Computational Learning Theory
8 : Learning Real-valued Functions

Lecturer: Varun Kanade

So far our focus has been on learning boolean functions. Boolean functions are suitable for
modelling binary classification problems; in fact, even multi-class classification can be viewed as
a sequence of binary classification problems. Many commonly used approaches for multi-class
classification, such as one-vs-rest or one-vs-one, solve several binary classification problems as a
means to perform multi-class classification. However, sometimes we may need to learn functions
whose output is real-valued (or vector-valued). In this lecture, we will study linear models and
generalised linear models. In order to give bounds on the generalisation error, we’ll need to
introduce some new concepts that play a role analogous to the VC dimension. We will also
study some basic convex optimisation techniques.

1 Learning Real-Valued Functions

Let us start with the general question of learning real-valued functions. Suppose our instance
space is X, = R". Let g : R” — R be the target function and D be the target distribution
over R™. Let us define a notion of an example oracle for real-valued functions. We consider the
oracle EX(g, D) that when queried does the following: Draw z ~ D, draw y ~ D,, where D,
is a distribution over R such that Y Fb [y] = g(z), and return (x,y). One may consider a more

~

restricted oracle, which actually returns (x, g(z)) directly; but assuming that we get the exact
function value without any noise is even less realistic in the context of real-valued functions
than in the case of boolean functions.

The goal of a learning algorithm is to output some hypothesis, g : R™ — R, such that the

expected squared error (or loss), £(g) = ED [(9(z) —g(z))?] < e As we don’t observe g(x)

at all, but only y, such that E [y | x] = g(x), the learning algorithm cannot directly aim to
minimise the empirical squared error,

I -~
s(9) = o Z(Q(fﬁi) — g(z:))” (1)
i=1
where S = {(z1,¥1),..., (®m,ym)} is the training data. Instead, we will consider learning

algorithms that attempt to minimise, the empirical risk with respect to the observed data,

m
Rs(@) = - D (@) —)’)
i=1
This approach is referred to as empirical risk minimisation (ERM). Let g : R — R be any
function.

Let us first argue that under the assumption that E [y | #] = g(z), minimising £5(g) and
]:?5 () are not that different. We will argue that this is the case, when considering the respective
quantities with respect to the actual data distribution. In Section 4, we will show how the em-
pirical estimates of these quantites on a sample relate to the true values under the distribution.

Tt is certainly possible, and often even desirable, to consider other loss functions. Due to lack of time, we
will focus only on the case where the goal is to minimise the expected squared error.

Consider the following:

E E |@@)-y? = E |G@)-9@)]+ E E |(g)-y)? (3)

z~Dy~Dg, x~D z~Dy~D,

2- E |(g(x) — E — 4
+ 20 5 (@) - o) B, (o6~] (@)
The second term in (3) does not depend on g at all. The inner expectation in (4) is 0 as

Fb [y] = g(x) by assumption on the data distribution. Thus, we have
Yy~LUg

E E |G@) -y = E |@G@)-9@)?+ E E [(g)-y)? (5)

r~Dy~Dy xz~D r~Dy~D,

Thus, we see that g that minimises E_E_ [(g(z) — y)?] also minimises E_[(g(z) — g(x))?].
z~Dy~Dy xz~D

2 Linear Regression

Let us look at the most well-studied regression problem—Ilinear regression. In linear regression,

we assume that the target function, g, is of the form g(z) = w - x for w € R™. The goal is to

estimate, g, represented by parameters w, such that e(w) = ED [(w-2 —w-z)?] <e Inorder
xre~

to bound the generalisation error, we will typically require that the distribution D has support
over a bounded set and that the target function, g, is also represented using parameters, w, with
bounded ¢ norm. Furthermore, we’ll also assume that the observations y lie in some interval
[—M, M].

For radius R, let B,,(0, R) = {z € R" | ||z]|, < R} denote the {5 ball of radius R in R". Let
D be a distribution that has support over the unit ball, B, (0,1) and for some W > 0, define
the set of linear functions,

Gw ={z—w x| ||lwl|, <W}

Let M > W and for each x € B,(0,1), suppose that D, has support contained in [—M, M].
Note that as,
sup |w - x| =W,
z€B,(0,1)
weB, (0,W)
for any z € B,,(0,1), w € B,,(0, W), there always exists a distribution D, with support contained

n [—M, M], such that yN]E [y =w-x.

Least Squares Method

Let S = {(z1,91), .., (Tm,ym)} denote the observed training data sample. The ERM approach
suggests that we should obtain @ by minimising the empirical risk, defined as

1 m
*azw Z; — yz

In the case of least squares regression, we can obtain w in closed form by setting the gradient
to 0. Observe that Rg(w) is a convex function of w; thus, alternatively we may use standard
convex optimisation techniques to obtain a solution. In certain cases, this may even be desirable
as the closed form solution involves constructing and inverting matrices—if the data-dimension
is large this can be much more expensive than performing gradient descent.

Appendix A describes a projected gradient descent algorithm for constrained convex op-
timisation and give a proof that the algorithm finds a close-to-optimal solution, provided the

feasible set has finite diamater and the gradient remains bounded on the feasible set. This is
by no means the most general result. A detailed study of convex optimisation is beyond the
scope of this course; the student is referred to the following books (Bubeck, 2015; Boyd and
Vandenberghe, 2004; Nemirovski and Yudin, 1983).

Instead of minimising ﬁg(@) as an unconstrainted over R", we insstead minimise ﬁs(@),
under the constraint that w € B, (0, W). After all, we are promised that the target lies in
the set B,,(0,W). Note that the diameter of B, (0, W) = 2W and it is easy to see that the ¢,
norm of the gradient of Rg (@) is bounded by W + M over the set B, (0, W). Thus, Theorem 5
shows that if we run the projected gradient descent algorithm for @(Wgw) iterations, we are

guaranteed to obtain @, such that,

~

Rg(®) < min Rg(w) +e

T weB,(0,W)
This only shows that the empirical risk of the obtained @ is at most € larger than minimum
possible empirical risk. In Section 4 we show how to bound the expected risk in terms of the
empirical risk as a function of the sample size and confidence parameter 6.

3 Generalised Linear Models

Let us now look at a more expressive class of functions. In the statistics literature, these are
referred to as generalised linear models. These are models of the form, g(z) = u(w - x), where
r € R weR”and u : R — R. It is common to assume that u is monotone and Lipschitz,
however these models can be defined more broadly. Supose that u is strictly monotone, so that
u~! is well-defined. Then although g is no longer a linear function of z, u=!(g(z)) is linear.
The function ! is referred to as the link function.

Generalised linear models are widely used in machine learning and also form the basis of
a single unit in most neural networks. Note that units with a sigmoid, hyperbolic tangent, or
rectifier activation functions are all generalised linear models.

In what follows we’ll assume that u is monotonically increasing (not necessarily strict) and
1-Lipschitz, i.e., |u(z) — u(z")] < |z — 2/| for all z, 2’ € R. We will also assume that u is known
to the learning algorithm. As in the case of linear regression, let us suppose that D has support
over B, (0,1) in R and for W > 0 consider the class of generalised linear models:

gW,u = {:E = u(w ' :E) | w e Bn(ov W)}

Note that as we are allowing W to be an arbitrary parameter, the requirements that for all x in
the support of D, ||z||, < 1 and that w is 1-Lipschitz are not stringent restrictions. For example,
if our data is such that the norm of z in the support is bounded by some B > 1, we can scale
the data to get all norms bounded by 1 and allow ||w]||, to be as large as W B. Similarly, if u
were [-Lipschitz, we can use some %, where u(z) = u(%) is 1-Lipschitz, and instead allow [jw/|,
to be as large as W1.

For simplicity we’ll assume that «(0) = 0 (although, this is not the case for some functions,
we can easily centre u for the purpose of the algorithm and then undo the centering at the time
of prediction). Thus, as in the case of linear regression, we’ll assume that for all =z € B,,(0,1),
the distribution D, has support contained in [—M, M] for some M > W. Again, observe that
as |w- x| < W for all w € B, (0,W) and = € B,,(0, 1), and since u is 1-Lipschitz, there exists a
distribution with support contained in [—M, M], such that , IED [y] = u(w - x).

3.1 Empirical Risk Minimisation

As in the case of linear regression, we can attempt to find a minimiser of the empirical risk,
defined on a sample S = {(z1,11), ..., (z,m)}, as,

~ 1 &
Rs(w) = — u(w - ;) — ;)2
() = 2 3 (utw))
The trouble is that unlike in the case of linear regression, the empirical risk is no longer a
convex function of w. In fact, it has been shown by Auer et al. (1996) that for even relatively
simple inverse link functions, such as the sigmoid, u(z) = H%’ the empirical risk may have
exponentially many local minima as a function of the dimension.

Surrogate Loss Function

In order to avoid optimising a non-convex function (for which there are no general purpose
algorithms), we’ll use a strategy often employed in machine learning—using a surrogate convex
loss function. Remarkably, in the case of generalised linear models, there exists a surrogate
loss function, such that the expected risk minimiser for this surrogate loss function and that
for the squared loss is exactly the same! In addition, we can also show that an approximate
minimiser of the risk for the surrogate loss function is also an approximate minimiser of the risk
for squared loss.
For x € B,,(0,1),y € [-M, M], define the (surrogate) loss, ¢, for w € B, (0, W) as follows:

amxyr=éw?ma—ym&

We will define the empirical risk of the surrogate loss as,

~ 1 &
Rg(w) = . > l(ws i, yi)
i=1
Let us also compute the gradient of this empirical risk:

m

=3 uw - a) —

~ 1 &
Vi Rs(w) = o > Vul(w;mi,yi) =
i=1 i=1

For comparison, let us also write the gradient of the empirical risk for the squared loss, ﬁs(w),

m

Z(U(w cx) =y (w -)

=1

VuwRs(w) =

2
m

Notice that apart from the factor 2, the main difference is that the i example has v/ (w - z;)
as a multiplicative factor in the gradient. Although, v’ > 0 as u is monotonically increasing, it
may at times be very small.? Let us also show that }A%g(w) is indeed convex—it is sufficient to
show that £(w;x,vy) is convex. Notice that the Hessian of £(w; z,y) is simply u/(w-z)zz T, where
x € R™ is treated as a column vector. Since u is monotonically increasing, u’ is non-negative,
and hence o/ (w - z)zx" is positive semi-definite—thus, £(w;x,y) is convex.

Next, let us also show that w*, the expected risk minimiser for the squared loss, is also the
expected risk minimiser for this surrogate loss function ¢. Let w* € R™ be used to define the
target function; then Eq. (5) shows that w* is a minimiser of the expected risk using the squared

2For instance, when u is the sigmoid function u'(z) ~ 0 when |z| is somewhat large. This is also the reason
why cross-entropy loss is better than squared loss for avoiding the vanishing gradient problem.

loss function. In what follows, we will also make use of the assumption that IED ly] = u(w*-z).
Yy~Ly

Consider the following for any = € B,,(0,1):

yNFj)w [t(w; z,y)] — ysz [C(w*;2,y)] = yINED [/wl:(u(z) - y)dz:|

_ /wwx (u(z) - B [y]> dz

(u(z) —u(w* - z))dz > 2

1
e\g
8 2
N | —

(u(w -) — u(w® -)

The last inequality int the calculations above follows from the fact that u is monotonically
increasing and 1-Lipschitz. This shows that the expected risk, Rf(w) > R'(w*), i.e., w* is
a minimiser of the risk with respect to the surrogate loss function ¢. Furthermore, it also

establishes that,

s(w)i= E [(u(w - z) — u(w* .x))ﬂ <2 (RY(w) — R'(w"))
€T
This shows that it is sufficient to identify a @, whose expected risk is at most § larger than that

of w* with respect to the surrogate loss function. In order to find a good enough empirical risk

minimiser, is easy to see that performing roughly © <VZ§W) projected gradient steps suffices. In

the next section, we’ll show how to relate empirical risk to expected risk by introducing a new
complexity measure called Rademacher complexity.

4 Rademacher Complexity

Let us now address the question of bounding the generalisation error. We will introduce a new
concept called Rademacher complexity. Let us first define empirical Rademacher complexity for
a family of functions.

Definition 1 (Empirical Rademacher Complexity). Let G be a family of functions mapping
some space X — [a,b] and let S = {x1,29,...,2m} C X be a fized sample of size m. Then the
empirical Rademacher complexity of G with respect to the sample S is defined as,

m

— 1
RADs(G) =E [sup — » oig(zi) |,
E gegm; ig(wi

where o = (01,02,...,0m,) are i.i.d. Rademacher random variables, i.e., o; takes value in
{=1,1} uniformly at random.

In words, the empirical Rademacher complexity measures how well functions from a class
correlate with random noise. This corresponds to our notion that the more complex the class
G, the more easily it can fit noise. In particular, let us suppose that G is a class of boolean
functions (with range {—1,1}) with VCD(G) > m and let S be a set that is shattered by G,
then R/A\DS(G) = 1. However, Rademacher complexity can be defined for any class of real-
valued functions.? Let us now define Rademacher complexity, which is defined as the expected
empirical Rademacher complexity of sets of size m drawn from a distribution D over X.

Definition 2 (Rademacher Complexity). Let D be a distribution over X and let G be a family
of functions mapping X — [a,b]. For any integer, m > 1, the Rademacher complezity of G,

3We will ignore issues of measurability; this will not be a matter of concern for the function classes we study
in this course.

is the expectation of the empirical Rademacher complexity of G over samples of size m drawn
independently from D, i.e.,

RAD,(G) = E [R/A\Ds(g)} .

S~Dm
For a function, g € G, and a sample S = {xi,...,x,,} drawn according to D, let us
use the notation Eglg] = L 5™ g(z;). We are interested in understanding the behaviour of

the difference, ’Es[g] - IED [g(z)]| as a function of the sample size m and the Rademacher

complexity RAD,,(G). We will prove the following theorem, which is analogous to a theorem
we proved using the VC dimension.

Theorem 3. Let G be a family of functions mapping X — [0,1]. Suppose that a sample
S =A{z1,...,xm} of size m is drawn according to distribution D over X. Then for any § > 0,
with probability at least 1 — §, the following holds for all g € G,

o [9(2)] < Eslg] + 2RAD,,(G) + ek

We will defer the proof of this theorem until later in the section. Let us first see how we
may utilise this theorem to give bounds on the generalisation error when learning real-valued
functions (or for that matter boolean functions). Let H be some hypothesis class and suppose
our learning algorithm finds h € H that approximately minimises the empirical risk with respect
to some loss function ¢. Say H is a family of functions from X — Y and £ :Y xY — [0,1].
Define G to be a family of functions from X x Y — [0, 1] as:

G ={(z,y) = L(h(x),y) | he H}

Suppose we get a dataset S = {(x1,91), ..., (Tm,Ym)} drawn from some distribution over X xY
(viewed as drawing = ~ D and then y ~ D,). Then, for any h € H and if g € G is the
corresponding function derived from h, the empirical risk of A is given by,

1 m m

RY(h) = . Zé(h(xi%yi) = %Zg(%yz‘)?
=1 1=1

and the expected risk of h is erElDyNIEjljx [e(h(z),y)] = xLEDyE)x [9(z,y)]. Thus, if we can bound

the Rademacher complexity of G, we will be able to bound the expected risk of i in terms of
the empirical risk of h. The following composition lemma due to Talagrand often proves to be
a very useful tool.

Lemma 1 (Talagrand’s Lemma). Let G be a family of functions from X — R and ¢ : R — [a, b]
be l-Lipschitz. Let oG = {¢pog | g€ G}, then,

RADs(¢ o G) < I- RADg(G)

Proof. Fix some sample S = {x1,...,2,}. Then, we have the following:
_— 1 m
RADgs(¢o G) = . IE supZai(gbog)(zi)

9€9 i=1

E E [supum—1(9) +om(¢og)(zi)|,

ey 0m—10m geg

3|
L

m—1
where u,;,—1(g9) = Z oi(¢ o g)(x;). Let us concentrate on just the inner expectation:
i=1

E |supum—1(9) + om(@ o g)(xm)
Im [geg

Note that by definition of supremum, we have the existence of g1, go € G satisfying the following
for every € > 0:

Um—1(91) + (¢ 0 g1)(Tm) > sup Um—1(9) + (¢ 0 g)(wm) — € (6)
g€
Um-1(92) — (0 g2)(zm) > Sglellgv Um—1(9) — (¢ 0 g)(wm) — € (7)

Then, we have the following for every € > 0:

E

Om

sup umfl(g) + O'm(q5 o g)(l'm)] —e< % [umfl(gl) + (¢ o gl)(xm)
geg

+ Um—1(g2) — (¢ 0 g2)(zm)]

As ¢ is [-Lipschitz, we have [¢(g1(xm)) = ¢(g2(2m))| < 1|91 (2m) = g2(wm)| = ls(g1(2m) —g2(2m)),
where s = sign(g1(«,) — g2(zm)). Thus, we have

— € < 5 [um-1(91) + um-1(g2) + Is(g1(xm) — g2(m))]

E [sup Um—1(9) + om(¢ 0 g)(Tm)
Im | geg

[tm—1(g1) + 1591 (xm) + tm—1(g2) — I5ga(zm)]

N = N

As {s,—s} = {—1,1}, we can rewrite the above as:

E

Om

SUP Um-—1(9) + om (¢ © 9)(%)] —e<E lsup um-1(9) + amlg(a:m)]
geg Im | geg

As this inequality holds for every € > 0, we can in fact write,

E [SUP Um—1(g9) + om(do 9)($m)] <E [SUP Um—1(9) + Umlg(xm)]
Im | geg gm | gegG

We can repeat the above for : =m — 1,m — 2,...,1, to show that,

E |sup— > ciéog)(a) | <I-E [sup— > ougla)| = - RADs(G)

m
9€9 ™ i

4.1 Application to ¢, loss functions

Let S = {(ml,yl),...,ixm,ym)} C X x [-M,M]. Let H be a family of functions mapping
X — [-W,W]. Let § = {x1,...,2n}. Let ¢(z) = |2]P for p > 1; |¢'(2)] = p|z|P~! (we
can also consider p = 1, though it is not differentiable at 0). Thus, ¢ is paP~!-Lipschitz on

the interval [—a,a]. Let G = {(z,y) — |h(x) —y|P | h € H} be a family of functions from

X x [-M, M] — [—a, a], where a < (M + W)P. Suppose, H = {h(z) —y | h € H} be a family
of functions from X x [-M, M] — [—-(M + W), (M + W)]. Let us observe that,

R/A\D H)=E sup — oi(h i
s(H) o heHmZ ~ %)

1 m —
IE Sup—z:oZ x;) a mz;(jiyi = RADg(H)
1=

heH T

Then, using Talagrand’s lemma, we have that:
RADg(¢o H) < p- (W + M)P~" - RADg(H) = p- (W + M)?~" . RADg(H)

For instance, when using the squared loss, we use ¢(z) = |z|?, and thus, we get ®5(¢ o ﬁ) <
2(W + M)RADg(H).

Remark: Since Theorem 3 assumes that the range of functions is [0, 1], we need to rescale the
loss function appropriately, e.g., use £(h(z),y) = = |h(z) — y|P, where a = supy, 5, 11h(z) — yl}-

4.2 Rademacher Complexity for Linear Functions and GLMs

Let us consider the set of linear functions, Gw = {z — w -z | w € R", ||lw|, < W}. Let
S ={z1,...,zm} CR". Let Rx = sup,ecg ||z|,. We can compute the empirical Rademacher
complexity of Gy on the set S as follows:

RADs(Gw) = E weﬁﬁ%’m - ;JZ w - ;)

1 m
=E sup w . — Z 0%
9 | weB,(0,W) mi=

Using the Cauchy-Schwartz Inequality (the equality case),

1 m
=W-E m;mxi

2

Using Jensen’s Inequality,

[SIES

2

1 m
<W- [GE EZUZ?L‘Z
= 2

[NIES

1 — 5 2
=W-|E W;H%‘Hﬁmgz%ﬂj(%'%)

1<j
As o; are i.i.d. and have mean 0, and using the bound ||z;||, < Rx, we get

W - Rx
vm

@BS(QW) <

Bounding the Generalisation Error for learning GLMs

Let us now consider the surrogate loss function, ¢(w;x,y), used for learning GLMs. We can
write {(w; x,y) as follows:

sz = [@) -t = ([ura) < ytw-a)

Thus, we can write £(w; z,y) = ¢1(w -) — d2(y(w -)), where ¢ is a W-Lipschitz function and
@2 is the identity function.
Consider the class of functions defined as follows:

gé,W = {(l‘,y) = E(w;x,y) | w e B(()? W)}

Let S = {(x1,%1),- -+, (Tm,ym)} € B,(0,1)x[~M, M] and let S = {z1,...,2m,}. Let us consider
two classes defined as follows:

Grw ={z = ¢1(w-) | w e B, (0, W)}
Giw = A{(z,y) = y(w-z) | w € B, (0,W)}

It is left as a straightforward exercise to show the following:
RADs(Gew) < RAD5(Gjw) + RADs (G7)

It follows easily that @I\Dg(géw) <W- % using Talagrand’s lemma and the bound on the

Rademacher complexity for linear functions. Similarly, it can be shown that R/A\DS(QZQW) <

W—\/%—the functions in QZW can be viewed as linear functions with the vectors xz; replaced by

y;xi, and observing that |ly;zil|s < |yi| ||zi]|l, < M. Using Theorem 3 and Theorem 5, this shows
that the class of generalised linear models Gy, can be learnt with running time polynomial in
W, M, n and % and with sample complexity polynomial in W, M and % Notice that the sample
complexity does not depend on the dimension n at alll Thus, these models and algorithms can
be kernelised.

4.3 Proof of Theorem 3

Let us now complete the proof of Theorem 3. In order to prove the result we will use McDi-
armid’s inequality, which we state below without proof. A proof can be found in the lecture
notes by Bartlett.*

Theorem 4 (McDiarmid’s Inequality). Let X be some set and let f: X™ — R be a function

such that for all i, there exists ¢; > 0, such that for all x1,xa, ..., Ty, the following holds:
‘f(l‘l, ey L1y Lgy L1y« + vy .CCm) - f(:L'l, ey :c,-_l,xg,wiﬂ, ces ,xm)| <g¢
Let X1, Xo, ..., X, be independent random variables taking values in X. Then, for every e > 0,

the following holds:

D €

4Lecture notes available at https://people.eecs.berkeley.edu/~bartlett/courses/281b-sp08/13.pdf.

2¢2
PF(X0r o X) 2 E[f (X, Xo)] +] < exp <_M>

McDiarmid’s inequality is a generalisation of the Chernoff-Hoeffding bound. For instance,
if X = [a,b], using f(21,...,2m) = L+ > x; and ¢; = (b — a)/m gives the Chernoff-Hoeffding

m
bound. McDiarmid’s inequality shows that as long as no single variable has significant influence

over the function f, then the random variable f(Xy,...,X,,) is strongly concentrated around
its expectation.
Let S = {x1,...,zm} be a subset of X and G a set of functions from X — [0,1]. Let us now

complete the proof of Theorem 3 by applying McDiarmid’s inequality to the function,
v(5) = sup (&, [o(0)] - Bl
geg z~D

Above we've used ®(5) instead of ®(z1,...,zy) to keep the notation tidy, as ® is symmetric.
Let 8" = (S\ {z;}) U {z}}. Consider the following:
E, [o()] ~ Bl) —sup

®(S) — ®(S') = sup < E [g(x)] - ES’[Q])

geg x~D geg x~D
= (g(zi) — g(x7)) < !

— sup(g(x;) — g(z; —
- mgeg 9\Fi) = 9\ki)) = m

Above, we used the fact that the difference between suprema is at most the supremum of the
difference. As S and S’ are completely symmetric, this shows that |®(S) — ®(S")| < L. Thus,
we may apply McDiarmid’s inequality with all ¢; = % to obtain,

P [@(S) > E [0(S)] + e} < exp (—2€2m> (8)

Let us now compute E [CD(S)} . Here, we’ll use a trick similar to the one we used when proving
the analogous result for VC dimension of introducing an independent draw S = {Z1,...,Zn}
from D and using the symmetric nature of S and S.

~

swp B l9(x)] — Eslg]

[2(9)] = E 9)

E
S~Dm S~Dm

We use the fact that E []/Eg[g]] = E_[g(z)] to obtain the following:

S~Dm x~D
E [0(S)= E |sup E [Ef]—ﬁ 10
Pushing the supremum inside the expectation, we obtain,
E [¢(5)]< E E (Ef ~ Eslg)) 11
JE [0 < E E !21615 slg] — Eslg]] (11)

= B E |sw— (g(w) - 9(z) (12)

S~D™S~pm | geg M —

Using the symmetric nature of S and S, we may introduce Rademacher random variables o;
and obtain the following,

1 m
E (9| < E E E — ; —g(T 13
SNDm[()] = gDmG. o zggm;%(g(%) 9(Ti)) (13)
m m
< E E |sup oig(x;)| + E E |sup— —0;)9(Z; 14
G B swd gt + B E |y DY oe(e)| (9

10

As —o; is distributed identically to the o;, we conclude that,

JE | [2(5)] < 2RAD,(9) (15)
1
Using the above and setting € = h;if completes the proof of Theorem 3.

References

Peter Auer, Mark Herbster, and Manfred K Warmuth. Exponentially many local minima for
single neurons. Advances in neural information processing systems, pages 316-322, 1996.

Stephen Boyd and Lieven Vandenberghe. Convexr optimization. Cambridge university press,
2004.

Sébastien Bubeck. Convexr Optimization: Algorithms and Complezity. Foundations and Trends
in Machine Learning. Now, 2015.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
MIT Press, 2012.

A. Nemirovski and D. Yudin. Problem Complezity and Method Efficiency in Optimization.
Wiley Interscience, 1983.

A Projected Gradient Descent for Lipschitz functions

We will briefly describe an algorithm for minimising Lipschitz convex functions. Our treatment
of convex optimisation is at best cursory and for further details the student may refer to any of
the following references (Bubeck, 2015; Boyd and Vandenberghe, 2004; Nemirovski and Yudin,
1983).

Consider a function f : R” — R; f is convex if f(Ax + (1 — AN)z') < Af(x) + (1 —) f(2)
for all z,2/ € R™ and for all A\ € [0,1]. Let K C R" be a closed, bounded, convex set. We are
interested in solving the following constrained optimisation problem: minimise f(x) subject to
rzeK.

We will see a proof that projected gradient descent (approximately) minimises f. In order
to do so, let us define the projection operator, Il (r) = argmin, ¢k ||y — x|, i.e., the projection
operation finds a point in K closest to the point x (such a point always exists as K is closed).
In general, projection is itself a convex optimisation problem, but for some common cases in
machine learning such as projecting onto the fo- or £1-ball, this operation is very easy to perform.

Alg. 1 shows the iterative projected gradient descent procedure.

Algorithm 1 Projected Gradient Descent
Inputs: n,T
Pick 1 € K
fort=1,...,7 do
T =2 — NV f(21)
Te+1 = HK(£2+1)
end for
Output: % Zthl Ty

We will prove the following result.

11

Theorem 5. Suppose K is such that sup,, ;¢ H:c x H2 < R and that sup,c g HVf H2

then Alg. 1 run with n = %, outputs T, such that,

RL

f(z)<§g{1f()+ﬁ

Proof. Let x; denote the point at the tth iteration of the gradient descent procedure. Let 2* € K
be such that z* € argmin g f(x). Then consider, the following:

flxe) = f(z*) < V(@) - (21 — 27) By convexity of f
— (ar = o) (o - o)
—n$t—l‘t+1 Tt — T
1

=5 (th R g [w*Hi)
1 i} . "
= 5 (e ="l = s =" 13) + 5 950l

We use the bound ||V f ()|, < L and the fact that ||z}, — 2*||, > [|a411 — 2*||, (we will prove
this fact later), to obtain,

1
Fl) = £ < g (o= = e = 27[15) + 527 (16)
Let us first complete the proof before proving the claim that ||z}, — x*HZ > ||z¢41 — x*||5. By

convexity of f, it follows that f (T thl xt) <z thl f(z¢). We can average Eq. (16) over
t=1,...,T to obtain,

IIM%
|/\
N =
]~
=
B

|
=
&*

T

< 5Tn H931 - H2 + L2 Dropping the negative term — H95T+1 — :1:*”3

1
2Tn

|
B
~

<
- 2Tn * 2
Setting n = % completes the proof.

Proof of claim that projecting decreases distance: Let us now prove our claim that
projecting a point onto K only reduces the distance to any point in K. Let 2/ € R", z =
i (2') and let z € K. We will show that for K closed and convex, it must be the case that
|z — 2|, < ||z — 2/||,. Consider the following:

2 2
lz=lly = - =z += -2l
= ||z —z|5 + |z — :I,’ng —2(z—z)- (2 —x)

Now if, (z — z) - (¢ — x) < 0 we are done. Suppose for the sake of contradiction that (z —) -
(' —) > 0. We will establish that x cannot be the projection of ' onto K. Consider the
following:

H)\z +(1=XNz— 1:’“3 = Ha: - 1:’“3 + Xz =3 -2\ (z —2) - (' — 2)

Notice that this implies for A € | 0, min {1 (ZI)(Z‘T} Az + =Nz = 2|, < ||z — 2],

lz=zl3

As K is a convex set and z,z € K, Az+ (1 —\)z € K, contradicting the claim that IIx (z') = .
Thus, it must be the case that ||z — az’H2 > ||z — x|y O

12

