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Problem Sheet 6

Instructions: The problem sheets are designed to increase your understanding of the material
taught in the lectures, as well as to prepare you for the final exam. You should attempt to solve
the problems on your own after reading the lecture notes and other posted material, where
applicable. Problems marked with an asterisk are optional. Once you have given sufficient
thought to a problem, if you are stuck, you are encouraged to discuss with others in the course
and with the lecturer during office hours. You are not permitted to search for solutions online.

1 Learning Leaky ReLU

This question concerns learning leaky ReLUs. For a positive real, 0 < a < 1, a leaky rectifier,
`ra, is defined as follows:

`ra(z) =

{
z if z ≥ 0

az if z < 0.

We consider the instance space to be the unit ball in Rn, i.e. Xn = {x ∈ Rn | ‖x‖2 ≤ 1}. For
any W , we define the concept class, `ReLUn,W , as follows:

`ReLUn,W = {x 7→ `ra(w · x) | 0 < a < 1,w ∈ Rn, ‖w‖2 ≤W}.

Observe that the parameter a is not fixed and is not known in advance, but also needs to be
learned. Design an algorithm that learns the class `ReLUn,W in time polynomial in n, 1/ε, 1/δ,
W , provided that it gets data (x, y) drawn from a distribution D supported on Xn × [−W,W ],
and that there exists an a? and w?, satisfying E[y | x] = `ra?(w? · x). Your algorithm should
output a hypothesis h : Rn → R, such that,

E
x∼DX

[(
h(x)− `ra∗(w? · x)

)2] ≤ ε.
AboveDX is the marginal of the distributionD overXn. You should argue about the correctness
of your algorithm, as well as justify bounds on sample complexity and running time.

2 Rademacher Complexity and VC Dimension

Let C be a class of boolean functions defined over an instance space X and for this class, let the
Vapnik Chervonenkis dimension, VCD(C) = d. In this question, we will treat boolean functions
as taking values in the range {−1, 1}. You may use the following result.

Lemma (Massart): Let x1, . . . ,xn ∈ Rm be n vectors. Then the following holds:

Eσ

 1

m
max
j∈[n]

m∑
i=1

xj,iσi

 ≤ max
j∈[n]

∥∥xj∥∥2 · √2 log n

m
,

Page 1



Computational Learning Theory
Michaelmas Term 2021

where σis are independent random variables taking values in {−1, 1} with equal probability.

1. Let S ⊆ X be a finite set of size m. Give the tightest possible bound you can on the

empirical Rademacher complexity of C over the set S, R̂ADS(C), in terms of m and d.

2. For any function f : X → R, let us define the function, sign(f) : X → {−1, 1}, by
sign(f)(x) = sign(f(x)). For a class of functions C over X, let sign(C) = {sign(f) | f ∈
C}; we treat sign(0) = 1. Show that one can construct a sequence of a class of functions
(not necessarily boolean) C(i) defined over some set X (which can be of your choice), for

which for any m ∈ N, there exists a subset S ⊆ X of size m, such that R̂ADS(C(i)) → 0,

as i→∞, but R̂ADS(sign(C(i))) = 1 for all i.

3. (Optional) Prove Massart’s Lemma.

3 Mistake Bound of Perceptron

Consider the perceptron algorithm studied in the lectures, the main outline of which is produced
below:

• Set w1 = 0, (w1 ∈ Rn).

• For t = 1, 2, . . .,

– When given with xt, output the prediction ŷt = sign(wt · xt).

– Observe yt ∈ {−1, 1}.

– If yt 6= ŷt, update wt+1 = wt + ytxt, else wt+1 = wt.

Suppose that it holds for each xt that ‖xt‖2 ≤ D for some D > 0, and that there exists a
w∗ ∈ Rn, such that ‖w∗‖2 = 1 and for every t, yt(w

? · xt) ≥ γ for some γ > 0. In the
lectures, we proved that the number of mistakes made by the perceptron algorithm is bounded
by D2/γ2. Show that this is tight (at least up to constant factors), that is there exists a
sequence of (x1, y1), (x2, y2), . . . satisfying the aforementioned conditions and the number of
mistakes made by the algorithm on this sequence is Ω(D2/γ2).

Page 2


