solver Sundials CVODE [HBG`05] is supported.

The obtained program is called by the ODE solver in order to evaluate the derivatives
and the zero-crossing expressions, and by the main simulation loop for computing the
discrete transitions.

While this transformation enables simulation, – besides the passes for ensuring se-
mantical consistency – it is not useful for program verification. Therefore, we will
present a translation of the language to hybrid automata, the prevalent representation
for hybrid system verification, in the next section §11.
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Chapter 11

From Hybrid Data Flow to
Logico-Numerical Hybrid
Automata

Our goal is to verify hybrid systems written in simulation languages like Simulink [Sim],
Modelica [FE98], or Zelus (§10.4).

However, there is a conceptual mismatch between these high-level hybrid system
languages and hybrid automata (§10.2), the representation well-suited for verification.
The main differences between these simulation and verification formalisms can be sum-
marized as follows:
– equations with implicitly (i.e., in Boolean variables) encoded continuous modes vs

their explicit encoding in locations of an automaton,
– discrete transitions triggered by zero-crossings vs combinations of staying conditions

and guards,
– deterministic, open systems with inputs vs non-deterministic, closed systems.

Our primary goal is to formalize the translation from a hybrid data-flow formalism
to hybrid automata, and in particular to focus on the translation of zero-crossings.
However, a secondary aspect we have in mind is that we want to address hybrid systems
specified as the composition of a discrete controller and its physical environment. Hence,
the discrete part of the system’s state space might be complex, and defined by Boolean
and numerical variables (e.g., counters and thresholds manipulated by the controller).

Consequently, we show how to translate the data-flow input language to logico-
numerical hybrid automata that can manipulate symbolically discrete variables, in ad-
dition to the continuous variables governed by differential equations. Such automata
allow a compact representation by not requiring the enumeration of the discrete state
space.

Outline. Our contributions presented in this chapter can be summarized as follows,
see Fig. 11.1:
1. We present a simple, yet complete hybrid data-flow formalism (§11.1) inspired by
Zelus. The purpose of this formalism is to serve as a common low-level basis for the
translation of languages like Simulink or Zelus.
2. We introduce logico-numerical hybrid automata (§11.2), i.e., an extension of classical
hybrid automata by Boolean variables. This extension prepares us w.r.t. the verification
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hybrid data flow formalism §11.1 logico-numerical hybrid automata §11.2

translation §11.3

discussion §11.4

conclusions §11.5

Figure 11.1: Chapter organization

of programs with a large Boolean state space.
3. We propose sound translations (§11.3) from the hybrid data-flow formalism to logico-
numerical hybrid automata and we discuss various zero-crossing semantics. Since the
target language of the translation is less expressive than the source language, the trans-
lation entails an over-approximation. We investigate the extent to which the original
semantics is preserved in the translation.

Related work. There are existing translations of Simulink/Stateflow to hybrid
automata, but they only treat a subset of the ways in which discrete transitions may
be activated. They suppose that the diagram obeys a specific scheme (cf. Fig. 10.5b)
where the discrete behavior is defined only by Stateflow diagrams and the output
of the Stateflow diagram is used to select the continuous behavior using switches
in the Simulink diagram. Such diagrams are straightforward to translate because the
structure is already the one of a hybrid automaton and they contain no zero-crossings.

Such translations of subsets of the Simulink/Stateflow language are for exam-
ple proposed by Agrawal et al [ASK04] for the purpose of verification, by Alur et al
[AKRS08] with the goal of improving simulation coverage, and in the tool HyLink
[MMBC11] targeting the applications of verification and controller synthesis. HyLink
also introduces blocks for specifying non-deterministic inputs as required by verification
methods. A formal definition of their translation is ongoing work.

Briand and Jeannet [BJ10] pursue a similar goal to ours: the verification of hybrid
systems with a large discrete state space. However, they do not consider an integrated
hybrid system language, but a kind of hybrid automata embedding Lustre programs
with their own semantics, whereas our goal is to be compatible with standard hybrid
automata model.

The translation of discrete-time Simulink models with periodic triggers to Lustre
is presented in [TSCC05]. The inverse of what we are doing, namely the embedding of
hybrid automata in a hybrid system language (here Scicos), is the goal of [NN07].

11.1 Hybrid Data-flow Formalism

Simulink and Zelus are full programming languages with constructs for modularity. In
order to abstract from such constructs, we present here a lower-level data-flow formalism
that will serve as the generic input language for the translation.

As this formalism is dedicated not only to simulation, but also serves as a speci-
fication language, we use the notion of inputs constrained by an assertion as in Lus-
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globally: 0ďξď30 ^ ´0.1ďεď0.1

$on
9x“ξ´x

on

9x“ξ´x`22

$stop ^ n“0

19ăxď30 0ďxď19

uppx´20q

upp18´x`εq Ñ
n1 “n`1

uppn´10q Ñ stop 1 “ tt

Figure 11.2: Thermostat (Example 11.1): partitioned data-flow model.

tre (§2.2). This allows us to give a semantics to the components of a more general
system. Simulation can still be performed by connecting a component with inputs to
an input generator, see for instance [RRJ08] for the simulation of discrete synchronous
systems.

Notations. Additional to our notational conventions of logico-numerical programs (§7.1),
we will use the following notations:

eps, iq : an arithmetic expression without test, e.g., n`2x`ξ;
uppzps, iqq : a zero-crossing, e.g., uppx`ξ´nq;
ϕZps, iq : a logical combination of zero-crossings, e.g., uppz1q ^$uppz2q _ uppz3q;
φpbq : a Boolean expression over discrete state variables;
Φps, iq : an arbitrary expression without zero-crossings.

Program model. A hybrid data-flow program is defined similarly to a logico-numerical
program (§7.1), but extended with ODEs:

Definition 11.1 (Hybrid data-flow program) A hybrid data-flow program is de-
fined by: $

&

%

Ipsq

Aps, iq ^
"

9x “ f cps, iq
s1 “ fdps, iq

where the predicate Ipsq defines the initial states, the predicate Aps, iq is the global
assertion constraining the inputs, the continuous flow equations 9x “ f cps, iq and the
discrete transition functions s1 “ fdps, iq are of the form:

9x “

$
&

%

¨ ¨ ¨
elps, iq if φlpbq

¨ ¨ ¨
s1 “

$
&

%

¨ ¨ ¨
Φjps, iq if ϕZ

j ps, iq
¨ ¨ ¨

We assume that the conditions φl define a partition of the discrete state space, and
that @sDi : Aps, iq (i.e., the assertion does not constrain the state-space, see §2.3).

Although hybrid system languages often include explicit automata representations,
for uniformity of presentation we assume that they have first been transformed into
data-flow equations (see [CPP05]).

Example 11.1 (Thermostat system) As an illustrative example we use a variant of
the classical thermostat example:
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on ^ xď20

22´xď 9xď52´x

on ^ xě20

22´xď 9xď52´x

$on ^ xě17.9

´xď 9xď30´x

$on ^ xď18.1

´xď 9xď30´x

$stop ^ n“0
19ăxď30 0ďxď19

tt

17.9ďxď18.1 ^ n1 “n`1^
q1 “pn´10ď0q

stop 1 “q ^ pn´10ě0q^
q1 “pn´10ď0q

ttx“20

Figure 11.3: Thermostat (Example 11.1): resulting hybrid automaton (q is a Boolean
state variable introduced by the translation).

let node main (xi,eps) = (assert,ok) where

rec assert = 0<=xi && xi<=30 && -0.1<=eps && eps<=0.1 and ok = true

and der x = if on then xi-x+22 else xi-x init xi

and on = true every (up(18-x+eps))

| false every (up(x-20)) init xi<=19

and n = (last n)+1 every (up(18-x+eps)) init 0

and stop = true every (up(n-10)) init false

The input xi represents the external temperature, the input eps models the inaccu-
racy of the temperature sensor1, room temperature, the discrete Boolean state variable
on indicates the state of the heating system, and the discrete integer state variable n

counts the number of times the temperature goes from below to above 18 degrees (modulo
the uncertainty). At last, the state variable stop becomes true when n reaches 10 from
below.

The output pair (assert,ok) corresponds to the outputs pA,Gq of a synchronous ob-
server used for specifying a property to verify – in the sequel we need only the assumption
A on the inputs.

Translating this program to our hybrid data-flow formalism we obtain:

Ipon, stop, n, xq “ $stop ^ n“0 ^ 0ďxď30 ^
ppxď19 ^ onq _ pxą19 ^ $onqq

Appon, stop, n, xq, pξ, εqq “ 0ďξď30 ^ ´0.1ďεď0.1

9x “
"
ξ ´ x ` 22 if on
ξ ´ x if $on

pon 1, stop 1, n1, x1q “

$
&

%

pff, stop, n, xq if uppx ´ 20q
ptt, stop, n ` 1, xq if upp18 ´ x ` εq
pon , tt, n, xq if uppn ´ 10q

Observe that this translation factorizes the evolution of discrete variables according to
the zero-crossing conditions.

1We do not use eps in the expression uppx´20q, in order to show an example of a deterministic
zero-crossing.
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Semantics of zero-crossings. A zero-crossing is an expression of the form uppzq that
becomes true when the sign of zps, iq, an arithmetic expression without tests, switches
from negative to positive during an execution. Instead of just a valuation of variables
of the form psk, ikq zero-crossings are interpreted on an execution fragment of the form
psḱ 1, iḱ 1q Ñ psk, ikq, i.e., two consecutive configurations of an execution trace. We will
use the notation psḱ 1, iḱ 1, sk, ikq for short. Several interpretations are possible, which
are discussed in §11.1. For now, we arbitrarily select the so-called “contact” semantics,
formally defined as:

psḱ 1, iḱ 1, sk, ikq |ù uppzps, iqq iff

"
zpsḱ 1, iḱ 1qă0
zpsk, ikqě0

(11.1)

In other words, a zero-crossing uppzq is activated (and taken into account for computing
the next step k`1) if the expression z was strictly negative in the previous step k´1
and evaluates to some positive value or zero in the current step k.

A conjunction ϕZps, iq “
Ź

p uppzpps, iqq is activated if for all p, uppzpps, iqq is
activated in the same step.

Semantics. We define a trace semantics based on an ideal discretization of the contin-
uous equations that follows the one of Zelus (§10.4.3). This semantics uses the theory
of non-standard analysis (§10.4.2) to model the way typical numerical simulators pro-
ceed (cf. Fig. 10.6): Such solvers are given an initial state x0, an ODE 9xptq “ fpxptqq,
and a finite set of zero-crossing expressions zj . They integrate the ODE until at least
one of the zero-crossings is activated. When this happens, the control is given back to
the main simulation loop, which executes one or several discrete execution steps before
continuing integration.

Definition 11.2 (Semantics) An execution of a hybrid data-flow program is a trace
ps0, i0q Ñ ps1, i1q Ñ ps2, i2q Ñ . . . such that Ips0q, Ñ“Ñc Y Ñd,

psk, ikq Ñc psk̀ 1, ik̀ 1q ðñApsk, ikq ^

Dl, DBą0 :

#
φlpbkq ^ @j : $

`
psḱ 1, iḱ 1, sk, ikq |ù ϕZ

j ps, iq
˘

pbk̀ 1,xk̀ 1q “ pbk,xk`elpsk, ikq¨Bq

where B is a non-standard infinitesimal, and

psk, ikq Ñd psk̀ 1, ik̀ 1q ðñApsk, ikq^

Dj :

$
&

%

psḱ 1, iḱ 1, sk, ikq |ù ϕZ
j ps, iq ^

@j1ăj : $
`
psḱ 1, iḱ 1, sk, ikq |ù ϕZ

j1ps, iq
˘

sk̀ 1 “ Φjpsk, ikq

A transition Ñc corresponds to an infinitesimal continuous-time evolution, which
is possible only if no zero-crossing condition ϕZ

j has been activated in the previous
execution step. A transition Ñd corresponds to a discrete transition triggered by the
first enabled ϕZ

j .
We pinpoint some properties of this formalism:

(1) Discrete transitions are always guarded by zero-crossings, and continuous modes
are always defined by a Boolean expression over discrete variables, which are piecewise
constant in continuous time. This is to make sure that a mode change (change of
dynamics) can only happen on discrete transitions.
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(2) Furthermore, discrete transitions are urgent, i.e., they must be taken at the first
point in time possible.

(3) In case of simultaneously occurring zero-crossings – as in Zelus – the only the
first activated zero-crossings in the program source is taken into account.

(4) Zero-crossings may not only be triggered by continuous evolution, but also by
discrete transitions. This is the case in Example 11.1: if the zero-crossing upp18´x`εq
occurs when n“ 9, n is first incremented to 10, activating the zero-crossing uppn´10q
that makes stop become true. This feature can cause infinite sequences of discrete zero-
crossings. Such a behavior can be avoided by forbidding circular dependencies between
states variables through zero-crossings in the source program.

Partitioned representation. The hybrid data-flow model we have defined does not
have any concept of control structure. However, for pedagogical purpose, one can parti-
tion the state space to generate an explicit automaton that may be easier to understand,
see Fig. 11.2. When doing so, partial evaluation may be used to simplify expressions
and removing infeasible transitions (cf. §7.3.3). This has been done in Fig. 11.2.

Standardization. As already mentioned the semantics of the hybrid data flow model
is based on non-standard analysis (§10.4.2), which gives an unambiguous meaning to
hybrid systems even if they contain Zeno behavior for instance.

However, the semantics of the output formalism of our translation, i.e., hybrid au-
tomata, relies on standard analysis. Hence non-standard behaviors need to be mapped to
standard behaviors. This standardization is based on the transfer principle (Thm. 10.2):
since each standard system has a non-standard representation, a non-standard system
is standardizable if it is a non-standard representation of a standard system.

For instance, w.r.t. continuous evolution, we have the following property: a non-
standard sequence consisting of infinitesimal continuous steps

ps0, i0q Ñ . . . Ñ psn, inq

with n P ‹N, sk “ pbk,xkqT , x0 P Rp, xn P Rp, has the following standard meaning:
assuming that the input sequence i0 Ñ . . . Ñ in forms a continuous function i : r0, δs Ñ
I, the sequence s0 Ñ . . . Ñ sn corresponds to a continuous function s : r0, δs Ñ S with
(cf. Eq. 10.2)

xpδ1q “ x0 `
ż δ1

0

e#ppb0,xptqqT , iptqqdt

for δ1 P r0, δs, δ “ stpnBq P Rě0, and I and S denote the input and state space respec-
tively.

However, we can write programs that are not standardizable, i.e., for which non-
standard and standard meaning differ: For example the program fragment b1 “ px ą
0q if uppxq with “crossing” semantics (see below) gives us b1 “ tt in the non-standard
interpretation, but b1 “ ff in the standard interpretation.

Naturally, we can only correctly translate standardizable programs.

Semantics of zero-crossings

As mentioned above, a zero-crossing can be activated in two ways (Fig. 11.4):
– It can be triggered by a continuous time evolution, as uppx´20q in Fig. 11.2; in this

case it is active during the second step of an execution fragment s
iÝÑc s

1 i1

ÝÑd s2;
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z(x(t))

t
0

up(z)

(a)

z(x(t))

t
0

up(z)

(b)

Figure 11.4: Continuous (a) and discrete (b) zero-crossings

– It can be triggered by a discrete transition, as uppn´10q in Fig. 11.2; in this case it

is active during the second step of an execution fragment s
iÝÑd s1 i1

ÝÑd s
2.

Because a zero-crossing may depend both on discrete and continuous variables, the same
zero-crossing uppzq can be triggered in both ways in an execution. We will use the terms
continuous (resp. discrete) zero-crossing to indicate its source of activation.

Three semantics for zero-crossings. We consider an execution fragment
iḱ 1ÝÝÑsḱ 1

ikÝÑ
sk and we define zk “ zpsk, ikq. There are three natural choices for the semantics of
zero-crossings:

– “At-zero” semantics : zḱ 1ď0 ^ zkě0
– “Contact” semantics : zḱ 1ă0 ^ zkě0
– “Crossing” semantics : zḱ 1ď0 ^ zką0

Figs. 11.5b, 11.6a and 11.6d illustrate the activation of continuous zero-crossings for
some typical trajectories according to each semantics.

The last two semantics are used in simulators. The zero-crossing semantics of
Simulink is the disjunction of “contact” and “crossing” semantics. In Modelica it
is up to the programmer to choose between these two semantics. We state the first
option, because it fits better to the semantics of hybrid automata (as it does not involve
strict inequalities).

Chattering behavior. An issue specific to the “crossing” semantics is that it is
possible to write programs that produce executions that contain periodic sequences of
infinitesimal continuous evolutions with distinct dynamics. This happens for example
when a trajectory chatters along a surface with opposed zero-crossings, like in Ex. 10.3.

As explained in §10.3 one way to treat such behavior would be to transform the
program such as to replace the chattering by its corresponding sliding mode (Fig. 10.8b);
yet, since we do not know how to achieve this in general, we have chosen to translate
such programs into hybrid automata that allow chattering in their concrete semantics.

11.2 Logico-Numerical Hybrid Automata

We extend hybrid automata (cf. §10.2) in the sense that we allow also Boolean variables
in the expressions occurring in the automaton.

Definition 11.3 (Logico-numerical hybrid automaton) A logico-numerical hybrid
automaton (HA) is a directed graph defined by xL,F, J,Σ0y where
– L is the finite set of locations,
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– F : L Ñ V is a function that returns for each location the flow relation V ps, 9xq P
V relating the state variables s and the time-derivatives 9x of the numerical state
variables, and

– J Ď LˆRˆL defines a finite set of arcs between locations with the discrete transition
relation Rps, s1q P R over the state variables s, and

– Σ0 : L Ñ S is a function that returns for each location the set of initial states S0 P S,
which have to satisfy @' : @s : Σ0p'qpsq ñ D 9x : F p'qps, 9xq.

Further notations:
– C#psq“D 9x :V#ps, 9xq is the staying condition of the flow V# “F p'q.
– G#,#1psq“Ds1 :Rps, s1q is the guard of the arc p', R, '1q P J .

Fig. 11.3 depicts an example of such a logico-numerical hybrid automaton.

Semantics. We use the following auxiliary definitions: Let Tr0,δs be the set of differ-
entiable trajectories r0, δs Ñ Rn. The function flowV returns the set of end states of
trajectories τ P T starting in the given state and that obey the flow relation V#:

flowV!
pb,xq “

$
’’&

’’%
pb,x1q

ˇ̌
ˇ̌
ˇ̌
ˇ̌

Dδą0, Dτ P Tr0,δs :
τp0q “ x ^ τpδq “ x1 ^
@δ1 P r0, δs : C#pb, τpδ1qq ^
@δ1 P p0, δq : V#ppb, τpδ1qq, 9τpδ1qq

,
//.

//-

We define the concrete semantics in terms of an execution of a hybrid automaton:

Definition 11.4 (Semantics) An execution of a logico-numerical hybrid automaton
is a (possibly) infinite trace p'0, s0q Ñ p'1, s1q Ñ p'2, s2q Ñ . . . with Ñ“Ñc Y Ñd and

p', sq Ñc p'1, s1q ô '“'1 ^ V# “F p'q ^ s1 P flowV!
psq

p', sq Ñd p'1, s1q ô Dp', R, '1q P J : Rps, s1q ^ C#1ps1q

If we eliminate all Boolean variables by enumerating their valuations and encoding them
with locations, the semantics above will be equivalent to the semantics of standard
hybrid automata that deal only with numerical variables (see §10.2).

11.3 Translation

The main issue in the translation are the zero-crossings: the fundamental difference
between the zero-crossing concept used in our input language and the combination of
staying and jump conditions in our output language is that the activation of a zero-
crossing depends on the history (i.e., a part of the past trajectory) whereas the truth
value of staying and jump conditions depends only on the current state.

We start with translations for continuous zero-crossings without (§11.3.1) and with
(§11.3.2) inputs; then we will show how to translate logical combinations of zero-
crossings in §11.3.3. §11.3.4 will discuss the case of discrete zero-crossings, the trans-
lation of which is much less dependent on the choice between the three zero-crossing
semantics. However, because of the limitations of the hybrid automata model, in all
cases the translation will add behaviors that are not present in the original program.
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φ1 φ2

'1 '2

s1 “Φpsq if uppzq

(a) Single zero-crossing

z

t∂ ∂ ∂

(b) Exact “at-zero” semantics

z

t

(c) Induced semantics

φ1 ^
zě0

φ1 ^
zď0

φ2

'0 '1 '2

tt

z“0 ^
s1 “Φpsq

(d) Translation according to “at-zero” semantics

Notes: (1) The arrows pointing upwards in (b) indicate the points where zero-crossings are
activated, and in (c), the points where the jump transition may be taken non-
deterministically. The dotted trajectories indicate that the preceding transition is urgent.

(2) When s does not appear in the jump condition of a HA, the equality s
1 “s is implicit.

(3) The flow equation 9x “ e1psq if φ1pbq in location !1 in (a), is translated to the flow
relation V p 9x, sq “ pφ1pbq ^ 9x “ e1psqq in locations !0 and !1 in (d) (only the staying
conditions are given in the figures).

Figure 11.5: Zero-crossing semantics of the hybrid data-flow language and their trans-
lations. The diagram in (b) shows typical trajectories in the original semantics of the
partitioned data flow model in (a), the one in (c) shows typical trajectories in the se-
mantics of the proposed translation to the hybrid automaton in (d).

11.3.1 Continuous Zero-Crossing without Inputs

We investigate here the translation of a continuous zero-crossing of the form uppzpxqq:
for the sake of simplicity, we assume that there are neither inputs i nor discrete variables
b in z. We consider the simple case of an origin location '1 with a single discrete
transition s1 “Φpsq if uppzpxqq going from '1 to a location '2, such that φ1pbq ^ ps1 “
Φpsqq ñ φ2pb1q, see Fig. 11.5a. The continuous dynamics in location '1 corresponds to
the flow equation 9x “ e1psq if φ1pbq.

As the satisfaction of a zero-crossing depends on the history, the principle of the
translation is to add locations to record the history of the continuous evolution. In
the sequel, we develop translations corresponding to the three zero-crossing semantics
stated in §11.1.

“At-zero” semantics. The translation of “at-zero” semantics (zḱ 1 ď 0 ^ zk ě 0) is
depicted in Fig. 11.5. The origin location '1 in Fig. 11.5a is partitioned in two locations,
'0 and '1, in Fig. 11.5d: there is a discrete transition from '0 to '1, but not from '1 to
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z

t

(a) Exact “contact” semantics

z

t

(b) Induced “contact” semantics

φ1 ^
zě0

φ1 ^
zď0

φ1 ^
zď0

φ2

'´1 '0 '1 '2

tt ză0

z“0 ^
s1 “Φpsq

(c) Translation according to “contact” semantics

z

t∂ ∂ ∂

(d) Exact “crossing” semantics

z

ε

t

(e) Induced “crossing” semantics

φ1 ^
zě0

φ1 ^
zď0

φ1 ^
0ďzďε φ2

'´1 '0 '1 '2

tt tt

0ďzďε ^
s1 “Φpsq

(f) Translation according to “crossing” semantics

Figure 11.6: Zero-crossing semantics of the hybrid data-flow language and their trans-
lations (continuation, see Fig. 11.5 for explanations).

'0 to force the urgency of the discrete transition when z “ 0 is reached from below 0.
The zero-crossing condition translates to z “ 0 (see transition from '1 to '2). The
rationale for the condition z“0 is based on the assumption of continuity of the function
zptq“zpxptqq and the urgency of the zero-crossing: zptḱ 1qă0 ^ zptkqě0 with tḱ 1ă tk
implies that there exists t P ptḱ 1, tks such that zptq“0.

This translation induces two kinds of approximations in terms of executions:
– We lose urgency for all trajectories but the second one in Fig. 11.5c. In case of the

first trajectory the zero-crossing may be triggered in a dense interval of time.
– We add a jump transition in the fourth trajectory because the resulting hybrid au-

tomaton is not able to distinguish whether the state z “ 0 is reached from below or
from above 0.

We will not consider any more the “at-zero” semantics in the sequel, as – to our
knowledge – it is not used by any simulation tool.

“Contact” semantics. In order to translate the“contact” semantics defined as zk´1ă
0^ zkě0, we split the original location into three locations, '´1, '0, and '1, as depicted
in Fig. 11.6c. The two locations, '0 and '1, both with the staying condition zď 0, are
connected by a transition guarded by ză0: this is in order to check that the trajectory
was actually strictly below zero before touching zero. This prohibits the triggering of
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151 11.3. Translation

the jump transition in the first, third and last trajectory in Fig. 11.6b. This induces the
following approximation:

– The loss of urgency for the fifth trajectory that touches (possibly several times) the
line z“0 from below.

Observe, that the “at-zero” translation in Fig. 11.5d is actually a sound translation
of the “contact” semantics, though with coarser approximations.

“Crossing” semantics. The “crossing” semantics (zḱ 1ď0 ^ zką0) is more subtle to
translate. By continuity of the function zptq“zpxptqq we can deduce that zptq“0 is valid
at the zero-crossing point in standard semantics: by standardizing zptqď0 ^ zpt`Bqą0
we get stpzptqq“stpzpt`Bqq“0.

However, we cannot simply reuse the “at-zero” translation in Fig. 11.5d, because
it is not sound w.r.t. chattering behaviors: in Ex. 10.3, time cannot advance, because
only discrete transitions can be taken. Since we do not rely on standardizing chattering
behaviors, we have to allow chattering in the standard semantics. For this reason, we
allow the trajectories to actually go above zero, but only up to a constant εą 0 (see
Fig. 11.6f). As a consequence, we have the following approximation:

– Urgency is completely lost. In case of the second, third, and last trajectories, the
zero-crossing may be triggered in a bounded time interval with a dense interval of
values for z (see Fig. 11.6e).

Observe, that this translation simulates the translations of the two other semantics.

Remark 11.1 (Blocked executions) These translations may add so-called blocked
executions. Consider the fifth trajectory of Fig. 11.6d (“crossing” semantics): this tra-
jectory is possible when staying in the second location in Fig. 11.6f.

Yet, it is also possible to move to location '1 when this trajectory reaches zero, but
then it gets stuck at zero: neither continuous nor discrete transitions are possible in '1.

However, this phenomenon has no effect w.r.t. reachability properties, on which we
focus: the goal of our translation is to obtain a precise model suitable for safety verifi-
cation techniques.

Remark 11.2 (Choice of ε) Any translation involving an ε close to zero is not re-
ally well-suited for verification: computations with arbitrary-precision rationals become
indeed very expensive ( e.g., least common denominators become huge).

Remark 11.3 (Exploiting derivatives) The difficulty of translating “crossing” se-
mantics comes from the fact that being at z “ 0 we have to peek an infinitesimal step
into the future of the continuous evolution. In standard semantics, this is possible by
looking at the time derivatives dnz

dtn of the zero-crossing expression – if the zero-crossing
contains inputs we also need bounds on the derivatives of the inputs.

Theoretically, this would allow avoiding the activation of the discrete transition in
the translation w.r.t. the first, fourth, and fifth trajectory in Fig. 11.6e. However, firstly,
without any restrictions on the dynamics and the form of z, we would have to look at
all derivatives before being able to decide that a trajectory is actually crossing zero.
Secondly, the translation would still be unsound w.r.t. chattering behavior of sliding
modes because only discrete transitions would be taken, and hence, time cannot advance.
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11.3.2 Continuous Zero-Crossing with Inputs

Now, we investigate the translation of zero-crossings of the form uppzpx, iqq, where
the inputs i have to satisfy an assertion Aps, iq, see §11.1. We assume that in the
discrete infinitesimal semantics of §11.1 inputs tend to continuous trajectories (between
two discrete transitions). Inputs allow us to introduce non-determinism in a model, as
illustrated by Fig. 11.3. The principle of translation as described in §11.3.1 and depicted
in Fig. 11.5 remains the same, except that the computation of jump and flow transition
relations involves an existential quantification of the inputs i.

We use the notation %ψ “ $ψ, where ¯̈ denotes the topological closure operator.
We have for instance %pzď0q “ zě0.

Considering the“contact”semantics and using the continuity of the function zpxptq, iptqq
during continuous evolution (see §11.1) the condition

Dik´1, ik : zpxk´1, ik´1qă0 ^ Apsk´1, ik´1q ^
zpxk, ikqě0 ^ Apsk, ikq ^ s1 “ Φpsk, ikq

is equivalent to

Dik´1, ik : zpxk´1, ik´1qă0 ^ Apsk´1, ik´1q ^
zpxk, ikq“0 ^ Apsk, ikq ^ s1 “ Φpsk, ikq

which in turn is equivalent to

Di : zpxk´1, iqă0 ^ Apsk´1, iq ^
Di : zpxk, iq“0 ^ Apsk, iq ^ s1 “ Φpsk, iq

(11.2)

– The first line of Eqn. (11.2) defines the new guard of the transition between locations
'0 and '1 of Fig 11.6c:

Di : Aps, iq ^ zpx, iqă0

– The second line gives us the new transition relation between locations '1 and '2 of
Fig. 11.6c:

Rps, s1q “ Di : Aps, iq ^ zpx, iq“0 ^ s1 “Φps, iq

– The new flow relation of '0 and '1 is

Di : Aps, iq ^ zpx, iqď0 ^ φ1pbq ^ 9x “ e1ps, iq

which induces the staying condition

ψ23psq “ Di : Aps, iq ^ zpx, iqď0q ^ φ1pbq

– The new flow relation of '´1 of Fig. 11.6c is

V1ps, 9xq “ Di : Aps, iq ^ zpx, iqě0 ^ φ1pbq ^ 9x “ e1ps, iq

The result is illustrated by Fig. 11.7b. One can strengthen the flow relation V1 by
conjoining it with %ψ23, so as to minimize the non-determinism between staying in '´1

or jumping to '0, as done in Fig. 11.7c.2

2We use the operator ! instead of " in order to obtain a topologically closed flow relation.
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Apx, y, ξq “ ´0.1ďξď0.1

$b b

'1 '2

"
b1 “ tt
y1 “ξ

if uppx`ξq

(a) Zero-crossing with input ξ

$b ^
xě´0.1

$b ^
xď0.1

$b ^
xď0.1

b

'´1 '0 '1 '2

tt xă0.1

´0.1ďxď0.1 ^ b1 ^
x1 “x ^ y1 “´x

(b) Translation according to “contact” semantics

$b ^
xě0.1

$b ^
xď0.1

$b ^
xď0.1

b

'´1 '0 '1 '2

tt xă0.1

´0.1ďxď0.1 ^ b1 ^
x1 “x ^ y1 “´x

(c) Strengthening the staying condition of the first location

Figure 11.7: Translation of a continuous zero-crossing with inputs, described in Ex-
ample 11.2.

Example 11.2 (Continuous zero-crossing with input) Fig. 11.7b illustrates this
translation on the original system of Fig. 11.7a, where b, x, y are state variables and ξ
is a numerical input variable constrained by the assertion. The jump condition of the
rightmost transition is obtained from

Dξ : p´0.1ďξď0.1 ^ x`ξ“0 ^ b1 “ tt ^ x1 “x ^ y1 “ξq
“ Dξ : p´0.1ďxď0.1 ^ x“´ξ ^ b1 ^ x1 “x ^ y1 “´xq
“ ´0.1ďxď0.1 ^ b1 ^ x1 “x ^ y1 “´x

Observe that we obtain the non-trivial relation y“´x after the jump transition.

11.3.3 Logical Combinations of Zero-Crossings

We consider here a discrete transition function of the form s1 “ Φpsq if ϕZpsq where ϕZ

is a logical combination of zero-crossings uppz1q, . . . , uppzM q satisfying the assumption
of §11.1. In order to simplify the presentation, we consider the case without inputs first
(see §11.3.5 for the general case).

Why do we need such logical combinations? Conjunctions and negations typically
occur when combining two parallel equations s1

i “ Φi if uppziq for i “ 1, 2, which results
in an equation

ps1
1, s

1
2q “

$
&

%

pΦ1,Φ2q if uppz1q ^ uppz2q
pΦ1, s2q if uppz1q ^$uppz2q
ps1,Φ2q if uppz2q ^$uppz1q
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A discrete transition function of the form s1 “
"

Φ1 if uppz1q
Φ2 else if uppz2q

is rewritten as s1 “
"

Φ1 if uppz1q
Φ2 if $uppz1q ^ uppz2q

Disjunctions allow us to express that the same transition may be triggered by different
zero-crossings:

s1 “ Φ if uppz1q _ uppz2q

Because successive graph refinements are cumbersome to describe, we reformulate
the translation scheme of the previous sections by using additional discrete state vari-
ables to the system, rather than by introducing locations. This will make it easier to
define this generalization. We sketch this principle using the “contact” semantics (the
translation for the general case will be presented in §11.3.5).

To encode locations, we add M discrete state variables q1 . . . qM of the enumerated
type tabove, below, readyu for each distinct zero-crossing uppzmq occurring in the zero-
crossing formulas ϕZ .
– Their transition relations are defined as

Rm “ match qm with
above Ñ q1

m P tabove, belowu
below Ñ zmă0 ^ q1

m “ ready _ q1
m“qm

ready Ñ zm “0 ^ q1
m P tabove, belowu _ q1

m“qm

– The staying condition defined by the zero-crossing uppzmq is:

Cm “ match qm with
above Ñ změ0
below Ñ zmď0
ready Ñ zmď0

– The guard Gm associated to the zero-crossing uppzmq is

Gm “ pqm“ readyq ^ pzm “0q

We can now build the global flow and discrete transition relations:

Rppq, sq, pq1, s1qq “ p
Ź

mRmq ^ p$H ^ s1 “s _ H ^ s1 “Φq
V ppq, sq, 9xq “ p

Ź
m Cmq ^ p

Ž
lpφlpbq ^ 9x “ 9elpsqqq

(11.3)

with H “ ϕZr@m : uppzmq Ð Gms where erxÐ ys means that y is substituted for x in
expression e.

In order to obtain an explicit automaton one has to enumerate the valuations of the
discrete state variables q and to encode them into explicit locations (see §11.4).

It is interesting to mention that this translation keeps enough information in order
to preserve urgency in case of conjunctions like s1 “ Φ if uppz1q ^ uppz2q where the
trajectory can move all around the intersection z1 “0 ^ z2 “0 while not satisfying both
zero-crossings at the same time. Fig. 11.8 gives an illustration of such a trajectory and
Fig. 11.9 shows the corresponding automaton.
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up(z1)

up(z2)

up(z1) ∧ up(z2)

up(z1) ∧ ¬up(z2)

¬up(z1) ∧ up(z2)

Figure 11.8: Conjunction of two zero-crossings

AA BA RA

AB BB RB

AR BR RR

z1ă0

z1ă0

z2ă0 z2ă0 z2ă0

z1ă0

G2

G2

G2

G2

G1

G1

G1

G1

G1 ^ G2 ^ s
1 “ Φ

Figure 11.9: Translation of conjunctions of zero-crossings: example of two zero-
crossings with“contact”semantics. G1 “ pz1 “0q, G2 “ pz2 “0q, AA “ pq1“above^z1ě
0 ^ q2 “ above ^ z2ě 0q, analogously for B (below) and R (ready). The urgency of the
discrete transition G1 ^ G2 ^ s1 “ Φ is preserved to the same extent as for single
zero-crossings.

Remark 11.4 (Conjunctions of zero-crossings in simulation) Conjunctions of ze-
ro-crossings are quite delicate in hybrid simulation models. The problem is that models
relying on conditions stating that two physical quantities become zero simultaneously are
not numerically robust and produce unpredictable simulation results. However, from a
programming language semantics point of view we have to deal with them.

11.3.4 Discrete Zero-Crossings

Discrete zero-crossings are activated by discrete transitions. Discrete zero-crossings
occur in so-called zero-crossing cascades, which are sequences of zero-crossings, the first
of which is triggered by continuous evolution, whereas the others are discrete zero-
crossings. Example 11.1 contains such a zero-crossing cascade, which is commented in
§11.1 point 4.

Principle of translation. The translation that we propose applies the same principle
as above to encode the history of the execution into locations (using discrete state
variables).

We explain it using the “contact” semantics (again without inputs and logical com-
binations of zero-crossings). We consider s1 “ Φ if uppzq and we introduce a Boolean
variable qd, which holds at each step k the value of ză0 at step k ´ 1.
– The evolution of qd is defined by the initial state qd “ ff

and the relation Rd “ ppqdq1 “pză0qq;
– the condition uppzmq is translated to the guard Gd “ pqd ^ zě0q;
– the global transition relation R is generated as in Eqn. (11.3).

Interrupting continuous evolution. The transitions as translated above are not
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urgent, i.e., the continuous states can evolve on intermediate states of a cascade. We
need to prohibit this evolution explicitly if one of the discrete zero-crossings is activated.
This is done by strengthening the global flow relation V pq, s, 9xq with V 1 “ V ^ %Gd.

In case of inputs, we have Gd “ pqd ^ zps, iqě0q and we take V 1 “ V ^ %p@i : Gdq:
the idea is that in a state pq, sq, if the discrete zero-crossing is activated for any input
(i.e., @i : Gd), then the continuous evolution is blocked. Otherwise, for some input, the
discrete zero-crossing is not activated and the continuous evolution should be possible.

Remark 11.5 (Discrete/continuous zero-crossings) A zero-crossings can be both
discrete and continuous, e.g., uppx`nq. In this case it must be translated twice: once
as a continuous zero-crossing and a second time as a discrete one. The resulting guard
is the disjunction of both translations.

Mind that a conjunction of a purely discrete and a purely continuous zero-crossing
is not satisfiable.

Remark 11.6 (Compressing cascades) Zero-crossing cascades can be “compressed”
into a single discrete transition triggered by a continuous zero-crossing by composing the
discrete transitions forming the cascade. This is possible if there are no instantaneous
cyclic dependencies between the variables. The advantage of this kind of pre-processing
is that the translation does not have to deal with discrete zero-crossings. However, care
must be taken w.r.t. safety verification, because this transformation does not preserve
the set of reachable states (it removes intermediate states).

Remark 11.7 (Discrete zero-crossings in system modeling) The main use of dis-
crete zero-crossings is to trigger a cascade of several discrete transitions by a single
continuous zero-crossing. For this purpose, discrete zero-crossings enable very concise
modeling, but the resulting behavior can be very hard to understand, and thus, they can
easily result in undesirable behavior. On the other hand, if a language does not sup-
port discrete zero-crossings, the programmer has to program such a behavior himself by
manually composing transitions explicitly, as mentioned in Remark 11.6.

11.3.5 The Complete Translation

We give here the formulas for the complete translation of a hybrid data-flow program

Ipsq , Aps, iq ^

$
’’’’’’&

’’’’’’%

9x “
! ¨ ¨ ¨

elps, iq if φlpbq
¨ ¨ ¨

s1 “
! ¨ ¨ ¨

Φjps, iq if ϕZ
j ps, iq

¨ ¨ ¨

as defined in §11.1 into a hybrid automaton by combining all the concepts presented in
§§11.3.1 to 11.3.4.

We use the notation ζσm to denote the constraints induced by a zero-crossing uppzmq,
e.g., ζ ¨“0

m “
`
zm“0

˘
or ζ0ă¨ďε

m “
`
0ăzmďε

˘
.

Discrete zero-crossings. For each discrete zero-crossing uppzmq we introduce a
Boolean state variable qdm and define its transition relation Rd

m and guard Gd
m:

Rd
m “ pq1d

m “ζσmq
Gd

m “ pqdj ^ ζσmq

σ σ

“contact” ¨ă0 ¨ě0
“crossing” ¨ď0 ¨ą0
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Continuous zero-crossings. For each continuous zero-crossing uppzmq we introduce
a state variable qcm.
– Their transition relations are defined as follows: θ σ

“contact” ¨ă0 ¨“0
“crossing” ¨“0 0ď ¨ďεRc

m “ match qcm with
above Ñ q1c

m P tabove, belowu
below Ñ ppqcmq1 “qcmq _ ppqcmq1 “ readyq ^ ζθm
ready Ñ pqcmq1 P tabove, belowu ^ ζσm _ ppqcmq1 “qcmq

– The guards Gc
m are defined as

Gc
m “ pqcm“ readyq ^ ζσm

σ

“contact” ¨“0
“crossing” 0ď ¨ďε

– Using ψ “
Ž

l

`
φlpbq ^ 9x“elps, iq

˘
we define the partial flow relations (containing the

staying conditions):

Vm “ match qcm with

above Ñ
" `

Di : Aps, iq ^ ζ ¨ě0
m ^ ψ

˘
^`

% Di : Aps, iq ^ ζ ¨ď0
m

˘

below Ñ Di : Aps, iq ^ ζ ¨ď0
m ^ ψ

ready Ñ Di : Aps, iq ^ ζσm ^ ψ

σ

“contact” ¨ď0
“crossing” 0ď ¨ďε

Transition relations. We define Gm “ Gc
m _Gd

m and Rm “ Rc
m ^Rd

m. Now, we can
finally put things together and define the jump and flow transition relations:

Rppq, sq, pq1, s1qq “ Di :

$
’’&

’’%

Aps, iq ^
` Ź

mRm

˘
^´

$
`Ž

j Hj

˘
^ s1 “s _

Ž
j

`
Hj ^ s1 “Φj

˘¯

V ppq, sq, 9xq “

# Ž
m Vmppq, sq, 9xq ^
%

`
@i : Aps, iq ^

Ž
j H

d
j

˘

with Hj “ ϕZ
j r@m : uppzmq Ð Gms.

We obtain a hybrid automaton xt'0u, F, J,Σ0y with
– F p'0q“V ,
– J “tp'0, R, '0qu, and
– Σ0p'0q“tpq, sq | qd “ff ^

Ź
m qcm P tabove, belowu ^ Ipsqu

Theorem 11.1 (Sound translation) All executions of a hybrid data-flow program
are simulated by an execution of its translation to a logico-numerical hybrid automa-
ton, i.e., the translation is a sound over-approximation.

Proofs. The proofs are based on demonstrating that the translation induces a left-to-
right simulation relation À between the hybrid data-flow formalism (HDF) and logico-
numerical hybrid automata (HA). We sketch here only the scheme for the inductive
construction of this simulation relation following the semantics of the hybrid data flow
formalism as illustrated below (the thick dots symbolize the configurations of an execu-
tion).
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Base case:
The initial state of HDF is included in the initial state of HA. ‚loomoon

|ùI

Then, we split the induction step in several sub-steps:

Induction step:
In a given state, every trajectory compliant to a flow equation
in HDF up to a zero-crossing must be included in the set of
trajectories compliant to the flow relation in HA up to the
staying condition. (A corner case is that there is no zero-
crossing in the future.)

‚ Ñc . . . Ñc ‚ Ñc ‚loomoon
|ùϕZ

j

If a continuous zero-crossing is activated in HDF then the
guard of the corresponding jump transition in HA is satisfied.

‚ Ñc ‚loomoon
|ùϕZ

j

If a discrete zero-crossing is activated in HDF then the guard
of the corresponding jump transition in HA is satisfied.

‚ Ñd ‚loomoon
|ùϕZ

j

The resulting state of a discrete transition in HDF is included
in the set of states resulting from taking the corresponding
jump transition in HA.

‚ Ñd ‚loomoon
s1“Φjpsq

The details of the proofs of the translation can be found in [SJ12c].

11.4 Discussion

We have presented the complete translation of a hybrid data-flow specification to a
hybrid automaton. However, further pre-processing steps are necessary to enable veri-
fication using classical hybrid analysis methods.

Explicit representation. As explained in §11.3.3, we have chosen to present our
translation by encoding the locations of the HA with N additional finite-state vari-
ables q. This results in a HA with a single location and a single self-loop jump transition.
Of course, it is possible to expand this “compressed” representation into a more explicit
one, such as shown in Figs. 11.5 and 11.7. This is done by enumerating the valuations
of these finite-state variables and by partitioning the system into these Op2N q states.
As already mentioned in §11.1, partial evaluation may be used to simplify expressions
and to remove infeasible jump transitions.

Non-convex staying conditions and guards. The induced staying conditions
Cpsq and guards Gpsq of jump transitions might be non-convex w.r.t. numerical con-
straints. However, most hybrid verification methods require convex staying conditions
and guards. We will deal with this issue when developing logico-numerical hybrid veri-
fication methods in §13.

Approximations during analysis. In §11.3.1 we have explained that the translation
to hybrid automata loses several properties, like determinism and urgency, which may
result in an over-approximation in terms of reachable states. Moreover, hybrid reacha-
bility analysis methods further approximate the reachable states with (finite disjunctions
of) convex sets, such as convex polyhedra.

158



159 11.5. Conclusions

The translation with “contact” semantics involves strict inequalities. Thus, the anal-
ysis may benefit from the ability to represent open sets. In this case, a suitable abstract
domain might be convex polyhedra with strict inequalities [BHZ05]. Otherwise, if the
analysis can only handle closed sets, the translation with“contact”semantics (Fig. 11.6b)
will behave like the one for “at-zero” semantics (Fig. 11.5c).

Experiments. We have implemented the translation in our tool ReaVer (§14). Pre-
liminary experiments have confirmed our intuition that the major parameter affecting
verification efficiency is the number of zero-crossings. This becomes apparent when
making locations explicit. In the applications that we are targeting, i.e., synchronous
controllers connected to their physical environment, zero-crossings are (1) those used
for modeling the sampling of inputs and (2) those in the environment model. Since the
number of (1) is usually small, the total number of zero-crossings inherently depends
on the complexity of the environment model in practice.

11.5 Conclusions

We have presented a complete translation of a hybrid data-flow formalism to logico-
numerical hybrid automata. In comparison with previously proposed translations, our
translation handles zero-crossings. Moreover, we have proved that it is sound w.r.t. the
semantics of the source language.

To achieve this, we considered a simple yet expressive hybrid data-flow formalism
to which large subsets of existing hybrid system languages can actually be reduced.

We discussed different choices of zero-crossing semantics and their possible transla-
tions to hybrid automata. Since hybrid automata are not as expressive as the source
language, we can only provide sound over-approximations of the original semantics.

However, this enables the use of existing hybrid verification tools such as HyTech
[HHWT97], PHaver [Fre05] and SpaceEx [FGD`11], which are all based on the stan-
dard hybrid automaton model.

Yet, these tools require to encode Boolean variables explicitly in locations. As this
enumeration results in an exponential blow-up of the hybrid automaton size, we as-
sume that this is a major bottleneck in verifying controllers with complex discrete state
spaces jointly with their physical environment. Therefore, §13 will propose methods for
combining existing hybrid system analysis with implicit handling of Boolean variables
in order to counter state space explosion. Our translation to logico-numerical hybrid
automata lays the basis for such an approach.
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Chapter 12

Hybrid System Verification

Before we propose methods for analyzing logico-numerical hybrid automata in §13, we
give an overview of existing verification methods for numerical hybrid systems in this
chapter.

In addition to handling discrete transitions, the reachability analysis of hybrid au-
tomata (§12.1) requires computing the states reachable by continuous evolution.

A vast variety of continuous reachability methods has been proposed. We will con-
centrate on unbounded-time methods (§12.2) which are based on abstract interpretation
with widening or strategy iteration. In contrast, bounded-time methods (§12.3) have
their origin in model-checking and set-based simulation.

At last, we list some alternative approaches (§12.4) which are not necessarily based
on the computation of the reachable state space.

12.1 Reachability Analysis of Hybrid Automata

The reachability analysis of hybrid automata by abstract interpretation is formulated
as the following fixed point equation over the power domain L Ñ A:

S7 “ S70 \ λ' .
´
post7V!

pS7
#q [ C#

¯
\ λ' .

˜
ğ

#1PL

post7
R!1,!

pS7
#1q [ C#

¸

where S7, S70 P pL Ñ Aq.
The discrete post-conditions post7

R of the jump transitions is computed in the same
way as for discrete systems. The difference to discrete systems is the continuous post-
condition post7

V of a flow transition, which requires continuous reachability methods.

Continuous reachability. Most continuous reachability methods have their origin
in set-based simulation: they seek a precise over-approximation of trajectories ema-
nating from a given set X0 following a given dynamics. Since these trajectories (for
non-constant dynamics) form non-convex sets, disjunctions of convex sets, e.g., polyhe-
dra, are often used. Different methods for computing such approximations have been
developed according to the dynamics, which we categorize roughly in piece-wise con-
stant, piece-wise linear, and non-linear.

Time-horizon and convergence. Set-based simulation methods consider the anal-
ysis up to a bounded time horizon. Convergence (Xk`1 Ď Xk) is detectable if the
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system is stable (e.g., constant or bounded asymptotic behavior). If the system is meta-
stable (e.g., limit cycle) then inclusion is only guaranteed if no over-approximation is
added over one period. For convergence of unstable systems, extrapolation (widen-
ing) is needed. Since standard widening operators extrapolate linearly, they yield very
imprecise results for systems with non-constant dynamics.

We are interested in unbounded time analysis (§12.2) provided by methods like
relational abstractions that, similarly to abstract acceleration, try to find better extrap-
olations than standard widening, and very recently, strategy iteration-based methods
that are able to compute the best inductive invariants for systems with linear dynamics
using template polyhedra.

Decidability Results. Hybrid automata are infinite state systems, hence the reach-
ability problem is undecidable in general. Nevertheless, there are classes of hybrid
automata with restricted forms of transitions such that the reachability problem is de-
cidable [HKPV98]:
– Timed automata: flow transitions of the form 9x “ 1 ^ C and jump transitions of the

form G ^ x1 “fpxq where C and G are conjunctions of constraints of the form xiďc
or xi´xjďc, and fi“xi or fi “0.

– Initialized rectangular hybrid automata: flow transitions of the form aď 9xď b ^ cď
xďd and jump transitions gďxďh ^ j ďx1ďk. “Initialized” means that a jump
transition g ď x ď h ^ x1 “ x is only allowed if the flow transitions in origin and
destination locations are equal.

[HKPV98] prove that dropping any of the restrictions (variables decoupled in dynamics,
staying condition and guards, and “initialization”) makes reachability undecidable.

[AMP95] show that the reachability problem for hybrid automata with flow transi-
tions 9x“c^Axďb and jump transitions Gxďh^x1 “x is decidable in two dimensions
but undecidable in three dimensions.

12.2 Unbounded-Time Analysis Methods

Generalizing timed automata, early methods for hybrid systems deal with piece-wise
constant dynamics, which have linear analytic solutions. Thus, methods for computing
the continuous post-condition (“time-elapse”, §12.2.1) are very close to discrete program
analysis with polyhedra. Unbounded time is achieved with the help of widening.

Hybrid max-strategy iteration (§12.2.2) extends the max-strategy iteration approach
(§3.4.3) for computing invariants over template polyhedra to hybrid automata with
linear dynamics.

Relational abstractions (§12.2.3) transform a hybrid system into a discrete one by
approximating the effect of the continuous evolution by a discrete transition.

We will explain these methods in detail because we are going to use them in §12.

12.2.1 Polyhedral Time-Elapse

Halbwachs et al [HRP94, HPR97] use abstract interpretation with convex polyhedra for
analyzing hybrid systems with flow relations of the form of piecewise constant differential
inclusions, i.e.,

V px, 9xq “ tpx, 9xq | 9x P D ^ x P Cu

where D and C are convex polyhedra.
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163 12.2. Unbounded-Time Analysis Methods

Then the set of reachable states by continuous evolution up to the staying condition
C starting from a convex polyhedron X0 can be easily computed as:

X “ pX0 Õ Dq [ C

where X0 Ď C.
This formula is very similar to the case of polyhedral translations C Ñ x1 “x`D in

abstract acceleration, except that, in the discrete case, we had to account for the fact
that the number of iterations is integral. Since the behavior of the considered systems
is linear, standard widening with polyhedra performs reasonably well and enables an
unbounded-time analysis.

12.2.2 Hybrid Max-Strategy Iteration

Dang and Gawlitza [DG11b, DG11a] formulate the reachability analysis of hybrid sys-
tems with linear dynamics in the framework of max-strategy iteration (see §3.4.3) with
linear templates.

Definition 12.1 (Positive invariant) Let T be a linear template. S “ tx | Tpxq ď
du is a positive invariant w.r.t the affine vector field V : Rn Ñ Rn iff

@j : @x : Tj¨x “ dj ^
ľ

i‰j

Ti¨xďdi ùñ Tj¨V pxq ă 0

i.e., on the boundaries of S all vectors of V point inside S.

A positive invariant is an inductive invariant.
The continuous post-condition postV pX0q associated with the flow relation V is the

least positive invariant w.r.t. V starting from X0. postV must be encoded as the fixed
point of a monotonic, concave operator f in order to be integrated into the max-strategy
iteration framework. f is defined as follows:

fpdq “ d ` ε ¨ ∆pdq

with the jth component of the vector ∆ defined as:

∆jpdq “ suptTj 9x | Txďd ^ Tjxědj ^ px, 9xq P V u

and a “small enough” ε, such that f is monotonic on R
m

(see [DG11a] for the conditions
on ε).

Moreover, the closure clpdq of an abstract value d w.r.t. the staying condition C (of
which the constraints must be contained in the template) is defined as:

cljpdq “ suptTjx | Txďd ^ x P Cu

Then the continuous evolution up to the staying condition is given by

postV pX0q [ C “
´`

lfpλX.X \ pcl ˝ fqpXq
˘

˝ cl
¯

pX0q

Fig. 12.1 illustrates this encoding, which results in a discrete CFG.
The corresponding semantic inequations are then solved by max-strategy iteration.
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W

X0 X0 \ postV pX0q [ C

A B W

(a) (b)

cl id

cl ˝ f

id

Figure 12.1: Discrete encoding (b) of the flow relation V in (a).

9x“1
9y“y

x`yď4

9x“´x
9y“´1

x´yď´1

'0 '1 '2

x1 “0 ^ y1 “2

x`y“4

x´y“´1

Figure 12.2: Hybrid max-strategy iteration: Ex. 12.1

Example 12.1 (Hybrid max-strategy iteration) We analyze the hybrid automa-
ton in Fig. 12.2: We choose the template constraints p´x, x`y, x´yq and ε “ 10´3.
Notice that the locations '1 and '2 are actually replaced by the structure according to
Fig. 12.1b. We denote the bound variables associated to these locations with the cor-
responding subscripts A, B, W . For example, δ1A denotes the bound variable vector
corresponding to the location A in the structure replacing '1.

Let us assume that we have already performed the first iteration having improved the
strategies w.r.t. δ1A and that we obtain the valuation:

d1 “

$
&

%

δ0 Ñ 8
δ1A Ñ p0, 2,´2q δ1B Ñ ´8 δ1W Ñ ´8
δ2 Ñ ´8

,
.

-

In the second step p0, 2,´2q will be propagated to '1B and '1W – it is inside the stay-
ing condition, thus clp¨q has no effect. In the third step we can improve the strategies
w.r.t. δ1B:

µ3 “

$
’’&

’’%

δ0 ě 8 δ2 ě ´8

δ1A ě sup

"
T

ˆ
x1

y1

˙
| T

ˆ
x
y

˙
ďδ0 ^ px, yq1 “p0, 2q

*

δ1B ě clpδ1B`ε ¨ ∆V1pδ1Bqq δ1W ě δ1A

,
//.

//-

where ∆V1

j pδ1Bq “ sup

"
Tj

ˆ
9x
9y

˙
| T

ˆ
x
y

˙
ďδ1B ^ Tj

ˆ
x
y

˙
ěδ1Bj ^

ˆ
9x
9y

˙
“

ˆ
1
y

˙*
.

We thus get the valuation:

d3 “

$
&

%

δ0 Ñ 8
δ1A Ñ p0, 2,´2q δ1B Ñ p0, 4,´2q δ1W Ñ ´8
δ2 Ñ ´8

,
.

-

In the next steps p0, 4,´2q will be propagated (by strategy improvement) to '1W , '2A,
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'2B and '2W . Then we can improve the strategy w.r.t. δ2B:

µ7 “

$
’’’’&

’’’’%

δ0 ě 8
δ1A ě p0, 2,´2q δ1B ě clpδ1B`ε ¨ ∆V1pδ1Bqq δ1W ě δ1B

δ2A ě suptT
ˆ

x1

y1

˙
| T

ˆ
x
y

˙
ďδ1W ^ x`y“4u

δ2B ě clpδ2B`ε ¨ ∆V2pδ2Bqq δ2W ě δ2A

,
////.

////-

which results in the valuation:

d7 “

$
&

%

δ0 Ñ 8
δ1A Ñ p0, 2,´2q δ1B Ñ p0, 4,´2q δ1W Ñ p0, 4,´2q
δ1A Ñ p0, 4,´2q δ1B Ñ p0, 4,´1q δ1W Ñ p0, 4,´2q

,
.

-

p0, 4,´1q will be propagated to '2W , '1A, '1B, '1W and '2A. At this point no more
strategy improvement is possible, i.e., we have reached the least fixed point, with the
valuation:

d10 “

$
&

%

δ0 Ñ 8
δ1¨ Ñ p0, 4,´1q
δ2¨ Ñ p0, 4,´1q

,
.

-

As with all template-based methods, the precision crucially depends on the choice of
the template. Also the computed invariants are inductive: some dynamics like rotations
have no inductive invariants w.r.t. linear templates. The advantage of the technique in
comparison with discretization-based methods is that the analysis is time-unbounded
and thus the computation time is independent from the time horizon.

12.2.3 Relational Abstractions

Several methods for turning hybrid automata into discrete transition systems have been
considered since the early times of hybrid automata based on finite bisimulation ab-
stractions [Hen95, CK01, ADI02, GT08].

A recent method are relational abstractions [Tiw03, Tiw08, ST11, ZST12]. The idea
is very similar to loop acceleration (§4): the flow transition is replaced by a discrete self-
loop transition labeled with the jump relation Rpx,x1q, i.e., a relation between values
entering a location x and all values reachable by the flow relation x1.

Definition 12.2 (Relational abstraction) [ST11] R Ď R2n is a relational abstrac-
tion if for all trajectories τ : r0, δq Ñ Rn it is the case that @t P r0, δq : pτp0q, τptqq P R.

A relational abstraction is complete, if, whenever Rpx,x1q holds, then there is a trajec-
tory τ from x to x1.

Relational abstractions for certain dynamics of hybrid automata can be given right
away [ST11]:
– Piecewise constant dynamics ( 9x “ d with di ‰0):

Rpx,x1q “
nľ

i“2

ˆ
x1
1´x1
d1

“
x1
i´xi
di

˙
^

ˆ
x1
1´x1
d1

ě 0

˙

This abstraction is complete. A special case are timed automata for which d“1.
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18ďx1ď20

xďx1ď22

xě20

16ďx1ďx

xď18

Figure 12.3: Relational abstraction (Ex. 12.2) of the hybrid automaton in Fig. 10.3

– Piecewise constant inclusions (C 9xďd): by rewriting as A 9xďb^A1 9xěb1 with b ą 0
and b1 ą 0, .{ is the component-wise division):

Rpx,x1q “ 0 ď maxpApx1´xq.{bq ď minpA1px1´xq.{b1q

This abstraction is complete. A special case are rectangular hybrid automata for
which A “ A1 “ I.

– Linear dynamics ( 9x “ Cx) have (in general incomplete) abstractions depending on
the matrix C:

– If C “ diagpλ1, . . . ,λnq then Rpx,x1q “ Dtě 0 :
Ź

j x
1
j “ eλj txj . In practice,

the existential quantification is performed approximately over linear templates,
or the relational abstraction is constructed by splitting cases w.r.t. the values of
λi (e.g., asymptotic behavior).

– If C is diagonizable with rational eigenvalues, then one can perform a basis
change to reduce it to the previous case.

– If C is nilpotent, then one can obtain a complete abstraction [ST11].
Moreover, a single flow transition can be abstracted by a logical combination of relational
abstractions.

Example 12.2 (Relational abstraction) We relationalize the hybrid automaton in
Fig. 10.3: In the first mode we have the dynamics 30ď 9x´xď40 with the staying con-
dition xď22: Exploiting the information about the asymptotic behavior of the solution
we get the abstraction

R1px, x1q “
`
pxă40 ñ xďx1ă40q _ pxą30 ñ 30ăx1ďxq

˘
^ xď22

“ xďx1ď22

Analogously, we get for the second mode R2px, x1q “ 16ď x1 ď x. Fig. 12.3 shows the
resulting discrete CFG.

This method represents a lightweight way to derive useful continuous invariants in
some practical cases. Furthermore, the whole arsenal of existing discrete methods can
be employed for analysis. It is implemented in the tool HybridSAL1.

12.3 Bounded-Time Analysis Methods

Initially, bounded model checking techniques for hybrid automata considered systems
piecewise-constant dynamics that can be dealt with using the polyhedral time-elapse.
More complicated dynamics require a time-discretization. Hence, such methods actually
perform a set-based simulation.

1http://sal.csl.sri.com/hybridsal/
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0
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x1

x2

X0

X1

X2

Figure 12.4: Flow pipe approximation of the set of trajectories starting from X0:
the segment X1 over-approximating time interval r0, δs, X2 over-approximating rδ, 2δs;
dashed. . . trajectories emanating from the vertices of X0.

HyTech and PHAVer HyTech2 was the first reachability analysis tool for hybrid
systems [HH94, Ho95, HHWT97, HHWT98] and it had a major impact on subsequent
developments. It considers systems with (or approximated by) constant differential
inclusions and performs a polyhedral analysis (see §12.2.1) without widening.

PHAVer3 [Fre05] improves HyTech in several aspects, inter alia, it uses state
space partitioning based on a user-provided set of hyperplanes (predicates) and over-
approximates on-the-fly linear dynamics by piecewise constant dynamics.

Set-based simulation. The idea of set-based simulation is to divide time into inter-
vals r0, t1s, rt1, t2s,. . . and enclose the trajectories in each interval by, e.g., a polyhedron.
The resulting disjunction of sets is called a flow-pipe (see Fig. 12.4). Starting from an
initial set X0 each integration step with a time step δ adds a new segment Xk to the
flow-pipe. These techniques generalize guaranteed integration [Löh88, NJC99, Bou08]
from enclosing intervals to relational domains.

Academic verification tools for linear differential inclusions based on this technique
are for example CheckMate4 [CK98, CK99, CK03] and d/dt5 [DM98, ABDM00].
Besides, zonotopes [Gir05] and ellipsoids [KV00, BT00] have been considered for such
computations, too.

A certain effort has been made in order to scale up the flow pipe computation while
keeping an acceptable level of precision (e.g., [GM99], [SK03]). A breakthrough has
been achieved by Le Guernic and Girard [GG09] with their double representation of
convex sets using template polyhedra and support functions (see e.g., [BV04]). This
method is implemented in the tool SpaceEx6 [FGD`11], which can handle systems
with more than 100 variables.

For linear systems, the flow-pipe segments are computed based on the analytic solu-
tion. However, this is no more possible in the case of non-linear systems. Hybridization
[ADG07, DGM09] techniques enable to exploit the efficiency of linear system methods
with the help of state space partitioning and linearization of the non-linear dynamics.

2http://www-cad.eecs.berkeley.edu/~tah/HyTech/
3http://www-verimag.imag.fr/~frehse/phaver_web/
4http://www.mathworks.com/matlabcentral/fx_files/15441/3/content/doc/main.htm
5http://www-verimag.imag.fr/~tdang/Tool-ddt/ddt.html
6http://spaceex.imag.fr
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12.4 Alternative Approaches

Other approaches include methods involving level sets, satisfiability solving, quantifier
elimination and theorem proving.

Level set methods. Using level sets for proving safety properties is similar to
Lyapunov functions for proving stability: a function f must be found of which the zero
level set tx | fpxq“0u separates safe and unsafe states. f is constructed by formulating
a sum of squares problem and solving by semidefinite programming [PJ04], or from
the Hamilton-Jacobi differential equation associated with the level set function (see
[Tom98, MT00] for details). These methods provide unbounded time verification for
arbitrary dynamics, although their scalability is limited to at most 5 dimensions.

Constraint propagation and SAT-based approaches. HySAT [FH07, FHT`07]
is a bounded model checker (BMC, see §3.1) for logico-numerical hybrid systems (see
§11.2) with piece-wise constant dynamics. The BMC problem for a hybrid automaton
is encoded as the SAT-problem of a formula involving constraints. Inside the DPLL
procedure, the satisfiability of constraints is checked using an LP solver, arithmetic
inference methods are employed to derive new facts about linear relations, and the
repetitive structure of the BMC formula is exploited to prune the search space.

iSAT [EFH08, ERNF11] provides BMC for hybrid systems with arbitrary dynamics.
It is based on a Boolean SAT-solver and interval constraint propagation. It uses a
guaranteed interval ODE solver for the enclosure of trajectories. Due to these over-
approximations, iSAT can only prove unsatisfiability. The advantage of the tool is
that it can deal with logico-numerical hybrid systems with non-linear dynamics. The
drawbacks are that an interval analysis yields quite coarse results and that it is limited
to bounded time analysis.

HSolver [RS07] combines interval constraint propagation with a grid-based ab-
straction refinement technique.

Other recent techniques like [GT08] rely on generic SMT solvers to compute template-
based invariants: i.e., the hybrid automaton and the property are translated into a big
D@ formula. Then the least positive invariant w.r.t. the vector field is computed by map-
ping rational numbers to bounded-range integers and solving the system by a bit-vector
decision procedure.

Differential dynamic logic. A completely different approach is differential dynamic
logic [Pla08], which is first-order real arithmetic equipped with embedded dynamic be-
havior, i.e., ODEs, and modal operators “for all states” and “exists a state” for defining
properties. A system is proved with the help of a sequent calculus based on symbolic
decomposition according to proof rules and real quantifier elimination. The method is
implemented in the semi-automatic tool KeYmaera [PQ08] which combines a deduc-
tive theorem prover, a computer algebra system, and differential induction [Pla10].

The advantages are unbounded time verification for systems with arbitrary dynamics
and the fact that it is not restricted to safety properties. The drawbacks are that the
size of the proof may explode for systems with a complex logical structure and that user
intervention is required when the theorem prover fails to find a proof automatically.
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Chapter 13

Analysis of Logico-Numerical
Hybrid Automata

The problem of analyzing logico-numerical hybrid automata bears much resemblance
to the analysis of discrete logico-numerical programs: we have analysis methods for
numerical systems available, but we cannot directly apply them to a logico-numerical
system because the transition relations are formulas mixing Boolean and numerical
variables. Also, we want to avoid enumerating the Boolean states by using logico-
numerical analysis methods instead.

Hence, in this chapter, we will adapt and apply the basic concepts that we developed
in the context of discrete logico-numerical systems to the analysis of hybrid logico-
numerical systems.

The contributions of this chapter can be summarized as follows, see Fig. 13.1:

1. In §13.1 we propose techniques for adapting existing numerical hybrid analysis meth-
ods to logico-numerical systems and we apply them to three unbounded-time analysis
methods.

2. Regarding state space partitioning, a good candidate for equivalence classes which
we want to identify in hybrid systems are the continuous modes, i.e., distinct continuous
behaviors. In §13.2 we propose two methods for discovering continuous modes within a
logico-numerical hybrid system.

logico-numerical hybrid analysis §13.1 partitioning techniques §13.2

conclusions and perspectives §13.3

Figure 13.1: Chapter organization

13.1 Logico-Numerical Hybrid Analysis Methods

The flow relations in a logico-numerical hybrid automaton are general logico-numerical
formulas, but most existing continuous reachability methods require convex numerical
flow relations.

169



Chapter 13. Analysis of Logico-Numerical Hybrid Automata 170

b1 ^
"

pb2 ^ x1ď10 ^ 9x1“1 _
$b2 ^ x1ě0 ^ 9x1 “´1q

. . . . . .

pb2 ^ x“10 _$b2 ^ x“0q ^ b1
2 “$b2

(a)

b1
. . . . . .

b2 ^ x1ă10 ^ x1
1 “x1`1 _

$b2 ^ x1ą0 ^ x1
1“x1´1

pb2 ^ x“10 _$b2 ^ x“0q
^b1

2“$b2

(b)

Figure 13.2: Analogies between a logico-numerical hybrid automaton (a) and a CFG
of a logico-numerical program (b).

Since a flow transition can be somehow considered as a self-loop (see Fig. 13.2), the
problem resembles the one of logico-numerical abstract acceleration (§8). But actually, it
is even simpler, because only continuous (numerical) variables evolve in flow transitions,
while the discrete (Boolean and numerical) variables are known to stay unmodified –
whereas in discrete self-loops, both, Boolean and numerical variables evolve “hand-in-
hand”. Therefore, decoupling Boolean and numerical variables is not necessary.

We describe first the principles (13.1.1) for adapting numerical hybrid analysis meth-
ods to logico-numerical hybrid automata. Then we will show how to apply these princi-
ples to three selected hybrid analysis methods (13.1.2): polyhedral time elapse, hybrid
max-strategy iteration, and relational abstractions.

13.1.1 Basic Techniques

Structure of abstract domains. Logico-numerical hybrid automata have the state
space Bm ˆ N p ˆ Rn with the discrete state space Bm ˆ N p, where N p may be e.g.,
Zq ˆ Rp´q, and the continuous state space Rn.

We abstract all numerical variables together in the same abstract domain. Hence,
we get the structure of logico-numerical domains for discrete programs (see §7.2.3) with
the product domain ℘pBmq ˆApRp`nq and the power domain Bm Ñ ApRp`nq, where A
is an abstract domain, e.g., convex polyhedra or template polyhedra.

This choice enables us to establish relations between discrete and continuous numer-
ical variables:

Example 13.1 (Discrete/continuous relations)
let hybrid dcrel () = (x,n) where

rec der t = 1 reset 0 every (up(10-t)) init 0

and der x = 2 init 0

and n = (last n+1) every (up(10-t)) init 0

Using the techniques described below, we can prove the mixed discrete/continuous prop-
erty: 20nďxď20pn`1q.

We propose an on-the-fly computation of a numerical flow-relation that can be pro-
cessed by a continuous reachability method:
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171 13.1. Logico-Numerical Hybrid Analysis Methods

Specializing the flow relation. The first step is the partial evaluation (specializa-
tion) of the flow relation by the current reachable states in the respective location. For
this purpose, we compute the current state Szero-dynamics of all variables szero-dynamics

which are constant during the flow transition of the location: these are all the dis-
crete variables and those continuous variables the derivatives of which evaluate to zero:
Szero-dynamics “ Dsnon-zero-dynamics : S.

Example 13.2 (Specializing the flow relation) We explain this procedure for the
flow relation

V “
`
pb1 ^ b2 ^ 9x1 “x2´x1 ^ 9x2 “n´1q _ pb1 ^$b2 ^ 9x1“1 ^ 9x2 “x1q

˘

and the current state S “
`
b2 ^ n“ 1 ^ 0ďx1 ^ 0ďx2 ^ x1`x2ď 4

˘
. In order

to find out which variables have non-zero dynamics, we simplify the flow relation by the
discrete states Sdiscrete “ Dx : S “ pb2 ^ n“1q:

Db1, b2, n : V Ò Sdiscrete “ p 9x1 “x2´x1 ^ 9x2“0q

Hence, the only variable with non-zero dynamics is x1:

Szero-dynamics “ pDx1 : Sq “ pb2 ^ n“1 ^ 0ďx2ď4q

and we can compute the flow relation specialized w.r.t. the current reachable states:

V Ò Szero-dynamics “ pb1 ^ 0ď 9x1`x1ď4 ^ 9x2“0q

Extracting convex flow relations. The second step is to extract convex numeri-
cal flow relations. There are two opposite approaches: (1) enumerating and splitting
disjunctions or (2) convexifying disjunctions.

Method (1) involves splitting V ps, 9xq into a disjunction of numerically convex formu-
las

Ž
j Vjps, 9xq “ decomp convexpV q (see §7.2.2), and then computing the continuous

post-condition by
Ů

j postVj
.

Example 13.3 (Splitting disjunctions) The flow relation

pb1 _$b2q ^ pxď0 _ xě5q ^ p 9x“1´xq _
p$b1 ^ b2q ^ p0ďxď5q ^ p 9x“1q

is decomposed into three numerically convex disjuncts

pb1 _$b2q ^ pxď0q ^ p 9x“1´xq _
pb1 _$b2q ^ pxě5q ^ p 9x“1´xq _
p$b1 ^ b2q ^ p0ďxď5q ^ p 9x“1q

The less precise but also less expensive technique is (2), i.e., to take the convex hull
of the flow relation V 1 “ cvxpV q.

Example 13.4 (Convexifying disjunctions) For the flow relation in Ex. 13.3 we
obtain the convexified flow relation 1ď 9x`xď6.
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pon ^ 9x“n`20´x
^xďn`1q _

p$on ^ 9x“ x́ ^ xěn´1q

on1 ^ x1 “n1

^18ďn1ď22 pon1 “$onq ^ px1 “xq ^
pn1 “nq ^ pon ^ x“n`1 _

$on ^ x“n´1q

Figure 13.3: Logico-numerical polyhedral time-elapse Ex. 13.5

13.1.2 Application to Numerical Hybrid Analysis Methods

We show the application of these principles to three hybrid system analysis techniques:

Polyhedral Time-elapse

The polyhedral time elapse method (§12.2.1) computes the reachable states by a flow
transition with the constant differential inclusion 9x P D and the staying condition C by
pX Õ Dq [ C.

We can apply the convexification method to logico-numerical flow transitions by
computing D “ cvxpDx : V 1q and C “ cvxpD 9x : V 1q where

V 1 “ Db :
`
V pb,x, 9xq Ò pDxnon-zero-dynamics : Sq

˘
.

Splitting disjunctions means applying the computation above to each disjunct in
Ť

i Vi “
decomp convexpV q and computing the continuous post-condition for each pair pDi, Ciq,
i.e.,

Ů
ipX Õ Diq [ Ci.

Example 13.5 (Logico-numerical polyhedral time-elapse) We analyze the ther-
mostat system with setpoint n shown in Fig. 13.3 using the logico-numerical product
domain and the splitting method:

The initial state w.r.t. variables with zero-dynamics is Szero-dynamics
0 “ pon ^ 18ď

n ď 22q. Thus, in the first iteration the flow relation simplifies to the first disjunct:
V1 “

`
on ^ 9x“n`20´x ^ xďn`1

˘
. We compute

V 1
1 “

`
Dn, on : on ^ 9x“n`20´x ^ xďn`1 ^ 18ďnď22

˘
“

`
38ď 9x`xď42 ^ xď23

˘

By existential quantification of x and 9x respectively, we get D1 “ p19 ď 9xq and C1 “
pxď23q. The result after the flow transition is S1 “ pon ^ 18ďnď22 ^ 18ďxď23q
and after the discrete transition S2 “ p18ďnď22 ^ 18ďxď23q.

In the next iteration we have Szero-dynamics
1 “ p18 ď n ď 22q, thus, the whole flow

relation is active and we decompose it into the two disjuncts V1 _V2. D1 and C1 do not
change, for V2 “ p$on ^ 9x“ x́ ^ xěn´1q we obtain the polyhedra D2 “ p 9xď´17q
and C2 “ p17ďxq.

The flow transition results in S3 “ p18ď nď 22 ^ 17ď xď 23q, which is a fixed
point.

Relational Abstractions

Relational abstractions (§12.2.3) over-approximate the flow relation by a discrete tran-
sition, and thus, they transform a hybrid automaton into a discrete CFG.
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173 13.1. Logico-Numerical Hybrid Analysis Methods

on ^ 9x“40´x ^ xď20 _
$on ^ 9x“ x́ ^ xě18

on1 ^ x1 “19
pon1 “$onq ^ px1 “xq ^`

pon ^ x“20q _
p$on ^ x“18q

˘

(a) Hybrid automaton.

tt
on1 ^ x1 “19

pon ^ xďx1ď20q _ p$on ^ 18ďx1ďxq

pon1 “$onq ^
"

pon ^ x“20q _
p$on ^ x“18q

(b) Relationalized (discrete) system.

Figure 13.4: Logico-numerical relationalization Ex. 13.6

The extension to logico-numerical hybrid automata is straightforward. However, in
order to enable the reuse of existing discrete analysis tools, it is not possible to simplify
the flow relation on-the-fly. So, we have to relationalize the whole hybrid automaton
before analyzing the obtained discrete system.

Using the splitting technique, the continuous part of each disjunct is relationalized
separately. The convexification method, i.e., relationalizing the convex hull, is very
likely to lose important information, because it is applied without any knowledge about
reachable states.

Example 13.6 (Logico-numerical relationalization) We analyze the thermostat
system in Fig. 13.4a): We split V “ V1 _ V2 with V1 “ on ^ 9x “ 40´x ^ xď 20 and
V2 “ on^ 9x“ x́^xě18. We compute the relational abstraction of V1 by exploiting the
asymptotic behavior of the dynamics:

R1 “
`
pxă40 ñ xďx1ă40q _ pxą40 ñ 40ăx1ďxq

˘
^ on ^ xď20 ^ x1ď20

“ on ^ xďx1ď20

In the same way we obtain for V2: R2 “ p$on ^ 18ďx1ďxq. The resulting discrete
CFG is shown in Fig. 13.4b. The analysis using the logico-numerical product domain
yields the invariant 18ďxď20.

Using the convexification method, we obtain cvxpV q “ p0 ď 9x`x ď 40q and after
relationalization R1 “ pxă 0 ñ xď x1 ă 40q _ p0ď xď 40 ñ 0ď x1 ď 40q _ pxą
40 ñ 0ăx1ďxq. Here, the convexification loses the important constraints of the staying
condition, thus the analysis yields the weaker invariant 0ďxď40.

Max-Strategy Iteration

We extend the logico-numerical max-strategy iteration (§9) to hybrid systems using the
encoding of flow transitions as explained in §12.2.2.

As in §9, we use the splitting method for decomposing numerically non-convex tran-
sitions into several strategies. This results in an encoding of a flow relation according
to the automaton scheme of Fig. 12.1, but with one self-loop per disjunct in location B.
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The number of strategies can be reduced by using the convexification technique,
which generates only a single continuous strategy per flow transition.

Example 13.7 (Hybrid logico-numerical max-strategy iteration) We analyze the
thermostat system in Fig. 13.4a using an interval template ˘x in the product domain
Bn ˆ PolTpRq.

We start in the state pon, xq “ ptt, r19, 19sq. No discrete transition which changes a
Boolean state can be taken. We switch to phase (2): there are three available strategies
associated to the transitions px1 “ 19q,

`
p 9x “ 40´xq ^ xď 20

˘
and px1 “ xq. We can

improve w.r.t. the upper bound of x by using the second strategy and obtain ptt, r19, 20sq.
No more improvement is possible. We continue with phase (1) and take the discrete
transition that results in pJ, r19, 20sq. Then, in phase (2), four strategies are available:
the three above and

`
p 9x“´xq ^ xě18

˘
. We can improve the lower bound of x by the

latter one and obtain pJ, r18, 20sq, which is a fixed point.

13.2 Partitioning Techniques for Hybrid Systems

In logico-numerical hybrid automata, a flow relation is a logico-numerical formula con-
taining the staying condition and differential inclusions. One location can regroup many
distinct continuous behaviors, and thus, the analysis over a CFG consisting of a single
location is not very precise.

As for discrete systems, our approach is to increase the precision by partitioning
the system into locations such that distinct continuous behaviors are associated with
separate locations.

We propose two partitioning methods for discovering these continuous modes: one
detects modes defined by equivalence classes of Boolean states (§13.2.1), whereas the
other one performs an analysis to detect modes defined by equivalence classes of discrete
numerical states (§13.2.2).

13.2.1 Boolean-Defined Continuous Modes

The first method we describe is the hybrid analog of the method described in §8.3 to
find the Boolean states that imply the same numerical actions (Boolean-defined“discrete
numerical modes”). Now, we apply it to the flow relation in order to detect the Boolean
states with the same continuous dynamics.

We represent flow relations V pb,x, 9xq with the help of flow functions of the form
9xi “f cx

i pb,β, C,x, ξq (where f cx
i is an arithmetic expression with tests, see §7.2.2), such

that, together with the assertion Apb,β, Cq, we obtain semantically V pb,x, 9xq “ Dβ, ξ :
A ^

Ź
ip 9xi “f cx

i q.
f cx
i is represented as anMtBdd (in the same way as discrete transition functions (see

§7.2.2)). We denote f cx the vectorized form with factorized guards (MtBdd product,
§7.2.2) of the flow functions f cx

i :

f cxpb,β, C,x, ξq “
ł

j

`
9x“ejpx, ξq

˘
^ φjpb,β, Cq

Then a partition is characterized by the following equivalence relation (cf. Def. 8.3):
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Definition 13.1 (Boolean states with the same set of ODEs)

b1 „ b2 ô

$
&

%

@β1, C1 : Apb1,β1, C1q ñ
Dβ2, C2 : Apb2,β2, C2q ^ f cxpb1,β1, C1q “ f cxpb2,β2, C2q

and vice versa

The intuition of this heuristics is to make equivalent the Boolean states which imply
to the same set of ODEs.

Example 13.8 (Boolean-defined modes I) We compute the product of the flow re-
lations

9x “
"

2´x if b1 ^ xď1 _$b2 ^ xě3
´y if $b1 ^ b2 ^ xě0 ^ yě0

9y “
"

5´y if $b2 ^ yď3
´x if b2 ^ xě0 ^ yě0

and we obtain

p 9x, 9yq “

$
&

%

p2´x,5´yq if
`
pb1 ^ xď1q _ p$b1 ^ xě3q

˘
^ $b2 ^ yď3

p2´x, ´x q if b1 ^ b2 ^ 0ďxď1 ^ yě0
p ´y , ´x q if $b1 ^ b2 ^ xě0 ^ yě0

Thus, we have the partition t$b2, b1 ^ b2,$b1 ^ b2u, in which each equivalence class
corresponds to a distinct pair of ODEs.

Variants. Analogously to Def. 8.2, we can formulate an equivalence relation iden-
tifying the Boolean states associated to the same set of ODEs and the same staying
conditions:

Definition 13.2 (Boolean states with the same set of ODEs and stay. cond.)

b1 „ b2 ô

$
&

%

@β1, C : Apb1,β1, Cq ñ
Dβ2 : Apb2,β2, Cq ^ f cxpb1,β1, Cq “ f cxpb2,β2, Cq

and vice versa

Example 13.9 (Boolean-defined modes II) Let’s consider the first case in the prod-
uct equation in Ex. 13.8:

p 9x, 9yq “ p2´x, 5´yq if
`
pb1 ^ xď1q _ p$b1 ^ xě3q

˘
^ $b2 ^ yď3

Requiring that the ODEs and the staying conditions must be equal, we obtain two equiv-
alence classes for this case: b1 ^ $b2 and $b1 ^ $b2. Hence the complete partition is
tb1 ^$b2,$b1 ^$b2, b1 ^ b2,$b1 ^ b2u.

13.2.2 Numerically Defined Continuous Modes

Often the continuous modes are characterized by the values of discrete numerical vari-
ables, like in the following example:
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Example 13.10 (Partitioning by numerically defined modes I)

´5ďξď5 Ñ

$
&

%

9x “ n´x

n1 “
"

40`ξ if upp18´xq
ξ if uppx´20q

This system has two modes 9x “ 40 ` ξ ´ x and 9x “ ξ ´ x according to the values
of n. Hence, we want to assign these two modes to distinct locations by considering the
partition t35ďnď45,´5ďnď5u of the reachable state space.

Thus, our goal is to find a finite partition of valuations of those discrete numerical
variables occurring in the flow relation. We could detect such partitions syntactically
by inspecting the transition relations. However, we can do better by performing the
following analysis:

Analysis

The idea is to perform an interval analysis in an abstract domain that represents the
reachable values of those variables as a disjunction of interval vectors for which the
numerical transitions are guaranteed to generate only a finite set of intervals. The other
variables are abstracted by a single interval vector as in the standard interval domain
(§3.3.1).

We define the following abstract domain:

Finitely disjunctive, partitioned interval domain FdpIntpRnq. This domain
partitions the set of variables in two partitions with q and n´q variables respectively
and abstracts them as follows:

℘pRnq ´́ Ñ́Ð́´́
α

γ
℘pIntpRqqq ˆ IntpRn´qq

An abstract value pP J , IKq P FdpIntpRnq is a pair consisting of a finite set (disjunctions)
P of interval vectors for the set of variables J (|J |“q), and one interval vector I for the
set of variables K (|K|“n´q). J and K form a partition of the set of variables.

We list the domain operations in Tab. 13.1. We denote cvxpP q the convex hull
operation which transforms a set of interval vectors P into a single interval vector.
J and K are represented as pH,Jq and pH,Kq respectively.

The partition of variables tJ,Ku changes dynamically according to the operations:
For example, the resulting partition of a union of two abstract values with partitions
tJ1,K1u and tJ2,K2u is tJ1 X J2,K1 Y K2u.

The post-condition (image) of a transition f gathers only the values of those variables
into the disjunctive component P J 1

of the abstract value that result from so-called
“finitely generating transitions” (defined below).

The image operator is defined as !f"pP J , IKq “ pP J 1
, IK

1q with
‚ P J 1 “

Ś
i!fi"pP J , IKq for those fi which are finitely generating w.r.t. pP J , IKq,

‚ IK
1 “

Ś
i!fi"pcvxpP Jq, IKq for those fi which are not finitely generating w.r.t. pP J , IKq.

Definition 13.3 (Finitely generating transitions) A transition fi “
`
gpx, ξq Ñ

x1
i “ aipx, ξq

˘
is finitely generating w.r.t. pP J , IKq if it is

(1) an assignment to a constant: gpx, ξq Ñ x1
i “ di, or

(2) an assignment to inputs: g1pxq ^ g2pξq Ñ x1
i “ Ciξ ` di, or
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177 13.2. Partitioning Techniques for Hybrid Systems

Inclusion: pP J1
1 , IK1

1 q Ď pP J2
2 , IK2

2 q ô K1 Ď K2 ^

$
’&

’%

P J2
1 Ď P J2

2

IK1

1 ĎInt IK1

2

cvxpP J1XK2

1 q ĎInt IJ1XK2

2

Abstraction: αpXq = pαIntpXq,Kq
Concretization: γpP, Iq =

` Ť
pPP γ

Intppq
˘

ˆ γIntpIq
Union: pP J1

1 , IK1

1 q \ pP J2
2 , IK2

2 q = pP J1XJ2 , IK1YK2 q

where

$
’’’&

’’’%

P J1XJ2 “ P J1XJ2
1 Y P J1XJ2

2

IK1YK2 “

¨

˝
IK1XK2

1 \Int IK1XK2

2

cvxpP J1XK2

1 q \Int IJ1XK2

2

IJ2XK1

1 \Int cvxpP J2XK1

2 q

˛

‚

Image: !f"pP J , IKq = pP J 1
, IK

1q as defined in the text

Widening: pP1, I1q∇pP2, I2q =

"
same as union,
but with ∇Int instead of \Int

Table 13.1: Operations of the finitely disjunctive, partitioned interval domain. The
superscript Int indicates the operations of the standard interval domain.

(3) the identity or a “simple” variable exchange possibly with negation: g1pxnf , ξq ^
g2pxf , ξq Ñ x1

i “ cxj with c P t´1, 1u and variables xf , xj in J and variables xnf

in K.

Mind that case (2) requires that the inputs are not related to the state variables in
the guard, and case (3) requires that the variables occurring on the right-hand side of
the assignment are not related to variables in K via the guard. The reason for these
requirements is the observation made in Prop. 5.1 that, otherwise, we could encode any
(non-finitely generating) transition.

The conditions (1) to (3) assure that a transition generates a only finite number of
intervals, however, they probably do not characterize the maximal set of such transitions.

The domain FdpIntpRnq can be combined with Booleans in the usual way, result-
ing either in the power domain Bp Ñ FdpIntpRnq or the product domain ℘pBpq ˆ
FdpInt pRnq. The behavior of continuous variables in a location is abstracted by the
staying condition.

Partitioning

After having computed the fixed point with Kleene iteration, widening and descending
iterations, for example in the domain L Ñ ℘pBpq ˆ FdpIntpRnq, we obtain for each
location ' with abstract value A# “ pB,P J , IKq, a set Ψ “ tpB, p, IKXU q | p P P JXUu
where U are the numerical variables occurring in the flow relation V#. The elements of Ψ
(viewed as predicates) are then used in the partitioning process (see §7.3.3). We apply
this method to the following (purely numerical) example using the domain FdpIntpRnq:

Example 13.11 (Partitioning by numerically defined modes II) We consider a
system of two particles with positions x and y and velocities v and w respectively. With
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9x“v ^ 9y“w

^x1ďy1
^q“below

9x“v ^ 9y“w

^x1ďy1
^q“ ready

I
x1ăy1

x1 “y1 ^ v1 “w ^ w1 “v

(a) Before partitioning.

9x“v“v0^
9y“w“w0^

x1ďy1 ^ q“below

9x“v“v0^
9y“w“w0^

x1ďy1 ^ q“ ready

9x“v“w0^
9y“w“v0^

x1ďy1 ^ q“below

9x“v“w0^
9y“w“v0^

x1ďy1 ^ q“ ready

I x1ăy1

x1ăy1

x1 “y1 ^ v1 “w0 ^ w1 “v0x1 “y1 ^ v1 “v0 ^ w1 “w0

(b) After partitioning.

Figure 13.5: Partitioning by numerically defined modes: Ex. 13.11 particle collision
(The location corresponding to q“above is not depicted; it is not reachable anyway.)

the given initial state, they collide when x1“y1.

I “
ˆ
x0 “

ˆ
0
3

˙
^ y0 “

ˆ
6
4

˙
^ v0“

ˆ
2

´3

˙
^ w0 “

ˆ
´4
´4

˙˙

$
’’&

’’%

9x “ v
9y “ w

v1 “ w if uppx1´y1q
w1 “ v if uppx1´y1q

Fig. 13.5a depicts the hybrid automaton obtained by applying the translation of §11
and partitioning by q. Applying our analysis above, we get the following results in both
locations:

¨

˚̊
˚̊
˚̊
˝

¨

˚̋
v1
v2
w1

w2

˛

‹‚

looomooon
PJ

,

¨

˚̋
x1
x2
y1
y2

˛

‹‚

looomooon
PK

˛

‹‹‹‹‹‹‚
P

¨

˚̊
˚̊
˚̊
˝

$
’&

’%

¨

˚̋
2

´3
´4
´4

˛

‹‚,

¨

˚̋
´4
´4
2

´3

˛

‹‚

,
/.

/-
loooooooooooooomoooooooooooooon

P

,

¨

˚̋
J
J
J
J

˛

‹‚

loomoon
I

˛

‹‹‹‹‹‹‚

After partitioning we obtain the hybrid automaton shown in Fig. 13.5b.
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13.3 Conclusions and Perspectives

This chapter actually unified two extensions: on the one hand, we extended the logico-
numerical analysis approach from discrete to hybrid systems, and on the other hand we
extended hybrid analysis methods from numerical to logico-numerical hybrid systems.

In this spirit, we reused the technique for identifying modes according to equiva-
lence classes of Boolean states, which we developed in the context of logico-numerical
abstract acceleration, for detecting the continuous modes of a hybrid system. Besides,
we complemented this technique by a method for detecting modes defined by numerical
states, which is based on a particular disjunctive interval analysis.

Regarding analysis methods, we showed how to employ the basic techniques, for
example to deal with non-convex conditions or to extract numerical relations from
logico-numerical ones, for extending hybrid analysis methods from numerical to logico-
numerical systems. We have already used these basic techniques in a similar way in the
context of our discrete logico-numerical methods.

As a consequence of this unified approach, we could also use our analysis meth-
ods originally developed for discrete systems, logico-numerical abstract acceleration for
instance, to treat the discrete transitions during the analysis of a hybrid system.

Perspectives. In the context of abstract interpretation, we are mainly interested
in unbounded-time reachability. However, the principles of §13.1.1 are also applicable
in the same manner to the set-simulation methods (§12.3) targeting bounded model-
checking. Hence, they could also help to speed up these techniques when applied to
logico-numerical systems.

Our techniques for turning numerical hybrid analysis methods into logico-numerical
ones considered only the extreme techniques for convexifying flow transitions, i.e., either
splitting disjunctions or computing the convex hull: it should be investigated whether
there are reasonable heuristics for an intermediate treatment allowing precision traded
off for efficiency.

The abstract-interpretation-based analysis of logico-numerical hybrid systems in a
more implicit way is a novel approach. In this work, we have shown its basic feasibility.
However, further research and experimentation are necessary in order to assess and
exploit the full potential of such methods.
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Chapter 14

Implementation: The Tool
ReaVer

We have implemented the verification methods developed throughout this thesis in a
tool called ReaVer, REActive system VERifier.

In order to keep it as generic and extensible as possible, we separated the implemen-
tation into (1) a framework providing general facilities and defining generic concepts and
(2) the implementations of these concepts making up the actual tool. The framework is
built upon the logico-numerical abstract domain library BddApron. Implementations
may additionally call other libraries, such as LP or SMT solvers. The tool is imple-
mented using the OCaml language; the size of the code is approximately 4KLOC for
(1) and 8KLOC for (2).

We will first briefly give an overview of the framework (§14.1) before describing
which methods (§14.2) are implemented in the tool.

14.1 The Framework

Our framework provides three basic data structures:
– The data-flow (DF) program is the common intermediate representation of an input

program. This representation is in fact the hybrid data-flow formalism (with zero-
crossings) of §11.1, which subsumes the logico-numerical dynamical systems of §7.1.

– The control-flow graph (CFG) is the common representation used during analysis,
which is actually a logico-numerical hybrid automaton (§11.2) subsuming discrete
CFGs (§7.3.1).

– The analysis result (AR) holds for each CFG location the corresponding (logico-
numerical) abstract value.
Moreover, our framework defines five interfaces for the operations and modules in-

volved in the verification process:
– Front ends convert an input file into a DF program.
– DF program to CFG transformations convert a DF program into a CFG.
– CFG transformations transform a CFG.
– Analyses analyze a CFG and produce an analysis result.
– Abstract domains are used by the analyses.
The tool provides implementations of these interfaces and uses them to perform the flow
of operations depicted in Fig. 14.1: The tool takes an input file and options, the front
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input
file

front end
processing

DF
prog.

DF prog.
to CFG

CFG
verifi-
cation

analysis
result

options ReaVer

Figure 14.1: ReaVer: data and operation flow (rectangles. . . data, rounded rectan-
gles. . . operations; see Fig. 14.2 for the internals of the verificaton block).

AR is
inconclusive

CFG

verif.
strategies

AR is conclusive _
no more verif. strategy

AR

verif. strategy type?

CFG :=
transform(CFG,AR)

AR :=
analyze(CFG)

yes

no

transformation analysis

Figure 14.2: ReaVer: Zoom into the verification block of Fig. 14.1 (AR. . . analysis
result).

end parses the input file and transforms the program do a DF program. The DF program
to CFG transformation converts it into a CFG. Then the verification block (Fig. 14.2)
performs the actual verification: it is given a list of verification strategies (via the tool
options), i.e., CFG transformations and analyses, and executes them sequentially until
all verification strategies have been processed or a conclusive analysis result has been
obtained.

The concept of verification strategies allows the user to compose analysis and parti-
tioning methods in a flexible way. For example, we can start with a Boolean analysis,
then we perform a first coarse partitioning followed by an interval analysis; then we re-
fine the partition and finally, we apply some more expensive analysis, e.g., using convex
polyhedra.

The next section §14.2 gives an overview of the implementations of the five interfaces
provided in ReaVer.
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14.2 The Tool

The toolReaVer1 provides the following implementations of the framework’s interfaces:

Front Ends

The tool supports the following input formats:
(1) NBac and Hybrid NBac formats,
(2) Lustre (after transformation into the NBac format using the tool Lus2NBac

[Jea00]),
(3) subsets of Lucid Synchrone and Zelus.

NBac and Hybrid NBac. The NBac format is the input file format used by the
tool NBac [Jea00]. It is a textual description of a discrete dynamical system (§2.1.1)
together with a specification of a property pA,Gq. We have extended it with ODEs and
a zero-crossing operator to the Hybrid NBac format.

The Hybrid NBac grammar is listed in Fig. 14.3; the expressions are those allowed
by the BddApron library (see §7.2.2): besides the type definitions of enumerated types,
the available types are bool, real, int and signed (sint[n]) and unsigned (uint[n]
bounded integers represented by n bits.

The property is specified by the expressions following the keywords assertion A
and invariant G (or alternatively by the error states: final E).

Zelus and Lucid Synchrone. The front ends for a subset of Zelus (and Lucid
Synchrone) are based on the front end of the Zelus compiler [BBCP11b] followed
by a translation to the abstract syntax of the Hybrid NBac format. The top-level
function must have two Boolean outputs (assert,ok), which correspond to the two
outputs pA,Gq of the observers specifying the property.

By translating the abstract syntax of NBac/Hybrid NBac into BddApron for-
mulas (§7.2.2) we obtain a DF program.

DF program to CFG

In case of a discrete program, the trivial CFG with a single self-loop (cf. §2.1.2) can be
constructed from the DF program right away, whereas for hybrid programs with zero-
crossings, we have to apply the translation from hybrid data flow to logico-numerical
hybrid automata (§11).

Abstract Domains

BddApron provides an implementation of a logico-numerical power domain (§7.2.3)
based on any numerical domain available inApron, like convex polyhedra and octagons.

Based on this implementation, we provide the emulation of a logico-numerical prod-
uct domain (§7.2.3) parametrized with any numerical domain available in Apron.

For experimental purposes, we have also implemented the product and power com-
bination of a logico-numerical linear template domain emulated with the help of convex
polyhedra, because template polyhedra are not yet available in Apron.

The partitioning by numerically defined continuous modes uses the (logico-numerical)
finitely disjunctive, partitioned interval domain (§13.2.2).

1Current version ReaVer 0.9
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xprogy ::= [typedef xtypedef y`] xvardecly [definition xdefinitiony`]
transition xtransitiony`

xinitialy [xassertiony] xinvarianty
xtypedef y ::= type = enum{ xlabelsy };

xlabelsy ::= label | label , xlabelsy
xvardecly ::= state xvarstypey` [input xvarstypey`] [local xvarstypey`]

xvarstypey ::= xvarsy : type ;

xvarsy ::= v | v , xvarsy
xdefinitiony ::= v = xexpry ;

xtransitiony ::= xdisctransy | xconttransy
xdisctransy ::= v’ = xexpry ;

xconttransy ::= .v = xexpry ;

xexpry ::= xBddApronExpry | up xexpry
xinitialy ::= initial xexpry ;

xassertiony ::= assertion xexpry ;

xinvarianty ::= invariant xexpry ; | final xexpry ;

Figure 14.3: Hybrid NBac format.

CFG Transformations

These comprise CFG preprocessing and simplifications (§7.3.3, §8.1) as well as parti-
tioning methods (and their variants) for discrete and hybrid programs:
– “manual” partitioning by a given set of predicates;
– partition by initial (I), error (E) and other ($pI _ Eq) states (§7.3.2);
– enumeration of Boolean states (§7.3);
– partitioning by (Boolean-defined) discrete numerical modes (§8.3);
– partition refinement by Boolean backward bisimulation (§8.3);
– partitioning by Boolean-defined continuous numerical modes (§13.2.1);
– partitioning by numerically defined continuous numerical modes (§13.2.2).

Analyses

Besides a forward and backward Boolean analysis (§7.3.3), for discrete programs the
following analyses are available:
– logico-numerical standard analysis (cf. §7.2.3, §7.3.1) in forward and backward direc-

tion parametrized with a logico-numerical product or power domain with a numerical
domain from the Apron library;

– forward logico-numerical abstract acceleration (§8.2) with convex polyhedra in logico-
numerical product or power combination;

– forward logico-numerical max-strategy iteration (§9.2) using a logico-numerical prod-
uct or power domain with template polyhedra.

For hybrid programs, the following analyses are available (§13.1.2):
– forward logico-numerical polyhedral time-elapse parametrized with the logico-numerical

product or power domain with convex polyhedra;
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– forward logico-numerical hybrid max-strategy iteration using the logico-numerical prod-
uct or power domain with template polyhedra;

– forward relational abstractions (currently restricted to abstractions not requiring a
basis change) as preprocessing for a discrete analysis.
The purely numerical versions of the analyses (including backward abstract acceler-

ation (§5.2)) are applicable after proper preprocessing of the CFG, i.e., enumeration of
the Boolean states.

The max-strategy iteration-based methods call the solver of Gawlitza [DG11a] (which
is based on the LP solver QSopt ex2 and the SMT solver Yices3).

14.2.1 Analysis Example with ReaVer

In order to illustrate the basic output of the analyzer, we analyze the following small
Lucid Synchrone program:

let node main i = (assert,ok) where

rec assert = true

and ok = true fby (ok && -10<=x && x<=10)

and x = 0 fby (if i then -x else if x<=9 then x+1 else x)

We launch the analyzer with the command reaver example.ls and we get the output
(compressed):
[0.020] INFO [Main] ReaVer, version 0.9.0

[0.028] INFO [Main] variables(bool/num): state=(2/1), input=(1/0)

[0.038] INFO [Verif] CFG (3 location(s), 3 arc(s)):

LOC -1: arcs(in/out/loop)=(0,1,0), def = init

LOC -3: arcs(in/out/loop)=(1,0,0), def = not init and not p1_

LOC -4: arcs(in/out/loop)=(1,1,1), def = not init and p1_

[0.039] INFO [Verif] analysis ’forward analysis with abstract acceleration’

[0.070] INFO [VerifUtil] analysis result:

LOC -1: reach = (init) and top

LOC -3: reach = bottom

LOC -4: reach = (not init and p1_) and [|-p2_+10>=0; p2_+10>=0|]

[0.074] INFO [Main] variable mapping:

"p2_" in File "example.ls", line 4, characters 17-55:

> and x = 0 fby (if i then -x else if x<=9 then x+1 else x)

> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

"p1_" in File "example.ls", line 3, characters 21-42:

> and ok = true fby (ok && -10<=x && x<=10)

> ^^^^^^^^^^^^^^^^^^^^^

[0.075] INFO [Main] PROPERTY TRUE (final unreachable)

This tells us that:
– The program has two Boolean state variables and one numerical state variable and

one Boolean input variable.
– After partitioning, the CFG has three locations with the displayed location definitions.

2http://www.dii.uchile.cl/~daespino/ESolver_doc/main.html
3http://yices.csl.sri.com
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Figure 14.4: CFG printed to Dot: The locations are labeled with their location
definitions. The arcs are labeled with “arc assertion Ñ transition function”.

– We analyzed the program using forward abstract acceleration, which inferred the
displayed invariants in the locations.

– The variables occurring in the invariants correspond to the expressions in the source
program listed after variable mapping.

– The analysis concluded with the result PROPERTY TRUE.
We can also display the CFG (using the Dot format, see Fig. 14.4).

We refer to the tool’s website http://pop-art.inrialpes.fr/people/schramme/
reaver/ for additional information.

14.3 Conclusions and Perspectives

We briefly described the tool ReaVer for the verification of discrete and hybrid data-
flow programs and its underlying framework, which makes the tool easy to extend.
Throughout this work, the tool has proved its utility for experimenting various methods
and their combinations as well as for automating benchmark series with different analysis
options.

The wish list of features to be integrated into the tool is long. We describe here
those that we think are the most important:

Broader support for high-level languages. The current connection of Zelus/Lu-
cid Synchrone to our tool serves as proof-of-concept – e.g., state machines (automaton)
are not yet supported. In order to provide a broader support for the analysis of high-
level synchronous (hybrid) programs, the integration of the Zelus/Lucid Synchrone
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front end must be pushed further. Also, the direct integration of the Lustre (V6) front
end is desirable.

Return to source. A practical issue when analyzing programs obtained by a trans-
lation from high-level languages is that there is no one-to-one correspondence between
variables in the source code and the variables used in low-level representation during the
analysis. For example, the inlining of nodes requires the duplication of variables, delay
operators like fby introduce memory variables, and in the case of automata, a vari-
able is added to hold the current state of the automaton. Thus, simply re-substituting
corresponding expressions from the program source into the analysis result is not so
easy.

Currently, we print the mapping between the state variables in the low-level repre-
sentation and the corresponding expressions and equations together with their location
in the source code. This should be improved to make the user’s life easier w.r.t. inter-
pretation of the computed invariants. A graphical user interface could probably help
improving the usability in this respect. Moreover, semantic manipulations on the source
language level will be necessary, e.g., to simplify expressions.

Partitioning. In our translation to hybrid automata, we assumed that state machines
in the Zelus program have been compiled to data-flow. However, it would be desirable
to exploit the existing structure of these automata for partitioning the CFG used for
analysis.

We have observed in our experimental comparison that the iterative partition re-
finement based on the heuristics of [Jea00] (cf. §7.4) is sometimes superior to our static
partitioning methods (cf. §8.4). Since these refinement techniques are orthogonal to
our partitioning and analysis methods, we could combine them with our approach.

Abstract domains. Concerning abstract domains, an efficient LP-solver based tem-
plate domain implementation within Apron has highest priority. The logico-numerical
product domain is currently implemented on top of the power domain: an optimized
implementation will certainly speed up the analyses.

Some partitioning and analysis methods require quantifier elimination of numerical
variables in formulas: currently, we use the operations for abstract domains available in
BddApron, thus, we have to convert formulas to abstract domain values and convert
the result back, which is not very efficient. Hence, it would make sense to use dedicated
real quantifier elimination methods [ST11] for this purpose.

We are convinced that ReaVer could serve as a platform for connecting various
source languages and integrating a variety of abstract interpretation methods for discrete
and hybrid systems, which would considerably simplify the automization of experimental
comparisons.
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Chapter 15

Conclusions and Perspectives

15.1 Summary and Discussion

We started this thesis with the motivation to verify safety-critical embedded systems,
and more precisely, systems with Boolean and numerical variables and exhibiting dis-
crete and continuous behavior.

We pursued the objective of improving the precision of inferred properties while
enhancing scalability w.r.t. the Boolean combinatorics of logico-numerical systems. In
addition, we considered the analysis of embedded systems modeled in hybrid simulation
languages.

Our verification approach is based on logico-numerical analysis methods, i.e., ab-
stract interpretation methods that are capable of handling both, Boolean and numeri-
cal, variables in an implicit way, and state space partitioning. Within this framework,
we adapted numerical methods that are known to improve the precision to the logico-
numerical context. Regarding hybrid simulation languages, we proposed a translation to
logical-numerical hybrid automata, and we showed that our logical-numerical analysis
approach also applies to such systems.

Our experiments have shown that these methods can improve the efficiency of the
analysis by at least one order of magnitude compared to purely numerical approaches,
while improving the precision of the discovered invariants.

Verification of discrete numerical systems using abstract acceleration. The
first numerical method for discrete systems we considered was abstract acceleration – a
precise polyhedral extrapolation operator for some types of affine transformations – to
which we contributed the following extensions:

We made it handle numerical inputs, which was less straightforward than expected
due to the observation that resetting a variable to an input occurring without restrictions
in the guard of the transition can emulate a general transformation that we do not (yet)
know how to accelerate. In our experiments, we perceived that abstract acceleration was
always at least as precise as standard Kleene iteration with widening and descending
iterations, and in most cases faster than the latter.

We extended abstract acceleration to co-reachability analysis which is slightly dif-
ferent from the forward direction because of the asymmetry of the type of transitions
(guarded actions) we considered.

However, in these extensions we only considered translations and translations with
resets, which are not the only transitions types that are worth being accelerated. This led
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us to revisit linear accelerability and to provide a characterization of linearly accelerable
linear transformations based on the Jordan canonical form of the homogenized, linear
form of affine transformations, which takes into account the initial set. This criterion
turned out to be slightly more general than the finite monoid characterization used in
exact acceleration. We used this result to formulate an additional abstract acceleration
formula. Yet, in general, this requires a change of basis, which is difficult to implement
in practice. Thus, we do not yet know how to exploit these results to their full extent
in practice.

Verification of discrete logico-numerical systems using abstract acceleration
and max-strategy iteration. The adaptation of numerical analysis methods to
the logico-numerical context has to cope with the tight coupling between Boolean and
numerical variables in logico-numerical transitions.

Our approach to logico-numerical abstract acceleration consisted in relaxing this
coupling without losing too much precision. The method is supported by suitable par-
titioning techniques: we proposed a partitioning method by numerical modes, which
proved very effective in our experiments.

Our logico-numerical max-strategy iteration algorithm solves the issue of the coupling
between Boolean and numerical variables by exploring increasingly larger Boolean sub-
systems by alternating propagation and max-strategy iteration phases. While a previous
attempt for logico-numerical strategy iteration relied on Kleene iteration and widening,
our algorithm relies on LP solving, and thus, it is indeed able to compute the least fixed
point for affine programs w.r.t. logico-numerical domains with linear templates.

Our experiments have shown that these techniques can improve the efficiency of the
analysis by at least one order of magnitude (w.r.t. system size or computation time)
compared to purely numerical approaches, while enhancing the precision of the inferred
invariants.

Translation of the hybrid synchronous language Zelus to logico-numerical
hybrid automata. Another goal was the verification of high-level languages for em-
bedded systems. We considered the hybrid synchronous language Zelus, which enables
tightly integrated programming of systems with discrete and continuous behavior with
a semantically clear interaction based on zero-crossings. However, we do not know how
to verify systems with zero-crossings using existing hybrid analysis methods.

For this reason, we proposed a sound translation from an intermediate hybrid data-
flow formalism with zero-crossings to logico-numerical hybrid automata. This trans-
lation entails over-approximations because the semantics of zero-crossings cannot be
expressed exactly in hybrid automata. There are several choices for defining the seman-
tics of zero-crossings, which result in qualitatively quite different translations. Moreover,
our translation introduces a new finite-type variable for each zero-crossing, which makes
the discrete state space larger.

Unbounded-time verification of logico-numerical hybrid automata. These
logico-numerical hybrid automata could be verified using existing hybrid verification
tools by resorting to Boolean state space enumeration. We showed how to extend the
concept of logico-numerical analyses to hybrid systems in order to avoid this enumera-
tion:

Although flow transitions in hybrid systems and self-loops in discrete systems raise
similar problems, the situation is easier with flow transitions, because only numerical
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variables evolve continuously, and thus, Boolean and numerical variables are already
decoupled. We proposed a method that dynamically derives flow relations that can
be handled by existing hybrid analysis methods, and we exemplified this technique for
three unbounded-time hybrid analysis methods. Moreover, we proposed techniques for
partitioning the system by its continuous numerical modes.

Verification tool ReaVer. We implemented a verification tool ReaVer for abstract
interpretation of discrete and hybrid programs. We used logico-numerical hybrid au-
tomata as a common internal representation and the BddApron and Apron abstract
domain libraries for representing formulas and abstract values. The tool is designed
as an extensible framework: new front ends, domains, partitioning and analysis tech-
niques can be added. The current version supports a front end for a simple hybrid data
flow format and a subset of Zelus, logico-numerical product and power domains of the
available Apron domains, as well as the numerical and logico-numerical versions of the
techniques proposed in this thesis.

Summing up, this work proposes a unified approach to the verification of discrete and
hybrid logico-numerical systems based on abstract interpretation, which is capable of
integrating sophisticated numerical abstract interpretation methods while successfully
trading precision for efficiency.

15.2 Perspectives

We conclude by summarizing the most important enhancements, extensions and research
directions w.r.t. the proposed methods.

Generalization of the abstract acceleration concept. The currently used graph-
expansion to deal with multiple loops in abstract acceleration could be a possible bottle-
neck in scaling up further. It would be an interesting approach to experiment heuristics
for reducing the number of loops by joining them, similarly to the derivative closure
method [ACI10]. Moreover, we have only dealt with self-loops. Monniaux and Gonnord
[MG11] propose an improvement of abstract acceleration of cycles supported by an
SMT solver. We could take advantage of this method, although an adaptation will be
necessary to deal with numerical inputs of synchronous programs.

We assume that the potential of abstract acceleration is far from being fully ex-
ploited. In this work, we have only made a first step in generalizing the abstract accel-
eration concept. Further research will be necessary in order to enable the computation
of polyhedral approximations that are able to discover complex invariants e.g., of general
linear transformations. Such methods are not only of interest for discrete loop analysis
but also for computing continuous evolutions in hybrid systems.

Template inference and a logico-numerical max-strategy solver. A related
topic is template inference: although max-strategy iteration computes the least fixed
point, it cannot discover complex invariants, because the template has to be fixed in ad-
vance. Abstract acceleration could be used to guess a better template before computing
the precise fixed point using max-strategy iteration.

Our logico-numerical max-strategy is based on a simple, generic algorithm. It would
be desirable to develop a more integrated logico-numerical max-strategy solver in order
to boost the performance of this approach, possibly by making more extensive use of
SMT solvers.
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Further improving scalability. Our experimental results showed that partitioning
heuristics are crucial for making analyses tractable. In this thesis we considered only
static partitioning. Yet, in our experiments the dynamic partitioning technique of Jean-
net et al [JHR99] proved to be superior to our static partitioning in some cases. We
believe that partition refinement techniques are indispensable in further improving the
scalability of our verification tool.

The Astrée tool [BCC`03] uses grouping (“packing”) of variables by syntax-based
heuristics in order to scale up the analysis of C programs. Packing induces product
domains that enable the analysis of groups of variables with distinct precision and thus,
it focuses the use of expensive domains like convex polyhedra to presumably relevant
sets of variables. Such techniques are orthogonal to ours and could be integrated in our
tool. However, their effectiveness in the context of data flow programs remains to be
evaluated.

Another point we have not yet exploited until now is the modular structure of high-
level programs: in designing complex systems, modularity has proved to be the key to
success. We suppose that this is also true for verification: interprocedural analyses have
shown that modular approaches help to scale up in static analysis.

All these techniques ultimately trade precision for efficiency.

More complete support for high-level languages. The current version of our tool
supports only a small subset of the Zelus language. We should push our development
further to a more complete support. Moreover, a tighter integration with the front end
will be necessary in order to implement a more practical return-to-source.

Most existing benchmarks for hybrid systems aim at assessing the precise computa-
tion of the continuous behavior, whereas the discrete controller part is rather simplistic.
Since it is much easier to program complex examples using these high-level program-
ming languages, we assume that this will give us access to a larger range of relevant
benchmarks.

Further experimental evaluation and comparison of methods. We have not yet
performed a thorough experimental evaluation of our hybrid system analysis methods.
We can only compare the numerical with the logico-numerical version of the hybrid anal-
ysis methods we considered, since, to our knowledge, there is no other logico-numerical,
unbounded-time verification tool for hybrid systems. It is difficult to reasonably compare
unbounded-time methods with bounded-time model checkers like HySAT and iSAT, as
well as with set-simulation-based methods like SpaceEx, because their goal is primarily
to find bugs and not to prove their absence. However, in the discrete case, a comparison
with tools based on k-induction, e.g., Kind, which are able to provide unbounded-time
proofs, would be interesting.

Finally, there is a plethora of proposed abstract interpretation methods often im-
plemented in prototype tools with incompatible input formats, which makes their com-
parison cumbersome and time-consuming. A comparison of a wide range of methods
would be possible by plugging these techniques into our tool framework.

Further applications and combining approaches. The hybrid programs we con-
sider are general event-triggered systems that can emulate time-triggered systems. How-
ever, time-triggered systems can probably be analyzed more precisely when taking into
account the strictly periodic structure of their discrete transitions associated to the
controller. Zutshi et al [ZST12] propose an analysis method for time-triggered (hybrid)
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systems based on relational abstractions. It would be worthwhile to extend their method
to logico-numerical systems.

Traditionally, methods developed for verification have their applications in related
areas like controller and parameter synthesis [EA10, FK11], test case generation [DB99,
JJ05, JJRZ05] and debugging [GJJM03, Gau03]. It would be interesting to investigate
to which extent we could exploit our methods in these applications.

Recently, theorem provers have been used in static analysis [ZLKR04, MV06], SMT-
based k-induction is enhanced by abstract interpretation [RDG10] and abstract inter-
pretation methods are boosted by SMT solvers (e.g., [MG11, GM11]). Moreover, SAT
solving is viewed as deductive proving [FJOS03] and the analogies of SMT solving, and
abstract interpretation are pointed out [DHK12, CCM11]. This tendency to a conver-
gence of these different approaches opens an interesting field of research.
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[LS05] Jérôme Leroux and Grégoire Sutre. Flat counter automata almost everywhere!
In Automated Technology for Verification and Analysis, volume 3707 of Lecture
Notes in Computer Science, pages 489–503. Springer, 2005.
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terpreter as oracle for k-induction. Electronical Notes in Theoretical Computer
Science, 267(2):55–68, 2010.

[RM07] Xavier Rival and Laurent Mauborgne. The trace partitioning abstract domain.
Transactions on Programming Languages and Systems, 29(5):26, 2007.

[Rob96] Abraham Robinson. Non-Standard Analysis. Princeton Landmarks in Mathemat-
ics, 1996.

[RRJ08] Pascal Raymond, Yvan Roux, and Erwan Jahier. Lutin: A language for specifying
and executing reactive scenarios. EURASIP Journal on Embedded Systems, 2008.

[RS03] William C. Rounds and Hosung Song. The phi-calculus: A language for distributed
control of reconfigurable embedded systems. In Hybrid Systems: Computation
and Control, volume 2623 of Lecture Notes in Computer Science, pages 435–449.
Springer, 2003.

[RS07] Stefan Ratschan and Zhikun She. Safety verification of hybrid systems by con-
straint propagation-based abstraction refinement. Transactions on Embedded
Computing Systems, 6(1), 2007.

[Rud93] Richard Rudell. Dynamic variable ordering for ordered binary decision diagrams.
In International Conference on Computer-Aided Design, pages 42–47. IEEE, 1993.

[SB02] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer, 3rd edition,
2002.

[Sca] SCADE. http://www.esterel-technologies.com/products/scade-suite/.

[SH11] Kohei Suenaga and Ichiro Hasuo. Programming with infinitesimals: A While-
language for hybrid system modeling. In International Colloquium on Automata,
Languages and Programming, volume 6756 of Lecture Notes in Computer Science,
pages 392–403. Springer, 2011.

[Sim] Simulink: Simulation and model-based design. http://www.mathworks.com/
products/simulink/.

[SISG06] Sriram Sankaranarayanan, Franjo Ivancic, Ilya Shlyakhter, and Aarti Gupta.
Static analysis in disjunctive numerical domains. In Static Analysis Symposium,
volume 4134 of Lecture Notes in Computer Science, pages 3–17. Springer, 2006.

[SJ10] Peter Schrammel and Bertrand Jeannet. Extending abstract acceleration to data-
flow programs with numerical inputs. In Numerical and Symbolic Abstract Do-
mains, volume 267 of Electronical Notes in Theoretical Computer Science, pages
101–114. Elsevier, 2010.

[SJ11] Peter Schrammel and Bertrand Jeannet. Logico-numerical abstract acceleration
and application to the verification of data-flow programs. In Static Analysis
Symposium, volume 6887 of Lecture Notes in Computer Science, pages 233–248.
Springer, 2011.

[SJ12a] Peter Schrammel and Bertrand Jeannet. Applying abstract acceleration to
(co-)reachability analysis of reactive programs. Journal of Symbolic Computation,
47(12):1512–1532, 2012.

[SJ12b] Peter Schrammel and Bertrand Jeannet. From hybrid data-flow languages to
hybrid automata: A complete translation. In Hybrid Systems: Computation and
Control, pages 167–176. ACM, 2012.

210



211 Bibliography

[SJ12c] Peter Schrammel and Bertrand Jeannet. From hybrid data-flow languages to
hybrid automata: A complete translation. Research Report RR-7859, INRIA, Jan
2012.

[SJVG11] Pascal Sotin, Bertrand Jeannet, Franck Védrine, and Éric Goubault. Policy it-
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Résumé

Cette thèse étudie la vérification automatique de propriétés de sûreté de systèmes logico-
numériques discrets ou hybrides. Ce sont des systèmes ayant des variables booléennes et
numériques et des comportements discrets et continus. Notre approche est fondée sur l’analyse
statique par interprétation abstraite.

Nous traitons les problèmes suivants : les méthodes d’interprétation abstraite numériques
exigent l’énumération des états booléens, et par conséquent, elles souffrent du problème d’ex-
plosion d’espace d’états. En outre, il y a une perte de précision due à l’utilisation d’un
opérateur d’élargissement afin de garantir la terminaison de l’analyse. Par ailleurs, nous
voulons rendre les méthodes d’interprétation abstraite accessibles à des langages de simulation
hybrides.

Dans cette thèse, nous généralisons d’abord l’accélération abstraite, une méthode qui
améliore la précision des invariants numériques inférés. Ensuite, nous montrons comment
étendre l’accélération abstraite et l’itération de max-stratégies du contexte numérique au con-
texte logico-numérique, ce qui aide à améliorer le compromis entre l’efficacité et la précision.
En ce qui concerne les systèmes hybrides, nous traduisons le langage de programmation syn-
chrone et hybride Zelus vers les automates hybrides logico-numériques, et nous étendons les
méthodes d’analyse logico-numérique aux systèmes hybrides. Enfin, nous avons mis en œu-
vre les méthodes proposées dans un outil nommé ReaVer et nous fournissons des résultats
expérimentaux.

En conclusion, cette thèse propose une approche unifiée à la vérification de systèmes logico-
numériques discrets et hybrides fondée sur l’interprétation abstraite, qui est capable d’intégrer
des méthodes d’interprétation abstraite numériques sophistiquées tout en améliorant le com-
promis entre l’efficacité et la précision.

Mots-clés: vérification, programmes logico-numériques, langages synchrones, systèmes hy-
brides, analyse statique, interprétation abstraite, accélération abstraite, itération de stratégies.

Abstract

This thesis studies the automatic verification of safety properties of logico-numerical dis-
crete and hybrid systems. These systems have Boolean and numerical variables and exhibit
discrete and continuous behavior. Our approach is based on static analysis using abstract
interpretation.

We address the following issues: Numerical abstract interpretation methods require the
enumeration of the Boolean states, and hence, they suffer from the state space explosion
problem. Moreover, there is a precision loss due to widening operators used to guarantee
the termination of the analysis. Furthermore, we want to make abstract interpretation-based
analysis methods accessible to simulation languages for hybrid systems.

In this thesis, we first generalize abstract acceleration, a method that improves the preci-
sion of the inferred numerical invariants. Then, we show how to extend abstract acceleration
and max-strategy iteration to logico-numerical programs while improving the trade-off be-
tween efficiency and precision. Concerning hybrid systems, we translate the Zelus hybrid
synchronous programming language to logico-numerical hybrid automata and extend logico-
numerical analysis methods to hybrid systems. Finally, the proposed methods are implemented
in ReaVer, a REActive System VERification tool, and we provide experimental results.

To conclude, this thesis proposes a unified approach to the verification of discrete and hy-
brid logico-numerical systems based on abstract interpretation, which is capable of integrating
sophisticated numerical abstract interpretation methods while successfully trading precision
for efficiency.

Keywords: verification, logico-numerical programs, synchronous languages, hybrid sys-
tems, static analysis, abstract interpretation, abstract acceleration, strategy iteration.


