COMPUTATIONAL
LEARNING THEORY

(Lecture Notes)

size(c)

Sl

Varun Kanade

Contents

Contents

Preface

Acknowledgements

1

Probably Approximately Correct Learning

1.1 A Rectangle Learning Game
1.2 Key Components of the PAC Learning Framework
1.3 Learning Conjunctions
1.4 Hardness of Learning 3-term DNF
1.5 Learning 3-CNF vs 3-TERM-DNF
1.6 PAC Learning e
1.7 Exercises
1.8 Chapter Notes,

Consistent Learning and Occam’s Razor

2.1 Occam’s Razor
2.2 Consistent Learning oL oL
2.3 Improved Sample Complexity
2.4 EXErciseso
2.5 Chapter Notes

The Vapnik Chervonenkis Dimension

3.1 The Vapnik Chervonenkis (VC) Dimension
3.2 Growth Function
3.3 Sample Complexity Upper Bound
3.4 Sample Complexity Lower Bounds
3.5 Consistent Learner for Linear Threshold Functions
3.6 Exercises

Boosting

4.1 Weak Learnability
4.2 The AdaBoost Algorithm
4.3 Exercises

Cryptographic Hardness of Learning
5.1 The Discrete Cube Root Problem
5.2 A learning problem based on the DCRA

27
27
30
32
34
36
37

39
39
40
44

ii

CONTENTS

5.3 Chapter Notes 48
6 Exact Learning using Membership and Equivalence Queries 51
6.1 Exact Learning with Membership and Equivalence Queries . . 52
6.2 Exact Learning MONOTONE-DNF using MQ+EQ 54
6.3 Learning DFA o 56
6.4 EXercises 60
6.5 Chapter Notes 61
7 Statistical Query Learning 63
7.1 Random Classification Noise Model 63
7.2 Statistical Query Model oo 66
7.3 A hard-to-learn concept class L. 70
7.4 Exercises Lo 72
7.5 Bibliographic Notes. 72
8 Learning Real-valued Functions 75
8.1 Learning Real-Valued Functions 75
8.2 Projected Gradient Descent for Lipschitz functions 79
8.3 Rademacher Complexity, 81
8.4 Linear Regression 87
8.5 Generalised Linear Models 90
9 Mistake-Bounded Learning 95
9.1 Online Prediction Framework 95
9.2 Relationships to Other Models of Learning 98
9.3 The Halving Algorithm and Some Examples 99
9.4 Perceptron e 100
9.5 The Winnow Algorithm 103
10 Online Learning with Expert Advice 107
10.1 Learning with Expert Advice 107
10.2 Follow The Leader 109
10.3 The Multiplicative Weight Update Algorithm (MWUA) 109
10.4 Application: Boosting Algorithm 112
10.5 Application: von Neumann’s Min-Max Theorem 113
A Inequalities from Probability Theory 117
A.1 The Union Bound 117
A.2 Hoeffding’s Inequality 117
A.3 Chernoff Bound 117
B Elementary Inequalities 119
B.1 Convexity ofexp o 119
B.2 Auxilliary Lemmas 119
C Notation 121
C.1 Basic Mathematical Notation 121
C.2 The PAC Learning Framework 121

Bibliography 123

CONTENTS iii

Index 127

Preface

What is computational learning theory?

Machine learning techniques lie at the heart of many technological applications
that are used on a daily basis. When using a digital camera, the boxes that
appear around faces are produced using a machine learning algorithm. When
streaming portals such as BBC iPlayer or Netflix suggest what a user might like
to watch next, they are also using machine learning algorithms to provide these
recommendations. In fact, more likely than not, any substantial technology
that is in use these days has some component that uses machine learning
techniques.

The field of (computational) learning theory develops precise mathematical
formulations of the more vague notion of learning from data. Having precise
mathematical formulations allows one to answer questions such as:

(i) What types of functions are easy to learn?
(i) Are there types of functions that are hard to learn?
(i) How much data is required to learn a function of a particular type?

(iv) How much computational power is needed to learn certain types of functions?

Positive as well as negative answers to these questions are of great interest.
For example, one of the key considerations is to design and analyse learning
algorithms that are guaranteed to learn certain types of functions using modest
amount of data and reasonable runnning time. For the most part, we will take
the view that as long as the resources used can be bounded by a polynomial
function of the problem size, the learning algorithm is efficient. Obviously, as
is the case in the analysis of algorithms, there may be situations where just
being polynomial time may not be considered efficient enough; the existence of
polynomial-time learning algorithms is however a good first step in separating
easy and hard learning problems. Some of the algorithms we study will not
run in polynomial time at all, but they will still be much better than brute
force algorithms.

There is a vast body of literature that is often called Statistical Learning
Theory. To some extent this distinction between statistical and computational
learning theory is rather artificial and we shall make use of several concepts
introduced in that theory such as VC dimension and Rademacher complexity.
In this course, greater emphasis will be placed on computational considerations.
Research in computational learning theory has uncovered interesting phenomena
such as the existence of certain types of functions that can be learnt if computational

vi PREFACE

resources are not a consideration, but cannot be learnt in polynomial time.
Other examples demonstrate a tradeoff between the amount of data and the
algorithmic running time, i.e. the running time of the algorithm can be reduced

by using more data. More importantly, placing the question of learning in a
computational framework allows one to reason about other kinds of (computational)
resources such as memory, communication, privacy, etc. that may be a consideration
for the learning problem at hand.

Acknowledgements

The course materials have been mainly developed by using the book by Michael
Kearns and Umesh Vazirani [34] and material taught in lecture courses on
learning theory by Leslie Valiant, Adam Tauman Kalai, Avrim Blum, Adam
Klivans, Rocco Servedio and several others. I am particularly grateful to Les
Valiant and Adam Kalai, without whom I may have never been interested in
computational learning theory. Many of the exercises are directly lifted from
problem sheets developed at Harvard University over three decades by Les
Valiant, Michael Kearns, Scott Decatur, Rocco Servedio, Vitaly Feldman, and
several others. My apologies if I have missed anyone from this list.

I am grateful to Ben Worrell for providing the material included in Chapter 6,
particularly Section 6.3 on learning DFAs. The lecture notes have benefited
greatly from feedback received from students at the University of Oxford between
2017-2023. I'm very grateful to Francisco Marmolejo, Matthias Gerstgrasser,
David Martinez-Rubio, Ninad Rajgopal, Alexandros Hollender, Philip Lazos,
Tomas Vagkevic¢ius, Amartya Sanyal, Tom Orton, Pascale Gourdeau, Alex
Buna Marginean, Satwik Bhattamishra and Silvia Casacuberta Puig who have
been class tutors for this course over the years at Oxford and without whom
this course or these lecture notes would not have existed. The cover material is
inspired by the submission of one of our undergraduate students who made my
job of marking so much more pleasurable by the beautiful designs and aesthetic
elegance in their work, but mostly by doing everything correctly.

Any errors that still remain are entirely due to me and I would be grateful
to be notified of them, whether they be mathematical, linguistic, or stylistic.

vii

Chapter 1

Probably Approximately Correct
Learning

Our goal in this chapter is to gradually build up the probably approximately
correct (PAC) learning framework while emphasising the key components of the
learning model. We will discuss various model choices in detail; the exercises
and some results in later chapters explore the robustness of the PAC learning
framework to slight variants of these design choices. As the goal of computational
learning theory is to shed light on the phenomenon of automated learning, such
robustness is of key importance.

1.1 A Rectangle Learning Game

Let us consider the following rectangle learning game. We are given some points
in the Euclidean plane, some of which are labelled positive (4) and others
negative (—). Furthermore, we are guaranteed that there is an axis-aligned
rectangle such that all the points inside it are labelled positive, while those
outside are labelled negative. However, this rectangle itself is not revealed
to us. Our goal is to produce a rectangle that is “close” to the true hidden
rectangle that was used to label the observed data (see Fig. 1.1(a)).

Although the primary purpose of this example is pedagogical, it may be
worth providing a scenario where such a (fake) learning problem may be relevant.
Suppose that the two dimensions measure the curvature and length of bananas.
The points that are labelled positive have medium curvature and medium
length and represent the bananas that would pass “stringent” EU regulations.
However, the actual lower and upper limits that “define” medium in each
dimension are hidden. Thus, we wish to learn some rectangle that will be good
enough to predict whether bananas we produce would pass the regulators’ tests
or not.

Let R be the unknown rectangle used to label the points. We can express the
labelling process using a boolean function cgp : R? — {+, —}, where cg(x) = +,
if x is inside the rectangle R and cg(x) = —, otherwise.

LWe refer to functions whose range has size at most 2 as boolean functions. From the point
of view of machine learning, the exact values in the range are unimportant. We will frequently
use {+, —}, {0,1} and {—1, +1} as the possible options for the range depending on the context
(and at times make rather unintuitive transformations between these possibilities).

2 CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

- R — R __
+ : ul
+ 4 — ' +R, 4 —
_ + — L
(a) (b)

() (d)

Figure 1.1: (a) Data received for the rectangle learning game. The rectangle R
used to generate labels is hidden from the learning algorithm. (b) The tightest
fit algorithm produces a rectangle R’. (c) & (d) The regions Ty, Ts, T5 and Ty
contain €/4 mass each under D (for two different distributions D).

Let us consider the following simple algorithm. We consider the tightest
possible axis-aligned rectangle that can fit all the positively labelled data inside
it; let us denote this rectangle by R’ (Fig. 1.1(b)). Our prediction function or
hypothesis hp : R? — {+,—} is the following: if x € R, hr/(x) = +, else
hr (x) = —.2 Let us consider the following questions:

— Have we learnt the function cr ?

— How good is our prediction function hg:?

Let R denote the true rectangle that actually defines the labelling function
cr. Since we've chosen the tightest possible fit, the rectangle R’ must be
entirely contained inside R. Consider the shaded region shown in Fig. 1.1(b).
For any point x that is in this shaded region, it must be that hg/(x) = —, while
cr(x) = +. In other words, our prediction function hr would make errors on
all of these points. If we had to make predictions on points that mostly lie in
this region our hypothesis would be quite bad. This raises an important point
that the data that is used to learn a hypothesis should be similar to the data
on which the hypothesis will be tested. We will now formalise this notion.

Let D be a probability distribution over R?; in the ensuing discussion, we
will assume that D can be expressed using a density function that is defined

2For the sake of concreteness, let us say that points on the sides are considered to be
inside the rectangle.

1.1. A RECTANGLE LEARNING GAME 3

While no knowledge of machine learning is required to complete this
course, it would of course be helpful to make connections with the
techniques and terminology in machine learning. This discussion appears
in coloured boxes and can be safely ignored for those uninterested in
applied machine learning.

In machine learning, one makes the distinction between the training
and test datasets; when done correctly the empirical error on the test
dataset would give an unbiased estimate of what we refer to as error in
Eqn. (1.1). In machine learning it is also common to use a validation set;
this is often done because multiple models are trained on the training
set (possibly because of hyperparameters) and one of them needs to be
picked. Picking them using their performance on the training set may
result in overfitting. In this course, we will adopt the convention that
model selection is also part of the learning algorithm and not make a
distinction between the training and validation sets. (For example, see
Exercise 1.3.)

over all of R? and is continuous.® The training data consists of m points that
are drawn independently according to D and then labelled according to the
function cr. We will define the error of a hypothesis hr, with respect to the
target function cg and distribution D as follows:

err(hR/; CR, D) = Px~D [hR/ (X) 75 CR(X)] (11)

Whenever the target cp and distribution D are clear from context, we will
simply refer to this as err(hpg/).

We will now show that in fact our algorithm outputs an hgr/ that is quite
good, in the sense that given any € > 0 as the target error, with high probability
(at least 1 — ¢), given a sufficiently large training sample, it will output hgs
such that err(hp/;cg, D) < e. Consider four rectangular strips 11,75, T3, T4
that are chosen along the sides of the rectangle R (and lying inside R) such
that the probability that a random point drawn according to D lands in some
T; is exactly €/4.* Note that some of these strips overlap, e.g. Ty and T (see
Fig. 1.1(c)). The probability that a point drawn randomly according to D lies
in the set T3 UTo UT5UTy is at most € (a fact that can be proved formally using
the union bound (cf. Appendix A.1)). If we can guarantee that the training
data of m points contains at least one point from each of T3, Ts, T3 and Ty,
then the tightest fit rectangle R’ will be such that R\ R’ C T3 UTy U T5 U Ty,
and as a consequence, err(hp/;cgr, D) < e. This is shown in Fig. 1.1(c); note
that if even one of the T; do not contain any point in the data, this may cause
a problem, in the sense that the region of disagreement between R and R’ may
have probability mass greater than e (see Fig. 1.1(d)).

Let A7 be the event that when m points are drawn independently according
to D, none of them lies in T;. Similarly, define the events As, A3, A4 for

3This assumption is not required; in the exercises you are asked to show how the
assumption can be removed.

4 Assuming that the distribution D can be expressed using a continuous density function
that is defined over all of R?, such strips always exist. Otherwise, the algorithm is still
correct, however, the analysis is slightly more tedious and is left as Exercise 1.1.

4 CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

T5,T3,Ty4. Consider the event £ = A; U Ay U A3 U Ay. If € does not occur,
then we have already argued that err(hp/;cr, D) < e. We will use the union
bound to bound P [€] (cf. Appendix A.1). To begin, let us compute P [A;].
The probability that a single point drawn according to D does not land in 7T is
exactly 1—e€/4; so the probability that after m independent draws from D, none
of the points are in T is (1 - i)m. By a similar argument, P [A;] = (1 - i)m
fori=1,...,4. Thus, we have

4
PE] <> PA)] The Union Bound (A.1).
=1
(-9
4
<4exp (_n}le) . Asl1—ax <e ™ (B.1).

For any § > 0, picking m > 2log (%) suffices to ensure that P[£] < §. In
other words, with probability at least 1 — 4§, err(hg/;cgr, D) < e.

A couple of remarks are in order. We should think of € as being the accuracy
parameter and & being the confidence parameter. The bound m > 2log (%)
suggests that as we demand higher accuracy (smaller value of €) and higher
confidence (smaller value of §) of our learning algorithm, we need to supply
more data.? This is indeed a reasonable requirement. Furthermore, the cost
of achieving higher accuracy and higher confidence is relatively modest. For
example, if we want to halve the error while keeping the confidence parameter
constant, say go from ¢ = 0.02 to ¢ = 0.01, the amount of data required (as
suggested by the bound) only doubles.’

There is another corner case that needs to be considered. What if we
observe no positively labelled points? Or only one of them? We will allow
the learning algorithm to use degenerate rectangles, which include the empty
set, points, and line segments that are parallel to one of the axes. So hg/ as
produced by our algorithm is still well-defined. It is easy to check that the rest
of the analysis remains unchanged. In short, if after drawing m > %log (%)
points independently from D, we have still not seen a single positively labelled
point, then outputting a hypothesis hr/ that always predicts negative, does
satisfy with probability at least 1 — 9, that its error it at most e. As this was
our very first example, we discussed the corner cases in detail. Further on in
the course, you should convince yourselves that the corner cases indeed pose
no problem to our analyses.

1.2 Key Components of the PAC Learning Framework

We will use the insights gleaned from the rectangle learning game to develop key
components of a mathematical framework for automatic learning from data.
First let us make a few observations:

530 far, we have only established sufficient conditions, i.e. upper bounds, on the sample
complexity required for learning. In later chapters we will establish necessary conditions, i.e.
lower bounds on the amount of data required for learning algorithms.

SWe are using the word “required” a bit loosely here. All we can say is our present
analysis of this particular algorithm suggests that the amount of data required scales linearly
as % We will see lower bounds of this nature that hold for any algorithm in later chapters.

1.2. KEY COMPONENTS OF THE PAC LEARNING FRAMEWORK 5

1. The learning algorithm does not know the target concept to be learnt
(obviously, otherwise there is nothing to learn!). However, the learning
algorithm does know the set of possible target concepts. In the rectangle
learning game, the unknown target is always an axis-aligned rectangle.

2. The learning algorithm has access to data drawn from some distribution
D. We do assume that the observations are drawn independently according
to D. However, no assumption is made on the distribution D itself. This
reflects the fact that the environments in which learning agents operate may
be very complex and it is unrealistic to assume that the observations are
generated according to some distribution that is easy to describe.

3. The output hypothesis is evaluated with respect to the same distribution D
that generated the training data.

4. We would like learning algorithms to be statistically efficient, i.e. they
should require a relatively small training sample to guarantee high accuracy
and confidence, as well as computationally efficient, i.e. they should run
in a reasonable amount of time. In general, we shall take the view that
learning algorithms for which the training sample size and running time
scales polynomially with the size parameters are efficient. However, in some
cases we will be more precise and specify the exact running time and sample
size.

Let us now formalise a few other concepts related to learning.

Instance Space

Let X denote the set of possible instances; an instance is the input part, x, of
a training example (x,y), and y is the target label. In the rectangle learning
game, the instances were points in R?; the instance space was R2. When
considering binary classification problems for images, the instances may be 3
dimensional arrays, containing the RGB values of each pixel. Mostly, we shall
be concerned with the case when X = {0,1}"™ or X = R"; other instance spaces
can be usually mapped to one of these, as is often done in machine learning.

Concept Class

A concept ¢ over an instance space X is a boolean function ¢ : X — {0,1}. (We
will consider learning target functions that are not boolean later in the course.)
A concept class C over X is a collection of concepts ¢ over X. In the rectangle
learning game, the concept class is the set of all axis-aligned rectangles in R2.
The learning algorithm has knowledge of C, but not of the specific concept
¢ € C that is used to label the observations. A concept class that contains
concepts that are too simple may not be expressive enough to describe the
real-world process we are trying to learn. On the other hand, considering a
concept class that is too large, e.g. all boolean functions, would not allow us
to design efficient learning algorithms.

Data Generation

Let D be a probability distribution over X. The training data is obtained as
follows. An instance x € X is drawn according to the distribution D. If ¢ is

6 CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

the target concept, the instance x is labelled accordingly as ¢(x). The learning
algorithm observes the example (x,c(x)). We will refer to this process as an
example oracle, denoted by EX(c, D). We assume that a learning algorithm can
query the oracle EX(c¢, D) at unit cost and each query yields an independent
training example.

1.2.1 PAC Learning: Take I

Let h : X — {0,1} be some hypothesis; we typically refer to the boolean
function output by a learning algorithm as a hypothesis to distinguish it from
the target. For a distribution D over X and a fixed target ¢ € C, the error of
h with respect to ¢ and D is defined as:

err(h; ¢, D) = Pyp [h(x) # c(x)] . (1.2)

When ¢ and D are clear from context, we will simply refer to this as err(h).

Definition 1.1 — PAC Learning: Take I. Let C be a concept class over X.
We say that C is PAC (take I) learnable if there exists a learning algorithm L
that satisfies the following: for every concept ¢ € C, for every distribution D
over X, for every 0 < € < 1/2 and 0 < 6 < 1/2, if L is given access to EX(¢c, D)
and inputs € and §, L outputs a hypothesis h € C that with probability at least
1 — 0 satisfies err(h) < e. The probability is over the random examples drawn
from EX(c, D) as well as any internal randomisation of L. The number of calls
made to EX(c, D) (sample complexity) must be bounded by a polynomial in 1
and %

We further say that C is efficiently PAC (take I) learnable if the running
time of L is polynomial in 1/e and 1/6.

The term PAC stands for probably approximately correct. The approzimately
correct part captures the notion that the most that can be guaranteed is that
the error of the output hypothesis can be bounded to be below a desired
level; demanding higher accuracy (lower €) is possible, but comes at a cost
of increased running time and sample complexity. In most cases, achieving
ezactly zero error is infeasible as it is possible that two target concepts may be
identical except on one instance which is very unlikely to be drawn according to
the distribution D.” The probably part captures the notion that there is some
chance that the algorithm may fail completely. This may happen because the
observations are not representative of the underlying data distribution, a low
probability event, though very much a possible event. Our confidence (lower
) in the correctness of our algorithm is increased as we allow more sample
complexity and running time.

Based on our analysis of the rectangle learning game in Section 1.1, we have
essentially already proved the following theorem.

Theorem 1.2. The concept class of axis-aligned rectangles in R? is efficiently
PAC (take I) learnable.

1.2. KEY COMPONENTS OF THE PAC LEARNING FRAMEWORK 7

(a) (b)
Figure 1.2: Different shape concepts in R2.

1.2.2 PAC Learning: Take II

Having proved our first result in PAC learning, let us discuss a couple of
issues that we have glossed over so far. The first question concerns that of
the complexity of the concepts that we are trying to learn. For example,
consider the question of learning rectangles (Fig. 1.2(a)) versus more complex
shapes such as shown in Fig. 1.2(b). Intuitively, we believe that it should be
harder to learn concepts defined by shapes like in Fig. 1.2(b) than rectangles.
Thus, within our mathematical learning framework, an algorithm that learns
a more complex class should be allowed more resources (sample size, running
time, memory, etc.). In order to represent an axis-aligned rectangle, we only
need to store four real numbers, the lower and upper limits in both the z and y
directions. The number of real numbers used to represent more complex shapes
is higher.®

The question of representation is better elucidated by taking the case of
boolean functions defined on the boolean hypercube X = {0,1}", the set of
length n bit vectors. Consider a boolean function f : X — {0,1}; there are
several ways of representing boolean functions. One option is to keep the entire
truth table with 2™ entries. Alternatively, we may represent f as a circuit
using A (and), V (or) and = (not) gates. We may ask that f be represented in
disjunctive normal form (DNF), i.e. in the form shown below

(21/\23/\27/\"')\/(2’2/\2’4/\28/\"')\/"'\/(21/\23).

The choice of representation can make a huge difference in terms of the amount
of memory required to store a description of the boolean function. You are
asked to show this in the case of the parity function f =21 ® 20 B--- B 2, in
Exercise 1.2. There are other possible representations of boolean functions,
such as decision lists, decision trees, neural networks, etc., which we will
encounter later in the course.

“In later chapters, we will consider different learning frameworks under which exact
learning, i.e. achieving zero error, is possible.

8We shall assume that our computers can store and perform elementary arithmetic
operations (addition, multiplication, division) on real numbers at unit cost.

8 CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

Representation Scheme

Abstractly, a representation scheme for a concept class C' is an onto function
R :Y* — O, where ¥ is a finite alphabet.” Any o € ¥* satisfying R(0) = c is
called a representation of c. We assume that there is a function, size : ¥* — N,
that measures the size of a representation. A concept ¢ € C' may in general
have multiple representations under R. For example, there are several boolean
circuits that compute exactly the same boolean function. We can define the
function size on the set C' by defining, size(c) = ggir; {size(c)}. When we
(o =cC

refer to a concept class, we will assume by default that it is associated with
a representation scheme and a size function, so that size(c) is well defined
for ¢ € C. In most cases of interest, there will be a natural notion of size
that makes sense for the learning problem at hand; however, some of the
exercises and coloured boxes encourage you to explore the subtleties involved
with representation size in greater detail.

Instance Size

Typically, instances in a learning problem also have a natural notion of size
associated with them; roughly we may think of the size of an instance as the
amount of memory required to store it. For example, 10 x 10 black and white
images can be represented using 100 bits, whereas 1024 x 1024 colour images
will require over 3 million real numbers. When faced with larger instances, we
should expect that learning algorithms will require more time; at the very least
they have to read the input data!'" In this course, we will only consider settings
where the instance space is either X,, = {0,1}" or X,, = R"™. We denote by C,
a concept class over X,,. We consider the instance space X = J,,~; X, and
the concept class C = J,,~, C,, as representing increasingly larger instances
(and concepts on them).

Definition 1.3 — PAC Learning: Take II. Forn > 1, let C, be a concept
class over instance space X, and let C = Un>1 C, and X = U”>1 X,. We say
that C is PAC (take II) learnable if there exists a learning algorithm L that
satisfies the following: for every n € N, for every concept ¢ € C,, for every
distribution D over X, for every 0 < e < 1/2 and 0 < § < 1/2, if L is given
access to EX(c, D) and inputs n, size(c), € and 0, L outputs h € C,, that with
probability at least 1 —§ satisfies err(h) < €. The probability is over the random
examples drawn from EX(c, D) as well as any internal randomisation of L. The
number of calls made to EX(c, D) (sample complexity) must be bounded by a
polynomdal in n, size(c), % and %.

We further say that C is efficiently PAC (take II) learnable if the running
time of L is polynomial in n, size(c), 1/e and 1/0.

91f representing the concept requires using real numbers, such as in the case of rectangles,
we may use R : (X UR)* — C. Representing a real number will assumed to be unit cost.

10 Assuming we know how the data is stored and that we can access specific parts of the
data, in certain cases learning algorithms that do not even have to read the entire data can
be designed.

1.3. LEARNING CONJUNCTIONS 9

When learning a target concept ¢ € C,, in general, allowing the learning
algorithm resources that increase with size(c) will be necessary. Mostly,
we will consider concept classes C,, over X,, for which every size(c) can
be bounded for every ¢ € C,, by some fixed polynomial function of n.
Thus, efficient PAC learning simply requires designing algorithms that
run in time polynomial in n, % and %.

Definition 1.3 is general enough to allow for the existence of “efficient”
PAC learning algorithms if an overly verbose representation scheme is
chosen. For example, the class of all boolean functions is efficiently
PAC-learnable when the representation scheme uses truth tables. On the
other hand, if we represent boolean functions as decision trees, or boolean
circuits, or even boolean formulae in disjunctive normal form (DNF), it
is widely believed that the class of boolean functions is not efficiently
PAC-learnable. We will provide some evidence for this assertion based on
cryptographic assumptions and on hardness of learning in the statistical
query (SQ) learning model in later chapters.

1.3 Learning Conjunctions

Having formulated a notion of learning, let us consider a second learning
problem. Let X, = {0,1}" represent the instance space of size n; note that
each element x € X,, denotes a possible assignment to n boolean variables
21505 2p; let X =51 Xn. Let CONJUNCTIONS,, denote the concept class
of conjunctions over the n boolean variables zi,...,z,. A literal is either a
boolean variable z; or its negation Z;. A conjunction (sometimes also called a
term) is simply an and (A) of literals. An example conjunction ¢ with n = 10

(say) is
@ =2z1 NZ3 N\ Zg N zg. (13)

Formally, a conjunction over zp,...,z, can be represented by two subsets
P,N C [n]. Such a pair of sets P, N represents the conjunction ¢p n defined
as

ern=N\zunr N\ z (1.4)

In (1.4), the sets P and N represent the positive and negative literals that
appear in the conjunction ¢ p x respectively. We have not required that PNN =
(@; this allows us to represent a boolean function that is 0 over the entire
hypercube (falsehood), e.g. as z; A Z;. Both P and N could be empty,
representing an empty conjunction that is 1 over the entire boolean hypercube
(tautology). Formally

CONJUNCTIONS,, = {¢pn | P,N C [n]},
CONJUNCTIONS = [J CONJUNCTIONS,.

n>1

When representing a conjunction over n boolean variables, each of the sets
P and N can be represented by a bit-string of length n; as a result any

10CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

Algorithm 1.1: CONJUNCTIONS Learner

1 Input: n, m, access to EX(¢, D)
2 // initialise hypothesis conjunction with all literals
3 Seth:zl /\21 /\22/\22/\~~/\zn/\2n

4 fori=1,...,mdo

5 draw (x;,y;) from EX(e, D)

6 if y; == 1 then // ignore negative examples
7 for j=1,...ndo

8 if x; ; =0 then // 3th bit of it instance is 0
9 Drop z; from h

10 else // 3t bit of ith instance is 1
11 Drop z; from h

12 Output: h

conjunction can be represented using a bit-string of length 2n. As there are
at least 2" conjunctions (can you count the number of conjunctions exactly?)
we should expect to need at least n bits to represent a conjunction. Thus,
this representation scheme is fairly succinct. Thus, our goal is to design an
algorithm that runs in time polynomial in n, 1/€ and 1/§.

Let ¢ denote the target conjunction. The example oracle EX(¢, D) returns
examples of the form (x,y) where y € {0,1}. y = 1 if ¢ evaluates to 1 (true)
after assigning z; = x; fori =1, ..., n. In other words, y = 1 if x is a satisfying
assignment of the conjunction ¢, and 0 otherwise.

Algorithm 1.1 is learns the concept class CONJUNCTIONS. We describe
the high-level idea before giving the complete proof.

i) The algorithm begins by conservatively constructing a hypothesis h that
is a conjunction of all the 2n possible literals. Clearly, this conjunction
will always output 0 on any given input. The algorithm then makes use
of data to remove harmful literals from h.

ii) The algorithm draws m independent examples (x;,y;) from the oracle
EX(c, D); all the negatively labelled examples (y; = 0) are ignored. For
positively labelled examples, literals that would cause these to be labelled
as negative by h are dropped from h. The resulting hypothesis h is
returned. Thus, the algorithm outputs the “longest” conjunction (containing
the most number of literals) that is consistent with the observed data.
This is because only those literals that absolutely cannot be part of
the target conjunction (as dictated by the positively labelled data) are
dropped.

Theorem 1.4. Provided m > QT" log (27”), Algorithm 1.1 efficiently PAC' (take
II) learns the concept class CONJUNCTIONS.

Proof. Let ¢ be the target conjunction and D the distribution over {0,1}".
For a literal ¢ (which may be z; or z;), let p(f) = Pxop [c(x) = 1 A (x) = 0];
here, we interpret ¢ itself as a conjunction with 1 literal. Thus, if £ = z;, then
0(x) = xy; if £ = Z;, then ¢(x) = 1 — ;. Notice that if p(¢) > 0, then the literal
¢ cannot be present in ¢; if it were, then there can be no x such that ¢(x) =1
and £(x) = 0.

1.3. LEARNING CONJUNCTIONS 11

We define a literal ¢ to be harmful if p(£) > 5. We will ensure that all
harmful literals are eliminated from the hypothesis h. For a harmful literal ¢,
let Ay denote the event that after m independent draws from EX(e, D), £ is not
eliminated from h. Note that this can only happen if no x such that ¢(x) =1
but ¢(x) = 0 is drawn. This can happen with probability at most (1 — i)m
Let B denote the set of harmful literals and let £ = (J,c 5 A¢ be the event that
at least one harmful literal survives in h. We shall choose m large enough so

that P[] < §. Consider the following,
PE] < Z P [Af] By the Union Bound (A.1).
LeB

<om1-= |B| < 2n and for each £ € B,P[A] < (1-—) .
2n 2n

< 2nexp (—ZLG> . Asl—z<e ™ (B.1).
n

Thus, whenever m > QT” log (27"), we know that P[£] < §. Now, suppose that
£ does not occur, i.e. all harmful literals are eliminated from h. Let B¢ be the
set of literals that are not harmful.

err(h) = Pxp [c(x) = 1 A h(x) = 0]
< Y Pup [e(x) = 1A L(x) = 0]

{eB¢
€
<2n-— <e.
n
This completes the proof. O

It is worth pointing out that Algorithm 1.1 only makes use of positively
labelled examples. The algorithm works correctly even if no positively labelled
examples are obtained from the oracle EX(¢, D); this is because if no positive
examples are obtained after drawing m independent examples (for a sufficiently
large m), then returning a hypothesis h that always predicts 0 is sufficient to
achieve low error.

1.3.1 Learning k-CNF

We can generalise Algorithm 1.1 to learn richer classes of boolean functions.
A clause is a disjunction (V) of boolean literals. The length of a clause is the
number of (not necessarily distinct) literals in it. For example, 21V Z7V Z15 is a
clause of length 3. Let clauses,, j, denote the set of all clauses of length exactly k
on the n boolean variables z1, ..., z,. We define the class of boolean functions
that can be written in conjunctive normal form using clauses of length exactly
k as:

k-CNF,, = {/\ ¢ | ¢; € clauses,, i},

k-CNF = U k-CNF,,.

n>1

12CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

A representation of boolean function as in the class k-CNF is called a k-CNF
formula. There are at most (2n)* possible clauses of length k on n boolean
variables and so each k-CNF formula over n variables can have at most (2n)*
clauses. (Allowing clauses to have the same literal multiple times and letting
the order of literals matter, we shall assume in the rest of this section that
there are exactly (2n)* clauses of length k.)

It is completely straightforward to modify Algorithm 1.1 to start with a
hypothesis h that is a k-CNF formula with all (2n)* clauses and eliminate the
clauses that cause positive examples to be labelled negative. This algorithm is
efficient if we assume the representation scheme to have length (2n)*, and in
any case the running time and sample complexity is polynomial in n for any
fixed constant k.

Rather than redo the proof of Theorem 1.4, we shall sketch a different
approach that also introduces the notion of a reduction between learning problems.
Suppose the target function is a k-CNF formula over the boolean variables
Z1,...,%p; We create new boolean variables (z;, ,) where each ¢; is either
some z; or Z;. When placed in parentheses, (2217___7&) denotes the set of all
possible (2n)" boolean variables; whereas by itself z , denotes the specific
variable corresponding to the tuple of literals (¢1, ..., fx). The boolean variable
2y,4, s meant to represent the clause ¢1 V -+ V £j. Given an assignment to
the boolean variables z1,...,z, denoted by some bit-vector x € {0,1}", an
assignment to (z;, ,,) can be uniquely determined, by assigning the variable
2),...p, the value 1 if and only if x is a satisfying assignment of the clause

£V VL. This yields a bit vector in {0, 1}(2")k that represents the assignment
to all (z;, .,)- Let us denote this map from {0,1}" to {0, 1}(2")k by f and
observe that it is injective.

Now consider the following “natural” bijective map, denoted by g, between
k-CNF formulae over zi,...,2, and monotone conjunctions over (z;, ,):
given a k-CNF formula ¢, the literal z;, .1, appears in the monotone conjunction
g(p) if and only if ¢ contains the clause ¢; V --- V £x.'1 (A conjunction is
monotone if it does not contain any negated literals; Algorithm 1.1 modified to
start with h = 21 A -+ A z,, clearly learns the class of monotone conjunctions.)

Let D be a distribution over {0,1}" and let f(D) denote the distribution
over {0, 1}(2")k obtained by first drawing x according to D and then applying
f tox. Let ¢,h € k-CNF,,, then it can be easily verified that

err(h; ¢, D) = err(g(h); g(c), f(D)).
The only thing that remains is to observe that the maps f, g and ¢! are
(trivially) polynomial time computable and that given access to EX(¢, D), the
hypothetical example oracle EX(g(c), f(D)) can be simulated in polynomial
time. Thus, we have proved the following result.

Theorem 1.5. The concept class k-CNF is efficiently PAC (take II) learnable.

11We treat this map as purely syntactic. In particular, for truth assignments the order of
the variables does not matter; however, for the purpose of the map g, the 2-CNF formulae
(z1Vaz2)A(23Vxa) and (z2 V1) A(z4Vxs) would be mapped to the (distinct) conjunctions,

/ ! / / 3
251 20 N 22y 2, and 27, o Az, .. Tespectively.

1.4. HARDNESS OF LEARNING 3-TERM DNF 13

1.4 Hardness of Learning 3-term DNF

Having seen a few examples of concept classes that are PAC (take II) learnable,

we shall temper our optimism by proving that a class of boolean functions

(not significantly more complex than CONJUNCTIONS) is not PAC (take II)
learnable, assuming an unproven, but widely believed, conjecture from computational
complexity theory. The class is that of boolean functions that can be expressed

as DNF formulae with exactly 3 terms. A term is simply a conjunction over n
boolean variables z1, ..., z,. Formally, the class is defined as

3-TERM-DNF,, = {T1 VT V T3 | T; € CONJUNCTIONS,, },
3-TERM-DNF = U 3-TERM-DNF,,.

n>1

Note that any DNF formula with 3 terms can be expressed as a bit-string of
length at most 6n—there are three terms, each of which is a boolean conjunction
expressible by a boolean string of length 2n; as a result, the representation size
for each ¢ € 3-TERM-DNF,, can be bounded by 6n. Thus, an efficient algorithm
for learning 3-TERM-DNF needs to run in time polynomial in n, 1/e and 1/4.
The next result shows that such an algorithm is, in fact, unlikely to exist.
Formally, we’ll prove the following theorem.

Theorem 1.6. 3-TERM-DNF is not efficiently PAC (take II) learnable unless
RP = NP.

Let us first discuss the condition “unless RP = NP”. We will briefly define
the class RP here, but those unfamiliar with (randomised) complexity classes
may wish to refer to standard texts on complexity theory (cf. Chapter Notes
in Section 1.8). The class RP consists of languages for which membership can
be determined by a randomised polynomial time algorithm that errs on only
one side. More formally, a language L € RP, if there exists a randomised
polynomial time algorithm A that satisfies the following

— For string o ¢ L, A(c) =0
— For string o € L, A(o) = 1 with probability at least 1/2.

The rest of this section is devoted to prove Theorem 1.6. We shall reduce the
decision problem for an NP-complete language to the problem of PAC (take IT)
learning 3-TERM-DNF. Suppose L is a language that is NP-complete. Given
an instance (string) o we wish to decide whether o € L. We will construct
a training sample, a set of positive instances S; and negative instances S_,
where S} and S_ are disjoint. We will show that there exists a 3-term DNF
formula ¢ such that all instances in S, are satisfying assignments of ¢ and
that none of the instances in S_ satisfy ¢, if and only if 0 € L. We will ensure
that |S4 US_| is bounded by some polynomial in |o|, and that each example is
also of size bounded by a polynomial in ||, so that the reduction is polynomial
time. Here |o| simply denotes the length of the instance (string) o.

Let us see how an efficient algorithm that PAC (take II) learns 3-TERM-DNF
can be used to test whether or not ¢ € L. Let S = S; U S_, where Sy and
S_ are the sets as constructed above, and let D be a distribution that is

uniform over S, i.e. a distribution that assigns probability mass ﬁ to every

14CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

instance that appears in S, and 0 mass to all other instances. Let € = ﬁ and
0 = 1/2. Now, let us suppose that o € L, then indeed there does exist 3-term
DNF formula, ¢, that is consistent with the sample S. So we can simulate a
valid example oracle EX(p, D), by simply returning a random example (x,y)
where x is chosen uniformly at random from S, and y = 1 if x € S, and
y = 0 otherwise. By the PAC (take II) learning guarantee, with probability

at least 1/2, the algorithm returns » € 3-TERM-DNF, such that err(h) < ﬁ

However, as there are only |S| instances in S and the distribution is uniform, it
must be that h correctly predicts the labels of all instances in S, which implies
o € L. Notice that given h, it can easily be checked in polynomial time that h
indeed correctly predicts the labels for all instances in S.

On the other hand, if o & L, there is no 3-term DNF formula that correctly
assigns labels to the instances in S. Hence, the learning algorithm cannot
output such an h € 3-TERM-DNF. Again, given the output hypothesis h,
checking whether h correctly labels all the instances in S or not, can be easily
done in polynomial time. Thus, assuming an efficient PAC (take II) learning
algorithm for 3-TERM-DNF exists, we also have a randomised algorithm to solve
the decision problem for the NP-complete language L. This in turn implies that
RP = NP, something that is widely believed to be untrue.

All that is left to do is to identify a suitable NP-complete language and
show how to construct a sample S with the desired property. In this case, we
will use the fact that graph 3-colouring is NP-complete.

Graph 3-Colouring reduces to PAC (Take II) Learning 3-TERM-DNF

The language 3-COLOURABLE consists of representations of graphs that can
be 3-coloured. We say a graph is 3-colourable if there is an assignment from the
vertices to the set of three colours, {r, g,b}, such that no two adjacent vertices
are assigned the same colour. As already discussed, given a graph G, we only
need to produce disjoint sets S} and S_ of instances that are positively and
negatively labelled respectively, such that the graph G is 3-colourable if and
only if there exists a 3-term DNF formula that correctly predicts the labels of
all instances in S U S_.

For notational convenience, in this section, we will denote the instances as
v(i) and e(i,j) rather than the more usual x. Suppose G has n vertices. For
vertex i € G, we let v(i) € {0,1}"™ that has a 1 in every position except i. For
an edge (4,) in G, we let e({7,j}) € {0,1}"™ that has a 1 in all positions except
and j. Let Sy = {v(i) | ¢ a vertex of G} and S_ = {e({7,j}) | {i, 7} an edge of G};
clearly S, and S_ are disjoint. Figure 1.3 shows an example of a graph that
is 3-colourable along with the sets Sy and S_.

First, suppose that G is 3-colourable. Let V,., V,, V4 be the set of vertices of
G that are labelled red (r), blue (b) and green (g) respectively in some valid 3-
colouring. Let 21, ..., 2, denote the n boolean variables (one corresponding to
each vertex of G). Let T, = A, @V, Zi- T, and T}, are defined similarly. Consider
the 3-term DNF formula ¢ = T;. vV T V Tj; we will show that all instances in
S satisfy ¢ and that none of the instances in S_ do. First consider v(i) € S.
Without loss of generality, suppose i is coloured red, i.e. ¢ € V.. Then, we
claim that v(7) is a satisfying assignment of T;. and hence also of ¢. Clearly,
the literal z; is not contained in 7, and there are no negative literals in 7.
Since all the bits of v(i) other than the i*" position are 1, v(i) is a satisfying

1.5. LEARNING 3-CNF VS 3-TERM-DNF 15

e({1,2}) | (0,0,1,1,1,1)

e({1,6}) | (0,1,1,1,1,0)

e (1) | (0,1,1,1,1,1) e({2,3}) | (1,0,0,1,1,1)

v(2) | (1,0,1,1,1,1) e({2,4}) | (1,0,1,0,1,1)

\ v(3) | (1,1,0,1,1,1) e({3,6}) | (1,1,0,1,1,0)

v(4) | (1,1,1,0,1,1) e({4,5}) | (1,1,1,0,0,1)

v(5) | (1,1,1,1,0,1) e({4,6}) | (1,1,1,0,1,0)

v(6) | (1,1,1,1,1,0) e({5,6}) | (1,1,1,1,0,0)

(a) Graph (b) Positive Examples (c) Negative Examples

Figure 1.3: (a) A graph G along with a valid three colouring. (b) Positive
examples of the sample generated using G. (c) Negative examples of the sample
generated using G.

assignment of T,. Now, consider e({7,j}). We claim that e({i,j}) is not a
satisfying assignment of any of 1., T, or T and hence it also does not satisfy
¢. For a colour ¢ € {r,g,b}, either i is not coloured ¢ or j isn’t. Suppose i is
the one that is not coloured ¢, then 7. contains the literal z;, but the i*" bit of
e({i,7}) is 0 and so e({%, j}) is not a satisfying assignment of 7. This argument
applies to all colours and hence e({i,j}) is not a satisfying assignment of .
This completes the “if” part of the proof.

Next, suppose that ¢ = T;. VT VT is a 3-term DNF such that all instances
in S, are satisfying assignments of ¢ and none in S_ are. We use ¢ to assign
colours to the vertices of G that represent a valid 3-colouring. For a vertex 1,
since v(7) is a satisfying assignment of ¢, it is also a satisfying assignment of at
least one of T}., T;; or T,. We assign it a colour based on the term for which it is
a satisfying assignment (ties may be broken arbitrarily). Since for every vertex
i, there exists v(i) € Sy, this ensures that every vertex is assigned a colour.
Next, we need to ensure that no two adjacent vertices are assigned the same
colour. Suppose there is an edge {7, j} such that ¢ and j are assigned the same
colour. Without loss of generality, suppose that this colour is red (r). Since
we know that e({i,7}) is not a satisfying assignment of ¢, e({i,j}) also does
not satisfy T;.. Also, as ¢ and 7 were both coloured red, v(¢) and v(j) do satisfy
T,. This implies that the literals z; and z; are not present in 7,. The fact
that v(i) satisfies T, ensures that the literal Z, for any k # i cannot appear in
T,. However, if T,. does not contain any negated literal, other than possibly z;,
and if it does not contain the literals z; and z;, then e({i,j}) satisfies T, and
hence ¢, a contradiction. Hence, there cannot be two adjacent vertices that
have been assigned the same colour. This completes the proof of the “only if”
part and with it also the proof of Theorem 1.6.

1.5 Learning 3-CNF vs 3-TERM-DNF

In Section 1.3.1, we proved that the concept class k-CNF, and hence 3-CNF, is
efficiently PAC (take IT) learnable. On the other hand, Theorem 1.6 shows that
under the widely believed assumption that RP # NP, the class 3-TERM-DNF
is not efficiently PAC (take II) learnable. Let us recall the distributive law of

16CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

boolean operations
(anb)V(eAnd)=(aVe)A(avd)ADVe)A(bVd). (1.5)

By applying the rule (1.5), we can express any ¢ € 3-TERM-DNF as some
1 € 3-CNF.

p=T1VIyVT;= /\ (61 \/62\/53) :w

L1 €Ty

L€T>

L3€T3
For any distribution D over X,, = {0,1}", the example oracles EX(yp, D) and
EX(¢, D) are indistinguishable. Thus, if we use a PAC (take II) learning
algorithm for 3-CNF that outputs some h € 3-CNF, with probability at least
1 -9, we will have

err(h; @, D) = err(h; 1, D) < e.

What this suggests is that if our goal is simply to predict as well as the
target concept ¢ € 3-TERM-DNF, then there is no impediment (in terms
of statistical or computational resources) to doing so. The difficulty arises
because our definition of PAC (take II) learning requires us to express the
output hypothesis as a 3-term DNF formula. Arguably from the point of view of
learning, being able to predict labels correctly is more important than the exact
hypothesis we use to do so. Our final definition of PAC learning in Section 1.6
will allow learning algorithms to output hypothesis that do not belong to the
concept class being learnt. We will still need to put some restrictions on what
is allowable as an output hypothesis; you are asked to explore the implications
of loosening these requirements further in Exercise 2.4. It may also be the case
that the computational savings (being able to run in polynomial time) come at
a statistical cost, something we will explore in greater detail after having seen
some general methods for designing learning algorithms.'?

1.6 PAC Learning

In our final definition of PAC learning, we shall remove the requirement that
the output hypothesis actually belongs to the concept class being learnt. We
then have to specify in what form an algorithm may output a hypothesis.
As was the case with concept classes, we can define a hypothesis class H,
over the instances X,, (implicitly we assume that there is also a representation
scheme for H,, and an associated size function), and consider the hypothesis
class H = J,,~, Hn. We will wish to place some restrictions on the hypothesis
class. (To explore why see Exercise 2.4.) The requirement we add is that the
hypothesis class H be polynomially evaluatable.

Definition 1.7— Polynomially Evaluatable Hypothesis Class. A hypothesis
class H is polynomially evaluatable if there exists an algorithm that on input
any instance x € X,, and any representation h € H,, outputs the value h(x)

in time polynomial in n and size(h).

12The word “may” has been used in the above sentence because the claim is based only on
different upper bounds on the sample complexity of efficient learning algorithms. No “non-
trivial” lower bound on the sample complexity for a polynomial time algorithm for learning
3-TERM-DNF is known. This will be discussed in greater detail in Chapter 2.

1.7. EXERCISES 17

In words, the requirement that H be polynomially evaluatable demands
that given the description of the “program” encoding the prediction rule, h,
and an instance, x, we should be evaluate h(x) in a reasonable amount of
time. Here reasonable means polynomial in the input, i.e. size(h) and x. We
now give the final definition of PAC learning and then end by making a few
observations.

Definition 1.8 — PAC Learning. Forn > 1, let C,, be a concept class over
instance space Xy, and let C =J,,~, Cn and X = ,,~, Xn. We say that C is
PAC learnable using the hypothesis class H if there exists an algorithm L that
satisfies the following: for every n € N, for every concept ¢ € Cy,, for every
distribution D over X, for every 0 < e < 1/2 and 0 < § < 1/2, if L is given
access to EX(¢, D) and inputs n, size(c), € and 0, L outputs h € H,, that with
probability at least 1 —§ satisfies err(h) < €. The probability is over the random
examples drawn from EX(c, D) as well as any internal randomisation of L. The
number of calls made to EX(c, D) (sample complexity) must be bounded by a
polynomdal in n, size(c), % and % and H must be polynomially evaluatable.

We further say that C is efficiently PAC learnable using H, if the running
time of L is polynomial in n, size(c), 1/e and 1/9.

Some comments regarding the definition of PAC Learning

i) For efficient PAC learning, although no explicit restriction is put on what
size(h) can be, the requirement on the running time of the algorithm
ensures that size(h) itself must be bounded by a polynomial in n, size(c),
% and %

ii) When H is not explicitly specified, by efficient PAC learning C, we mean
that there exists some polynomially evaluatable hypothesis class H, such
that C is efficiently PAC learnable using H.

iii) In terms for our final definition of PAC learning, PAC (take II) learning C
refers to PAC learning C using C. When efficiency is a consideration, the
learning algorithm has to be efficient and C itself needs to be polynomially
evaluatable. In the literature (and in the rest of this course), (efficient)
PAC (take II) learning is referred to as (efficient) proper PAC learning.
Sometimes to distinguish PAC learning from proper PAC learning, the
word improper is added in front of PAC learning.

iv) In the definition of PAC learning (all of them), we do require that the
number of calls to EX(¢, D) is bounded by a polynomial in n, size(c),
% and %. This corresponds to the sample complexity or the amount of
data used by the learning algorithm. Even when we allow inefficient
algorithms, we do require the amount of data used to be modest; this
is mainly to capture the idea that automated learning is about learning
the target function using a modest amount of data. When arbitrary
computational power is permitted, there is not much to be gained from
using more data; this follows from Exercise 2.4.

1.7 Exercises

1.1 This question is about the rectangle learning problem.

18CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

a) Modify the analysis of the rectangle learning algorithm to work in
the case that D is an arbitrary probability distribution over R2.

b) The concept class of hyper-rectangles over R™ is defined as follows
RECTANGLES,, = {ﬂ[al,bl}xmx[an,bn] | a;,b; € R,a; < bz}

For a set S C R", the notation 1g represents its indicator, i.e. the
boolean function that is 1 if x € S and 0 otherwise. Generalise the
algorithm for learning rectangles in R? and show that it efficiently
PAC learns the class of hyper-rectangles. Give bounds on the number
of examples required to guarantee that with probability at least 1—9,
the error of the output hypothesis at most e. The sample complexity
and running time of your algorithm should be polynomial in n, %
and %.

1.2 Let f : {0,1}" — {0,1} be the parity function on the n bits, i.e.
flz1,.oy2n) =21 D 22@ -+ @ 2. In words, when given n bits as input,
f evaluates to 1 if and only if an odd number of the input bits are 1.

a) A boolean circuit with n inputs is represented by an annotated
directed acyclic graph with exactly n source nodes and 1 sink node.
The source nodes contain the inputs z1, . .., z, (at the time of evaluation
each z; is assigned a value in {0,1}). Each internal node is labelled
with either A, V, or —; internal nodes labelled by A or V have in-
degree exactly 2 and internal nodes labelled by — have in-degree
exactly 1. The nodes labelled by A, V and —, compute the logical
and, or, and not, of their inputs (the values at the one or two nodes
that feed into them) respectively. The sink node represents the
output of the circuit which will be either 0 or 1. The size of a
boolean circuit is defined to be the number of edges in the directed
acyclic graph that represents the circuit; the depth of a circuit is
the length of the longest path from a source node to the sink node.
Show that f can be represented as a boolean circuit of size O(n)
and depth O(logn).

b) Show that representing f in disjunctive normal form (DNF) requires
at least 277! terms.

1.3 Say that an algorithm L perhaps learns a concept class C using hypothesis
class H, if for every n, for every concept ¢ € C,,, for every distribution D
over X,, and for every 0 < € < 1/2, L given access to EX(¢, D) and inputs
€ and size(c), runs in time polynomial in n, size(c) and 1/€, and outputs
a polynomially evaluatable hypothesis h € H,,, that with probability at
least 3/4 satisfies err(h) < e. In other words, we've set § = 1/4 in the
definition of efficient PAC learning. Show that if C is “perhaps learnable”
using H, then C is also efficiently PAC learnable using H.

1.4 Consider the question of learning boolean threshold functions. Let X,, =
{0,1}™ and for w € {0,1}" and k € N, fyr : X, = {0,1} is a boolean

1.8. CHAPTER NOTES 19

threshold function defined as follows:

fw,k(x) = ;

0 otherwise

Define the concept class of threshold functions as

THRESHOLDS,, = {fw.x | w € {0,1}",0 < k < n},
THRESHOLDS = | J THRESHOLDS,.

n>1

Prove that unless RP = NP, there is no efficient proper PAC learning
algorithm for THRESHOLDS.

1.8 Chapter Notes

Material in this lecture is almost entirely adopted from Kearns and Vazirani
[34, Chap. 1]. The original PAC learning framework was introduced in a
seminal paper by Valiant [43].

While we will not make heavy use of deep results from Computational
Complexity theory, acquaintance with basic concepts such as NP-completeness,
will be necessary. Better understanding of computational complexity will
also be beneficial to understand hardness of learning based on the RP #
NP conjecture and other conjectures from cryptography. The classic text by
Papadimitriou [40], and the more recent book by Arora and Barak [6], are
excellent resources for students wishing to read up further on computational
complexity theory.

Chapter 2

Consistent Learning and
Occam’s Razor

In the previous chapter, we studied a few different learning algorithms. Both
the design and the analysis of those algorithms was somewhat ad hoc, based on
first principles. In this chapter, we’ll begin to develop tools that will serve as
general methods to design learning algorithms and analyse their performance.

2.1 Occam’s Razor

In the first part of this chapter, we’ll study an explanatory framework for
learning. In the PAC learning framework, what is important is a guarantee
that, with high probability, the output hypothesis performs well on unseen
data, i.e. fresh data drawn from the target distribution D. Here we consider
the following question: Given (x1,¥1), (X2,%2), ..., (Xm,¥Ym), where x; € X,
and y; € {0, 1}, can we find some hypothesis, h : X,, — {0, 1} that is consistent
with the observed data, i.e. for all i, h(x;) = y;.!

If there is no restriction on the output hypothesis, then this can be simply
achieved by memorising the data. In particular, one could output a program
of the form, “if x = x1, output y1, else if Xx = X5, output ya, ..., else if
X = X, output Y, else output 0”. This output hypothesis is correct on all
of the observed data and predicts 0 on all other instances. Clearly, we would
not consider this as a form of learning. The basic problem here is that the
“explanation” of the data is as long as the data itself. Even if one tries to rule
out programmes of this kind, it is easy to see that simple concept classes are
rich enough to essentially memorise the data (cf. Exercise 2.1).

The condition that we want to impose is that the explanation of the data
be succinct, at the very least, shorter than the length of the data itself. In
computational learning theory, this is referred to as the Occam Principle or
Occam’s Razor, named after the medieval philosopher and theologian, William
of Ockham, who expounded the principle that “explanations should be not

made unnecessarily complex”.?

n order to avoid absurdities, we will assume that for all 1 < i,j < m, it is not the case
that x; = x;, but y; # y;.

2This is by no means a wholly accurate depiction of the writings of William of Ockham.
Those interested in the history are encouraged to look up the original work.

21

22 CHAPTER 2. CONSISTENT LEARNING AND OCCAM’S RAZOR

Philosophical Implications*

The notion of succinct explanations can be formalised in several ways and has
deep connections to various areas of mathematics and philosophy. There are
connections to Kolmogorov complexity which leads to the minimum description
length (MDL) principle. The MDL principle itself can be given a Bayesian
interpretation of assigning a larger prior probability to shorter hypotheses. The
existence of a short description also implies existence of compression schemes.
We will not discuss these issues in detail in this course; the interested student
is referred to the following sources as a starting point [23, 30, 28].

Typically, finding the shortest hypothesis consistent with the data may
be intractable or even uncomputable. In order to get useful results out of
this principle, we do not need to find the shortest description or achieve
optimal compression. It turns out that it is enough for the description of
the output hypothesis to be slightly shorter than the amount of data observed.
We’ll formalise this notion to derive PAC-learning algorithms from explanatory
hypotheses.

2.2 Consistent Learning

We'll first define the notion of a consistent learning algorithm, or consistent
learner, for a concept class C.?

Definition 2.1 — Consistent Learner. We say that a learning algorithm
L is a consistent learner for a concept class C' using hypothesis class H, if
for alln > 1, for all ¢ € C, and for all m > 1, given as input the sequence
of examples, (x1,c(x1)), (X2,c¢(x2)), ..., (Xm,c(Xm)), where each x; € X,,, L
outputs h € H,, such that for i = 1,...,m, h(x;) = c(x;). We say that L
is an efficient consistent learner if the running time of L is polynomial in n,
size(c) and m. Furthermore, we shall say that a concept class C is (efficiently)
consistently learnable, if there exists a learning algorithm L and a polynomially-
evaluatable hypothesis class H, such that L is an (efficient) consistent learner
for C using H.

A consistent learning algorithm is simply required to output a (polynomially
evaluatable) hypothesis that is consistent with all the training data provided
to it. So far, we have not imposed any requirement on the hypothesis class H.
This notion of consistency is closely related to the empirical risk minimisation
(ERM) principle in the statistical machine learning literature, when the risk is
defined using the zero-one loss.

The main result we will prove is that if H is “small enough”, something that
is made precise in the theorem below, then a consistent learner can be used to
derive a PAC-learning algorithm. This theorem shows that short explanatory
hypotheses do in fact also possess predictive power.

Theorem 2.2 — Occam’s Razor, Cardinality Version. Let C be a concept
class and H a hypothesis class. Let L be a consistent learner for C using H.

3Starting from this chapter, we will avoid the cumbersome notation of treating a concept
class C as C = U,>1Cr (likewise X = U,>1Xn and H = U, >1 Hy) and shall assume that
this is implicitly the case. Where confusion may arise we shall continue to be fully explicit
about concept classes that contain concepts defined over instance spaces of increasing sizes.

2.2. CONSISTENT LEARNING 23

In statistical machine learning, the general setting is where the inputs
to the target function come from some space X (which in this course we
refer to as the instance space) and the outputs come from some set Y.
The case where Y = {0, 1} corresponds to binary classification problems,
such as the ones we are considering in this course, but in general Y can
be other sets. The data is assumed to come from some distribution over
X xY.

A class of hypotheses H consists of functions h : X — Y’ where
typically Y C Y’. There is a loss function, £ : Y’ x Y — RT that
indicates the loss incurred by outputting ¥’ € Y’, when the true output
was y € Y. The risk of a hypothesis with respect to a loss function /¢
and a data distribution D over X X Y is defined as

R(hy= E [(h(x).y)]. (2.1)

B (x,y)~D

The empirical risk on a sample S of size m drawn from D is

R(h)=— > 4(h(x),y). (22)

m
(x,9)€S

To be more precise, we should use the notation Rp(h) and Rg(h),
however, unless there is possibility of confusion, we shall drop these
subscripts. The Empirical Risk Minimisation (ERM) principle suggests
that a learning algorithm should pick a hypothesis h € H that minimises
the empirical risk. So far in this course, we have restricted attention to
binary classification with ¥ = Y’ = {0,1} and the so-called zero-one
loss, £(y',y) = 1(y’ # y). In the language of statistical learning, the
realisable setting is the one where there exists h € H which has 0 risk;
in this case ERM is equivalent to consistent learning, and Theorem 2.2
can be applied. We will make further connections to the ERM principle
to topics covered in this course in later chapters.

Then for alln > 1, for all c € C,,, for all D over X,,, for all 0 < e < 1/2 and
all 0 < § < 1/2, if L is given a sample of size m drawn from EX(c, D), such
that,

1

1
m> - (log |Hy| + log 5)) (2.3)
€

then L is guaranteed to output a hypothesis h € H, that with probability at
least 1 — 6, satisfies err(h) < e.

If furthermore, L is an efficient consistent learner, log|H,| is polynomial
in n and size(c), and H is polynomially evaluatable, then C is efficiently PAC-
learnable using H .

Proof. Fix a target concept ¢ € C, and the target distribution D over X,,.
Call a hypothesis, h € H, “bad” if err(h) > €. Let Ap be the event that

24 CHAPTER 2. CONSISTENT LEARNING AND OCCAM’S RAZOR

m independent examples drawn from EX(c, D) are all consistent with h, i.e.
h(x;) = e(x;), for i = 1,...,m. Then, if h is bad, P[Ap] < (1 —)™ < e ™.
Consider the event,
= U A
h€H,,:h bad

Then, by a simple application of the union bound (A.1), we have,

PEI< Y. P(Ap) < |Hp|- e
he€H,,:h bad

Thus, whenever m is larger than the bound given in the statement of the
theorem, except with probability §, no “bad” hypothesis is consistent with m
random examples drawn from EX(c, D). However, any hypothesis that is not
“bad”, satisfies err(h) < € as required. O

Remark 2.3. The version of the theorem described above only allows H,
to depend on C, and n. It is possible to have a much more general version,
where instead we consider the hypothesis class Hy, ., where a consistent learner
when given m examples outputs some h € Hy . As long as log|Hy, m| can
be bounded by poly(n,size(c), %, %) -m? and for some B < 1, a PAC-learning
algorithm can still be derived from a consistent learner. Fxercise 2.2 asks to
you prove this more general result. The proof for this version appears in the
book by Kearns and Vazirani [34, Chap. 2].

2.3 Improved Sample Complexity

Learning CONJUNCTIONS

Let us revisit some of the learning algorithms we’ve seen so far. We derived
an algorithm for learning conjunctions. At the heart of the algorithm was,
in fact, a consistent learner, obtained only using positive examples. Thus,
for the conjunction learning algorithm C,, = H,. Note that the number of
conjunctions on n literals is 3™ (each variable may appear as a positive literal,
negative literal, or not at all).

Our analysis of the conjunction learning algorithm showed that if the number
of examples drawn from EX(c, D) was at least 27" (log(Qn) + log %), the output
hypothesis with high probability has error at most €. Theorem 2.2 shows that
in fact even a sample of size % (n log 3 + log %) would suffice.

Learning 3-TERM-DNF

Let us now consider the question of learning 3-TERM-DNF. We have shown
that finding a 3-term DNF formula ¢ that is consistent with a given sample
is NP-complete. On the other hand, we saw that it is indeed possible to find
a 3-CNF formula that is consistent with a given sample. Let us compare the
sample complexity bounds given by Theorem 2.2 in both of these cases. In
order to do that we need good bounds on |3-TERM-DNF,, | and |3-CNF,,|. Any
3-TERM-DNF formula can be encoded using at most 6n bits, each term (or a
conjunction) can be represented by a bit string of length 2n to indicate whether

2.4. EXERCISES 25

a variable appears as a positive literal, negative literal, or not at all. Thus,
|3-TERM-DNF,,| < 26,

Similarly, there are (2n)3 possible clauses with three literals. Thus, each
3-CNF formula can be represented by a bit string of length (2n)3, indicating
for each of the possible clauses whether they are present in the formula or not.
Thus, |3-CNF,,| < 287" Tt is also not hard to show that |3-CNF,,| > gn’
for some universal constant £ > 0. Thus, it is the case that log|3-CNF,| =
Q(n3). Thus, in order to use a consistent learner that outputs a 3-CNF

formula, we need a sample that has size 2 ("—:) ;4 on the other hand if we had

unbounded computational resources and could solve the NP-complete problem
of finding a 3-term DNF consistent with a sample, then a sample of size O (%)
is sufficient to guarantee a hypothesis with error at most e (assuming ¢ is
constant). This suggests that there may be tradeoff between running time and
sample complexity. However, it does not rule out that there may be another
computationally efficient algorithm for learning 3-TERM-DNF that has a better
bound in terms of sample complexity. This question is currently open.

2.4 Exercises

2.1 Given (x1,¥1), (X2,%2), - - - (Xm,¥m), such that x; € X,, and y; € {0, 1},
and for all 1 <4, j < m, it is not the case that x; = x;, but y; # y;, show
that there is a DNF formula of length O(m) that is consistent with the
observed data.

2.2 Formulate Remark 2.3 as a precise mathematical statement and prove
it. Observe that when H, ,, instead of H, is used in Equation (2.3),
m appears on both sides of the equation. You should justify that there
exists m that is still polynomial in n, size(c), % and % that satisfies the
modified form of Equation (2.3).

2.3 Let X,, = {0,1}" be the instance space. A parity function, xg, over X,
is defined by some subset S C {1,...,n}, and takes the value 1 if and odd
number of the input literals in the set {z; | i € S} are 1 and 0 otherwise.
For example, if S = {1, 3,4}, then the function xgs(z1,...,2,) = 21 B
z3 @ z4 computes the parity on the subset {z1,z3,24}. Note that any
such parity function can be represented by a bit string of length n, by
indicating which indices are part of S. Let PARITIES,, denote the concept
class consisting of all 2™ parity functions; observe that the the concept
class PARITIES,, has representation size at most n. Show that the class
PARITIES, defined as PARITIES = |J,,~, PARITIES,,, is efficiently proper
PAC learnable. You should clearly describe a learning algorithm, analyse
its running time and prove its correctness.

2.4 Recall that in the definition of PAC-learning, we require that the hypothesis
output by the learning algorithm be evaluatable in polynomial time.
Suppose we relax this restriction, and let H be the class of all Turing
machines (not necessarily polynomial time)—so the output of the learning

4At the very least, this is the lower bound we get if we apply Theorem 2.2. We will
see shortly that in fact this is a lower bound on sample complexity for learning 3-CNF, no
matter what algorithm is used.

26

2.5

2.5

CHAPTER 2. CONSISTENT LEARNING AND OCCAM’S RAZOR

algorithm can be any program. Let C,, be the class of all boolean circuits
of size at most p(n) for some fixed polynomial p and having n boolean
inputs. Show that C' = |J,,~; C» is PAC-learnable using H (under this
modified definition). Argue that this solution shows that the relaxed
definition trivialises the model of learning.

A k-decision list over n boolean variables zi,...,z,, is defined by an
ordered list

L= (t17b1)7 (t27b2)7 ey (tlvbl)v

and a bit b, where each ¢; is a term (conjunction) of at most k literals
(positive or negative) and each b; € {0,1}. For x € {0,1}" the value
L(x) is defined to be b;, where j is the smallest index satisfying ¢,(x) = 1
and L(x) = b if no such index exists. Pictorially, a decision list can be
depicted as shown below. As we move from left to right, the first time a
term is satisfied, the corresponding b; is output, if none of the terms is
satisfied the default bit b is output.

’zl/\ZgH 2 H22A23HZ1A25H24/\26H21/\26 bb
<+ <+ <+ <+ <+

J

b1 b2 bg b4 b5 b6

Give an efficient consistent learner for the class of decision lists. As a
first step, argue that it is enough to just consider the case where all the
terms have length 1, i.e. in fact they are just literals.

Chapter Notes

The material covered in this chapter mostly follows the paper by Blumer et al.
[13]; it is worth reading this short paper directly. The material also draws from
Kearns and Vazirani [34, Chapter 2.

For a wider applications of this principle in computational learning theory
and beyond, the reader may refer to [28, 30, 36].

Chapter 3

The Vapnik Chervonenkis
Dimension

We have studied how a consistent learner can be used to design a PAC-learning
algorithm, provided the output hypothesis comes from a class that is not too
large, in particular as long as the logarithm of the size of the hypothesis class
can be bounded by a polynomial in the required factors. However, when the
concept class or hypothesis class is infinite, this result cannot be applied at
all. Concept classes that are uncountably infinite are often used in machine
learning, linear threshold functions, also referred to as linear halfspaces, being
the most common one. We have already studied the class of axis-aligned
rectangles, and proved the correctness of a PAC-learning algorithm for this class
using first principles. In this chapter, we’ll study a specific capacity measure
called the Vapnik Chervonenkis (VC) dimension of a concept class, and show
that provided this can be bounded, a consistent learner can be used to design
PAC-learning algorithms. In particular, the VC dimension can be finite even
for concept classes that are uncountably infinite.

3.1 The Vapnik Chervonenkis (VC) Dimension

In order to keep the notational overhead to a minimum, we will elide the use of
the subscript n indicating the instance size. However, it should be clear that
the discussion applies to a concept class defined as | J,,~; Crn, where C,, is a class
of concepts over X,,. Let S C X be a finite set of instances. For a concept
¢: X — {0,1}, we can consider the restriction of ¢ to S, ¢|s : S — {0,1},
where ¢|g(x) = ¢(x) for x € S. We define the following;:

lo(S) = A{ds [ce C}. (3.1)

The set I (S) is the class of distinct restrictions of concepts in C' defined by
the set S. Alternatively, if S = {x1,...,Xm}, we can associate each element of
I (S) with the function values at each of the m points,

e (S) = {(c(x1),...,¢(xm)) | c€ C} (3.2)

Thus, the set II¢(S) can also be viewed as the set all possible dichotomies
on S induced by C. Clearly for a set S of size m, [IIc(5)] < 2™, as C consists

27

28 CHAPTER 3. THE VAPNIK CHERVONENKIS DIMENSION

#+ H H] — +— et

—[1- —[H
(a)

Figure 3.1: (a) All possible dichotomies on 2 points can be realised using
intervals. (b) A dichotomy on three points that cannot be realised by intervals.

of boolean functions. If for a set S of size m, [[Io(S)| = 2™, we say that S is
shattered by C.

Definition 3.1 — Shattering. We say that a finite set S C X is shattered
by C, if [He(S)| = 2151, In other words, S is shattered by C if all possible
dichotomies over S can be realised by C'.

We can now define a notion of dimension for a concept class C, called the
Vapnik-Chervonenkis dimension, named after the authors of the seminal paper
that introduced this notion to statistical learning theory.

Definition 3.2 — Vapnik Chervonenkis (VC) Dimension. The Vapnik-
Chervonenkis dimension of C' denoted as VCD(C) is the cardinality d of the
largest finite set S shattered by C. If C shatters arbitrarily large finite sets,
then VCD(C) = co.

3.1.1 Examples

The language used to define VC-dimension is a bit different from that commonly
used in machine learning. Let us use some examples to clarify this idea. The
notion of shattering can be phrased as follows, given a finite set of points
S C X, if we assign labels 0 or 1 (or + or —) to the points in S arbitrarily,
is there a concept ¢ € C that is consistent with the labels? If the answer is
always yes, then the set S is shattered by C', otherwise it is not.

Intervals in R

Let X =Rand let C' = {cqp | a,b € R,a < b} be the concept class of intervals,
where ¢ : R — {0,1} is defined as cq5(x) = 1 if 2 € [a,b] and 0 otherwise.
What is VCD(C)? It is easy to see that any subset S C R of size 2 can be
shattered by C, but not a set of size 3 as shown in Figure 3.1. Given a set of
size three, if the middle point is labelled negative and the other two positive,
there is no interval consistent with the labelling. Thus, VCD(C) = 2.

Rectangles in R?

Let X = R? and let C be the concept class of axis-aligned rectangles. Figure 3.2(a)
shows a set of size 4 that can be shattered, Fig. 3.2(b) shows a set of size 4 that
cannot be shattered, by providing an explicit labelling that cannot be achieved.
However, the definition of VC dimension only requires the existence of one set
of a certain size that is shattered. It is possible to show that no set of size 5

3.1. THE VAPNIK CHERVONENKIS (VC) DIMENSION 29

- T+ L+
(a) (b) ©

Figure 3.2: (a) A set of 4 points on which all dichotomies can be realised using
rectangles. (b) A set of 4 points with a dichotomy that cannot be realised by
rectangles. (c) Any set of 5 points always has a dichotomy that cannot be
realised using rectangles.

: + +
(a) (c) (d)

Figure 3.3: (a) A set of 3 points shattered by linear threshold functions. (b)
A dichotomy on a set of 3 points that cannot be realised by linear threshold
functions. (c) & (d) No set of 4 points can be shattered by linear threshold
functions.

can be shattered. The reason being that there must be one of the five points
that is not the extreme left, right, bottom or top point (at least not uniquely
so0). If this point is labelled as negative and all the other (extreme) points are
labelled as positive, then there is no rectangle that can achieve this dichotomy.

Linear Threshold Functions or Linear Halfspaces

The concept class of linear threshold functions is widely used in machine
learning applications. Let us show that the class of linear threshold functions in
R? has VC-dimension 3. Fig. 3.3(a) shows a set of size 3 that can be shattered
by linear threshold functions; Fig. 3.3(b) shows a set of size 3 that cannot be
shattered by linear threshold functions. No set of size 4 can be shattered by
linear threshold functions. There are two possibilities, either the convex hull
has four vertices in which case if the opposite ends of the quadrilateral are
given the same labels, but adjacent vertices are given opposite ones, then no
linear threshold function can achieve this labelling (Fig. 3.3 (c)). If on the other
hand the convex hull only contains three vertices, if the vertices of the convex
hull are labelled positive and the point in the interior is labelled negative, this
labelling is not consistent with any linear threshold function (see Fig. 3.3 (d)).
The degenerate case when three or more points lie on a line can be treated
easily (e.g. as in the case of Fig. 3.3(b)). Exercise 3.1 asks the reader to show
that the VC dimension of linear halfspaces in R™ is n + 1.

30 CHAPTER 3. THE VAPNIK CHERVONENKIS DIMENSION

3.2 Growth Function

Let C' be a concept class over an instance space X. The growth function
captures the maximum number of dichotomies of a set of size m that can
be realised by C. Clearly if C' can shatter some set of size m, then all 2™
dichotomies can be realised—this is the case for any m < VCD(C'). We are
interested in understanding the maximum possible growth of the number of
dichotomies for m > VCD(C'). We will show that this growth can be bounded
by a polynomial in m of degree VCD(d), rather than exponential in m.
Formally, define the growth function, as follows:

Definition 3.3 — Growth Function. For any natural number m, define,
Mo (m) = max{|Ic(S)| | S C X, |S|=m}.
The goal of this section is to prove Lemma 3.4, known as the Sauer-Shelah

Lemma.

Lemma 3.4 — Sauer-Shelah Lemma. Let C be a concept class over X with

VCD(C) =d, then for m > d, llg(m) < (%)d'

In order to prove the Sauer-Shelah Lemma, it will be helpful to define a
function ® : N x N — N defined below.

Definition 3.5. For any m,d € N, define the function,

d
m
®(m,d) = . 3.3
m=3-(7) (33

From the definition of @, it is immediate that ®(m,0) = ®(0,d) = 1 for all
m,d € N. Furthermore, ® is monotonically increasing in both m and d. We
will make use of two additional properties of ® which are established in the
lemma below.

Lemma 3.6. Consider the function ® defined in Definition 3.5. The following
hold:

®(m,d) =®(m—1,d) +P(m—1,d—1), (3.4)
d
®(m,d) < (n;e) . form >d (3.5)

Proof. The proofs are quite elementary. We will prove (3.4) first.
d

o= (7)< (3)+ (%)

Using the fact that () = (" ") and the combinatorial identity () = (") +

(=), i '
(" () ()

:i(m,—1> +: (m,_1> — ®(m—1,d)+ d(m—1,d— 1),

3.2. GROWTH FUNCTION 31

Next, we prove (3.5). Using the fact that d/m < 1, we have
m m\ 4. (m d*
> (1) -(3) 2 (7))
d d i d m i
m d m m d
dA2) < (2 N
> (1)-G) = (1) 2 () ()

®(m,d) = Z

d

IN

)3
() ()< ()

where above we used the fact that for d/m < 1 and i < d, (d/m)? < (d/m)’,

and that 1 + (d/m) < e¥/™. (As an aside, observe that for m < d, ®(m,d) =
2m) 0O

Finally Lemma 3.7 together with Lemma 3.6 completes the proof of the
Sauer-Shelah Lemma (Lemma 3.4).

Lemma 3.7. For any concept class C with VCD(C) = d, Lo (m) < ®(m, d).

Proof. We will prove this by induction on m and d simultaneously. We first
check the base cases. If d = 0, then no non-empty finite set can be shattered,
so C contains at most one concept. Thus, for all m, Ho(m) = 1 = ®(m,0).
If m = 0, since there is only one dichotomy of the empty set, clearly IIo(0) <
®(0,m). Now, suppose that the result holds for all d’ < d and m’ < m, when
at least one of the inequalities is strict. We also observe that the function ® is
monotonically increasing in both m and d.

Let S be any set of size m. Let x be a distinguished point of S. Then, by
using the induction hypothesis,

Mo (S\{z})] <Tg(m —1) < ®(m — 1,d). (3.6)

Let us look at the difference between II¢(S) and I (S \ {z}). Consider
the set

C'={cellg(9) | c(x) =0,3¢c € Lc(S),c(x) = 1,Vz € S\ {z},c(z) = ¢(2)}.

In words, we look at a dichotomy in IIo(S \ {z}) and see whether this can
be extended in two distinct ways in II(S), i.e. whether we can keep the
assignments on points in S\ {z} as they were and still retain the choice to
label x as either 1 or 0. Then, we have

Mo (S)] = Mo (SA\{z})] + e (S\ {z})]. (3.7)

The first term accounts for all the dichotomies on S\ {z}, and the second one
accounts for the dichotomies on S\ {«} that can be extended to two distinct
dichotomies on S.

It suffice to show that VCD(C”") < d—1, to complete the proof by induction
and (3.4). Note that the concept class C’ is only defined over the set S. Let
S” C S\ {z} be shattered by C’. (Note that 2 cannot be included in any set
shattered by C’ since ¢/(x) = 0 for all ¢/ € C".) Then, by definition S’ U {z} is
shattered by C, so it must be the case that |S’| < d — 1. This completes the
proof. O

32 CHAPTER 3. THE VAPNIK CHERVONENKIS DIMENSION

3.3 Sample Complexity Upper Bound

In this section, we’ll prove that the VC dimension plays a role analogous to
that played by log|Hy| in the case of finite hypothesis classes. Provided the
learning algorithm outputs a consistent hypothesis from some hypothesis class
H which has bounded VC dimension, say d, and the sample size is sufficiently
large as a function of the d, 1/e and 1/§ (though while still being polynomially
bounded), this yields a PAC-learning algorithm.

Theorem 3.8. Let C be a concept class. Let H O C' be a hypothesis class
with VCD(H) = d, where 1 < d < oo. Let L be a consistent learner for C
that outputs a hypothesis h € H. Then for every 0 < €,6 < 1/2, L is a PAC-
learning algorithm for C provided it is given as input a random sample of size
m drawn from EX(¢c, D), for

1 1 d 1
m>rko|—log=+ —log— |,
€ 0 € €
for some universal constant K.

Proof. For two boolean functions f and g, denote by f @® g the boolean defined
as follows:

1if f(z) # g(x)

et = {o it /() = 9(0)

Now suppose that ¢ € C' is the target concept and D is the target distribution
over the instance space X. For any hypothesis h € H, err(h; ¢, D) = Py.p [(c @ h)(z) = 1].

Let H@c={h®c|h € H}. It is easy to show that VCD(H & ¢) =
VCD(H) (see Exercise 3.4). We say that a finite set S C X is an enet for
H & ¢ with respect to distribution D, if for every h & ¢ € H & ¢, such that
Powp [(h @ c)(x) = 1] > ¢, there exists some z € S, such that (h & c)(z) = 1.

We observe that a hypothesis, h, for which Poop [(h®c)(z) =1] > € is
problematic, as err(h;c, D) > e. We want to ensure that the consistent learner
does not output any such hypothesis. Any S that is an e-net for H @ ¢ with
respect to D, rules out such hypotheses being output by a consistent learner, as
they would not be consistent! Thus, it suffices to show that a random sample
of size m drawn from EX(c¢, D) actually yields an e-net for H @ ¢ with respect
to D.

The rest of the proof is essentially a clever argument about the probabilities
of certain events set up by doubling the sample size and symmetrising. This
idea appears in most proofs related to sample complexity bounds, and is our
first introduction to this proof technique.

We will draw a sample S of size 2m in two phases. First draw a sample Sy
of size m from EX(c, D). Let A be the event that S; (actually, the input part
of S; obtained by ignoring the labels) is not an e-net for H @ ¢ with respect
to D.' Now, suppose the event A occurs, then there exists h € H such that

(h@c)(z) =0 for all z € Sy and Pyop [(%@c)(x) = 1} > ¢ . Fix such a

h € H and draw a second sample Sy of size m. Now, let us obtain a lower

L Actually S7 can be multiset, e.g. if D has point masses.

3.3. SAMPLE COMPLEXITY UPPER BOUND 33

bound on the number of elements z in S, that satisfy (h & ¢)(z) = 1. Let X,
denote the random variable that takes value 1 if the it element of Sy satisfies
(h @ ¢)(xz) = 1 and X; takes value 0 otherwise. Thus, if X = >~ X;, then
X is the (random) number of such points in Ss. Note that, E [X] > em, so by
using a Chernoff bound from Eq. (A.3), we have

X <E[X] (1 - ;)1 < exp (—6172)

Provided em > 16 (which our final bound will ensure), the probability that
{x €Sy | (h®c)(x) =1} > em/2 is at least 1/2.

P[X <em/2] <P

Now consider the event B defined as follows: A sample S = S1US}> of size 2m
with |S1| = |S2| = m is drawn from EX(c, D), there exists a h @ ¢ € I gg.(S),
such that |{z € S | (h@c)(z) = 1} > em/2 and (hdc)(z) = O forall z € S;. We
have slightly abused notation and used hé@c to denote the function in H@c and
its restriction to the set S in g (S). Note that P[B] > 1P [A], since if S; fails
to be an e-net for i ©c with respect to D, then as argued above, the probability
of there being a (h®c¢) € Hyg(S) such that [{z € S; | hde(z) =1} = 0 and
[{z € Sy | ¢(x) = 1}| > em/2 is at least 1/2. Thus, P[A] < 2P [B].

We will now bound P [B] which is a purely combinatorial problem. Let
Oge(S) = {h®ce€llyge(S) | {z €S| (h@c)(x) =1} > em/2}.

In defining the event B, we can first imagine the entire sample S of size 2m
being drawn from D, denoted by S ~ D?™, and then for the fixed sample
S a uniformly random partition into S; and S5 being made. Note that the
distribution over S7 obtained by first drawing S and then randomly partitioning
is exactly the same as that obtained by drawing m examples directly from
EX(c,D). For any fixed h @ ¢ € II%4.(S), let Bpge|S denote the event
(conditioned on S) that [{x € Si| (h @ ¢)(x) = 1}| = 0. Then calculating
the probability of Bpg.|S is equivalent to the following question: Given 2m
balls out of which r > em/2 are red and the remaining are black, if we divided
them into two sets of size m each, without seeing the colours, what is the
probability that the first set has no red balls and the second set has all of
them? This probability is simply given by (7')/ (Z:n) We can bound this as
follows:

Note that the above bound is still valid for » > m as the probability of Byg.|S

34 CHAPTER 3. THE VAPNIK CHERVONENKIS DIMENSION

is 0 in that case. We can then bound the probability of the event B as follows:

Pg.pem [B] = Ps.p2m |Ps,.s, U Bueel S

h@c€elly, o,

< Pgp2m Z Ps, s, [Bh@c | S]

h@cEH‘H@C

2em \ ¢
- < () g
Since we have P [A] < 2P [B], we have that,

2em ¢ —em/2
pla <2 (2] oo

It remains to be shown that P[A] < § for the value of m in statement of
the theorem. Although it is a standard calculation, it is worth spelling out in
full at least once. We first observe that it suffices to show that,

2d o 2em+ 2 o g
&4 &5

~ e-log?2 €-log?2

Thence it suffices for 5+ > 5-1%(;2 log Q‘Bdm and § > 6,1§g2 log% to both hold.

The first is equivalent to showing % > @ log 2de, which holds for m >
32d 4

Y log Tog3 by appealing to Lemma B.1 (noting that 4/(elog2) > e for all
¢ < 1 and that 24 2log(2e) < 8). The second clearly holds for m > —%- log 2.

e-log 2
Hence, picking
4 4 2
> dl log —
e~log2max{8 Og<6-10g2>70g5}’

is sufficient as stated in the statement of the theorem. O

Theorem 3.8 could of course be applied with H = C' in the context of
proper PAC learning. However, the more general result will allow us to consider
scenarios where efficient consistent learners could be designed by allowing the
learning algorithm to output a hypothesis from a class that is larger than C.
As we shall see next, the VC dimension essentially completely captures the
statistical complezity of learning.

3.4 Sample Complexity Lower Bounds

In this section, we will show sample complexity lower bounds for any learning
algorithm in terms of the VC dimension. This is a purely information-theoretic
result; no assumption is made about the running time of the algorithm. There
is also no requirement that the algorithm output a hypothesis from the concept
class C.

3.4. SAMPLE COMPLEXITY LOWER BOUNDS 35

Theorem 3.9. Let C be a concept class with VCD(C) > d, where d > 25.2
Then any PAC-learning algorithm (not necessarily efficient) for learning C

using H O C requires at least max{ %561, i log %} examples.

Proof. In order to show that such an algorithm doesn’t exist, we need to show
that for every learning algorithm L, there exists a target distribution D and a
target concept ¢, such that with probability strictly greater than §, the output
hypothesis has error strictly greater than e.

Suppose for contradiction such a learning algorithm does exist. Note that
the learning algorithm L may itself be randomised, however, we know that
there is an upper bound m = max{ %, 4% log %} on the number of examples
it uses. Thus, if the learning algorithm output a hypothesis from H 2 C, we
can view any fixed sample S of size m as defining a distribution over H. We
will use the probabilistic method to derive a contradiction (see e.g. [2]).

We will first show that m must be at least %. Let T be a set of size d that
is shattered by C. Suppose T' = {x1,x2,...,24}, and let D be a distribution
defined as follows: D(z1) = 1 — 8¢, and D(z;) = 8¢/(d — 1) for j =2,...,d.
Since the distribution is only supported on the finite set T', we only need to be
concerned with concepts in I (T). Suppose the learning algorithm receives
a sample S of size m = (d — 1)/(32¢) examples drawn according to D and
labelled according to some target ¢ € IlIo(T'). We may assume without loss of
generality that if ;1 € S, then L outputs some h such that h(x1) = c(z1). (If
not, we can design an algorithm L’ that runs L to obtain h and chooses ' € H
which satisfies h'(z1) = ¢(z1) and h'(z;) = h(z;) for i > 2.)

We first note that the probability that (21, c(x1)) € S is small, in particular
at most (1 — 86)(d_1)/(32€) < e (d=1/4 < 76 We also show that with a
reasonable probability S contains fewer than half the examples from the set
T\ {z1} = {z2,...,24}. Let Z; be the random variable that is 1 if the i*"
example drawn from D is in the set T\ {z1} and 0 otherwise. Then Z; = 1
with probability 8¢ and 0 with probability 1 — 8¢. Let Z =)" Z; be the
number of examples seen from the set T\ {x1} (possibly with repetitions).
Then E[Z] = %2 and using a Chernoff bound from Eq. (A.4),

d—1

P[ZEQ} <P[Z>2-E[Z] §exp(—dl_21) <e 2

Let us denote the event that (z1,c(z1)) € S and Z < %51 as €. It can be
easily checked that P[€] > % Now suppose the target concept ¢ was chosen
uniformly at random from IIo(T). As T is shattered, |IIo(T)| = 2¢. We can
compute the conditional expectation (on the event &) of the error of h output
by the learning algorithm. Conditioned on &, we know that |S| < Z+1 < %.
Thus the conditional (on &) distribution over the target distributions is uniform
over a set of size 2¢-151 > 2(d=1)/2, (In words, the assignment to the examples
observed by the learning algorithm is fixed, but any assignment on the unseen
examples is equally likely.) Then observe that for any fixed hypothesis, h, a
random ¢ conditioned on & results in

8¢

err(h;c, D) = -1

(T - |S]) > 2e.

2The condition d > 25 is not really necessary, with a slightly improved argument this
can be shown for any d > 2.

36 CHAPTER 3. THE VAPNIK CHERVONENKIS DIMENSION

Putting everything together we have that,

E E lerr(h; ¢, D)[E] | > 2e.
enle(T) | S~EX(e,D)™
h~L

Thus, conditioned on the event &£, there must exist a target concept ¢ € C for
which E [err(h; ¢, D)|€] > 2e. Now because h(z1) = ¢(x1) conditioned on the

event &, we also have that err(h;c, D) < 8¢ whenever £ occurs. As a result, it
is easy to see that conditioned on event £, the probability that err(h;c, D) < e
is at most 6/7. Otherwise, we would have,
8 6
- <Z 42 <2
hIEL lerr(h;c, D)|€] < - + €S 2e

~

This completes the proof of % as a lower bound.

In order to show that m = 4% log % as a lower bound, we can use a very
similar (but simpler) argument. In fact, we only need a set T' = {1, 22}, and
two concepts ¢1,c2 € C, such that ¢1(z1) = co(x1) = 0 and c¢1(x2) # co(x2);
such a set T and concepts ¢y, ¢ exist as VCD(C) > 2. Now define a distribution
D over T such that D(z1) = exp(—4e) and D(z3) = 1 — exp(—4e). It is easy
to see that with probability at least 44, a sample of size m = - log 75 from D
will not have the point 5. Conditioned on that event, again denoted by &, we

can conclude that the expected error, hEL lerr(h;c, D)|E] > (1 —e™4)/2. It

is a straightforward calculation, e.g. using Taylor’s theorem, that for ¢ < 1/4,
(1 — e7%€) > 2¢. Then, the same argument as above shows that conditioned
on &, with probability > 1/4 the error of h output by L will be > e. That
completes the proof. O

3.5 Comnsistent Learner for Linear Threshold Functions

To end this chapter, we will look at an application to learning linear threshold
functions. Recall that the class of linear threshold functions over R"” is defined
as

LTF, = {x— 1>o(w-x+wp) | w € R", [|[w|l, = 1,wy € R}, (3.8)

where 1>¢(2) = 1 if z > 0 and 0 otherwise.

Exercise 3.1 asks you to show that the VC dimensions of this class is n +
1. Thus in order to apply Theorem 3.8, we would like to design an efficient
consistent learner for the class LTF,. The problem is the following: Given
(Xx1,Y1)s-- > (Xm, Ym), where x; € R™ and y; € {0,1}, such that there exists
w* € R”, |w*|l, =1 and w{ € R such that y; = 1>o(w* - x; + wf), find some
W, wo, such that y; = 1>¢(w - x; + wp). This problem can be formulated as a
linear program and hence solved in polynomial time.

We consider the following linear program with variables, wq,ws,...,w,.
The objective function is constant, so we are in fact only looking for a feasible
point. The constraints are given by:

Wo + W1x31 + Wakio + - - wpTiy > 0 For all 4 such that y; =1 (3.9)

—Wo — W1Tj1 — Walkio — +** WpZip > 1 For all 4 such that y; =0 (3.10)

3.6. EXERCISES 37

Let us first discuss the second inequality (3.10). An example is classified as
negative if w* - £ + w§ < 0; however, we cannot include strict inequalities as
part of the linear program as we need the resulting set to be closed. The choice
of 1 is arbitrary, we could have used any strictly positive real number. Let us
show that the above linear program has a feasible solution; given that a feasible
solution exists, there are known polynomial time algorithms to find one.

Let the target linear threshold function be defined by w*,wg. Let a =
min{—(w*-x; +w) | y; = 0}; we know that o > 0. Consider “’7* € R", 20 € R;
it can be checked that this is a feasible solution to the constraints defined
by (3.9) and (3.10).

3.6 Exercises

3.1 Show that the concept class of linear halfspaces over R™ defined in Section 3.5
has VC-dimension n + 1 by proving the following.

i) Give a set of n + 1 points in R™ that is shattered by the class of
linear halfspaces.

iif) Show that no set of m = n+ 2 points in R” can be shattered by the
class of linear halfspaces. For this you can use Radon’s theorem, the
statement of which appears below.

iii) Prove Radon’s theorem.

Radon’s Theorem
Given a set S = {x1,...,Xn} C R", the convex hull of S is the set

{ZER” | =D ST WS [071}, Z)\ZZL z:ZAlxl}
i=1 i=1

Let m > n + 2, then S must have two disjoint subsets S7 and S; whose
convex hulls intersect.

3.2 Prove that for any d € N, there is a concept class C such that VCD(C) =
d, and that for any m € N, IIo(m) = ®4(m).

3.3 In this question we will consider the learnability of convex sets. Let us
consider the domain to be X = [0,1]2, the unit square in the plane. For
S C X a convex set, let cg : X — {0,1}, where cg(z) =1 if z € S and
0 otherwise. Let C' = {cg | S convex subset of X} be the concept class
defined by convex sets of [0, 1].

i) Show that the VC dimension of C' is co. This shows that the concept
class of convex sets of [0,1]? cannot be learnt by an algorithm
(efficiently or otherwise) that uses a sample whose size is bounded
by a polynomial in 1/e and 1/§ alone.

ii) We will consider a restriction of PAC-learning where the learning
algorithm is only required to work for a specific distribution D over
X. Show that if D is the uniform distribution over [0,1]2, then
the concept class of convex sets is efficiently PAC-learnable in this
restricted sense, where efficiency means running time (and sample

38 CHAPTER 3. THE VAPNIK CHERVONENKIS DIMENSION

complexity) bounded by a polynomial in % and %.

Hint: Consider the algorithm that simply outputs the convex hull of
positive points as the output hypothesis. You may use the fact that
the perimeter of any convex set in the unit square can be at most 4.

3.4 Show that VCD(H & ¢) = VCD(H).

Chapter 4

Boosting

4.1 Weak Learnability

Let us revisit the definition of PAC-learning. Definition 1.8 places quite stringent
requirements on a learning algorithm that (efficient) PAC learns a concept
class. The learning algorithm has to work for all target concepts in the class,
for all input distributions, and for any setting of accuracy (e) and confidence
(0) parameters. It is worthwhile considering what happens when we relax
some of these requirements. In Exercise 1.3, we have seen that fixing the
confidence parameter to be a constant, e.g. & = 1/4, leaves the notion of PAC-
learnability unchanged. On the other hand, if we only require the learning
algorithm to succeed with respect to certain input distributions, then PAC-
learning is possible for concept classes that are not learnable (efficiently or
otherwise) using a sample size that is polynomial in % and % in the distribution-
free sense, i.e. algorithms that have to work with respect to all distributions.!
Exercise 3.3 explores such a concept class. In this chapter, we focus on the
accuracy parameter, e. The problem of learning is trivial if € > 1/2 as we can
make a random prediction on an input x € X and achieve an error of 1/2.2
The question we are interested in is what happens when € = 1/2 — ~, for some
v > 07 For example, one may wonder if it is possible to learn some concept
class up to error 1/4, but not to an arbitrarily small €?

Surprisingly, the answer to the question above is no, i.e. if we can learn
a concept class up to error at most 1/2 — 7, then we can learn this class up
to error bounded by any € > 0. This method is known as boosting, as we
take a “weak learning” algorithm and boost it to produce a “strong learning”
algorithm.

IWhat is most important here is the order of quantifiers. The notion of PAC-learning
requires a single learning algorithm to work regardless of the input distribution. Of course,
the learning algorithm may be adaptive in the sense that depending on what examples it has
received it can change its behaviour.

2If the output hypothesis is allowed to be randomised, that is it takes as input = € X,
and also has access to random coin tosses when making a prediction, then it is immediately
clear that the outlined approach works. Otherwise, we would need that € > % + +; then
we know that one of the two constant hypotheses, always predicting 1, or always predicting
0, gives error at most 1/2, and we can with high confidence determine which one can be

guaranteed to have error at most € by using a sample of size O (7%)

39

40 CHAPTER 4. BOOSTING

v-Weak Learner

Let us define the notion of weak learning formally. We will let the parameter
v for weak learning be a function of the instance size n, and the representation
size of the target concept, size(c).

Definition 4.1 — y-Weak Learning. For v(-,-) with v > 0, we say that L is
a v-weak PAC learning algorithm for concept class C using hypothesis class H,
if for anyn >0, any c € C,,, any D over X,,, and 0 < § < 1/2, L given access
to EX(¢, D) and inputs size(c), 6 and vy, outputs h € H,, that with probability
at least 1 — 8, satisfies, err(h) < 1 — y(n,size(c)).

We say that L is an efficient v-weak PAC learner if H is polynomially
evaluatable, 1/v(n,size(c)) is bounded by some polynomial in n and size(c),
and the running time of L is polynomial in n, 1/§, and size(c).

Boosting: A Short History

Boosting has an interesting history and is a prominent example of how a
suitable theoretical question has led to some very practical algorithms. The
notion of weak learning first appeared in the work of Kearns and Valiant [32],
who showed that certain concept classes were hard to learn even when the
requirement was only to output a hypothesis that was slightly better than
random guessing. Shortly thereafter, Freund [25] and Schapire [42] showed that
in the distribution-free setting weak and strong learning are in fact equivalent.
The early boosting algorithms were not easy to implement in practice; Freund
and Schapire [26] designed an improved boosting algorithm, called Adaboost,
which while retaining strong theoretical guarantees was very easy to implement
in practice. Adaboost has enjoyed a remarkable practical success and implementations
of Adaboost and its variants appear in most machine learning libraries.

4.2 The AdaBoost Algorithm

The central idea of the boosting approach is the following. Initially, we can
use a weak learning algorithm that gives us a hypothesis that performs slightly
better than random guessing. We could repeatedly run this weak learning
algorithm, though it may return the same hypothesis. However, if we modify
the distribution so that the hypothesis already returned is no longer valid, i.e.
under the new distribution it has error exactly 1/2, then the weak learning
algorithm is required to provide us with a different hypothesis.> By doing
this repeatedly, we can combine several hypotheses to produce one that has
low error. All boosting algorithms make use of this high-level approach. The
AdaBoost (for adaptive boosting) algorithm exploits the fact that some hypotheses
may be much better than others and aggressively modifies the distribution
to account for this. Initially, we will concentrate on proving that AdaBoost
succeeds in finding a hypothesis that has training error 0 on a given sample.
The AdaBoost algorithm is described in Alg. 4.1. We assume that AdaBoost
has access to the weak learning algorithm, WEAKLEARN. WEAKLEARN gets

31f the error of h is much larger than 1/2 under the modified distribution, then the weak
learning algorithm may simply return 1 — h, which is not of much use, since we already have
h.

4.2. THE ADABOOST ALGORITHM 41

Algorithm 4.1: AdaBoost

Inputs:
Training data (x1,41), - -, (Xm, Ym) drawn from EX(¢, D),
T (#iterations), ¢ (confidence parameter)
Weak learning algorithm WEAKLEARN(D, ¢)

AW N =

w

// uniform initial distribution over training data

Set D1(i) =1/m

7 fort=1,...,7T do

8 // examples drawn from D; are passed to WEAKLEARN

9 Obtain hy <~ WEAKLEARN(Dy,0/T)

10 Set € = Pixyyup, [Me(X) #y] [/ & <1/2—7y, wp. >1—2

lef

[

11 Set ay = Llog

12 /] Ziy1 is the normalising constant

13 Update Dyy1(2) = Dy(i) - exp(—auyihi(x;))/ Zis1

14 Set h = er:t achy

15 Output: hypothesis 1 : X — {-1,1}, where E(x) = sign(h(x))

labelled (according to some concept ¢ € C) data from some distribution D and
takes a confidence parameter §. It guarantees that with probability at least
1 — 4, the error of the returned hypothesis, h, is at most 1/2 — . AdaBoost
receives a training sample of m examples drawn from EX(c, D). It defines a
distribution D; over this sample at each iteration and hence can simulate the
example oracle for the weak learning algorithm. To make the mathematical
analysis simpler, we will assume that the labels y; are in {—1, 1} rather than
{0,1}. This is a transformation that is frequently used in machine learning and
readers should convince themselves that this does not make any difference. We
assume that sign : R — {—1,1}, with sign(z) = —1 if z < 0 and sign(z) = 1 if
z > 0.

Theorem 4.2. Assuming that WEAKLEARN is a y-weak learner for the concept
class C, after T iterations, with probability at least 1 — &, the training error of
the hypothesis output by AdaBoost (Alg. 4.1) is 0, provided T > log,fm.

Proof. As further notation, let 1() be the indicator of the predicate inside the
parentheses, which takes the value 1 if the predicate is true and 0 otherwise.

Observe that 1 (sign(h(x)) #y) < e —vh(x) for ye{-1,1}.

Pixgy [sign(h(x)) #y| = 3 Di(i)- Lsign(h(x) £3:) (A1)

D (i) - ¥ (4.2)

s i

=1

We introduce some additional notation. Let Et = Zf:t ashs be the weighted
sum of the hypotheses returned in iterations ¢ through T'; and thus, Et =
athy + heypr. We will allow the overall algorithm to fail if any of the calls to
WEAKLEARN on Line 9 fail. By a simple union bound, all of these calls succeed

42 CHAPTER 4. BOOSTING

with probability at most 1 — §. We will assume this is the case in the rest of
the proof allowing the algorithm a failure probability 6. Then consider the
following:

S Dy (i) - e) = 37Dy (i) - e i) (4.3)
=1 =1
— ZDl(Z) e~ aryihi(xi) | e_yi%Z(x'i) (4.4)
=1
=723 Do) e (45)
=1
m —
=7y DQ(Z) . e—a2y2h2(xi) . e_yihii(xi) (4.6)
=1
= Zy- 75~y Dali) - e vihstx) (4.7)
=1

We use in (43) E = 711, in (44) 7L1 = a1h1 +7LQ, in (45) DQ(’L = Dl(’L) .
e~1ihi(xi) /7, 'in (4.6) ha = aghg+hs, and in (4.7) D3 (i) = Da(i)-e~@2¥ih2(xi) /75
Continuing this way, we obtain,

ZDl(i) . e*yﬁ{(xi) =y Za- Iy - ZDT(Z') . efyﬁT(xi)
i=1 i=1

And thus,

T+1

m ~
ZD1 (i) - e Yih(xi) = H Zy (4.8)
i=1 t=2

Let us now obtain a bound on Z;y4, for t =1,...,7. We have,
Ziy1 = Z Dy (i) - e + Z Dy (i) - e
ithy (%) =y; ithe (xi)#Ys

=1 —€)e ¥ +ee® =2/ (1 — €)

Above we substituted a; = %log 1;—ff Letting v, = % — ¢; and using the fact
that VI —z < e */2, we get,

Zipg =/l -4y < e W (4.9)

Now, by the guarantee on the weak learning algorithm, vz > vy fort =1,...,T.
Thus, [T/ 2, < 277", Provided T > log(2m)/(2+2), the training error is
at most 1/(2m) and hence must in fact be 0 (as error on any point causes the
error to be at least 1/m). O

It is worth understanding what the algorithm is doing in each iteration. In
Line 13 the algorithm assigns higher weight to examples that were misclassified

4.2. THE ADABOOST ALGORITHM 43

by the hypothesis h; in the t iteration and lower weight to examples that were
correctly classified. Equation (4.8) shows that the product of the normalising
constants Z; is an upper bound on the training error of the classifier after
T iterations. Each Z; is guaranteed to be strictly less than 1 because of the
assumption that the weak learner outputs a hypothesis with error at most
1/2 — ~. The choice of a; in Line 10 is chosen to minimise the value of Z; at
that iteration. It is in this sense that the algorithm is adaptive and hence its
name. It is worth observing that «; is also the weight that the hypothesis h;
gets in the final threshold classifier; the more accurate h; is, the greater the
value of a;. You are asked to further explore some of the behaviour of this
algorithm in Exercise 4.1.

4.2.1 Bounding the Generalisation Error

One way to bound the generalisation error of AdaBoost is by ensuring that the
VC-dimension of the hypothesis class used by the weak learning algorithm is
finite.* Suppose the weak learning algorithm, WEAKLEARN, outputs hypotheses
from H and VCD(H) = d. Denote by THRESHOLDS, (H) the class of functions

given by

k
THRESHOLDS, (H) = { x > sign | Y oxhi(x) | | hi € Hyo; €R

=1
Lemma 4.3. IfVCD(H) = d, then VCD(THRESHOLDS,,(H)) = O(kdlog(k)).

Proof. We count the number of dichotomies realised by functions in THRESHOLDS, (H)
on a set of size m. Let S be a set of size m. We fix the choices h, ..., g, then
this results in m points in {—1,1}* that are then fed into a linear threshold
function. The VC dimension of linear threshold functions in R¥ is k+ 1, so the
number of dichotomies realised (by LTFs that vary depending on the choice

em
k+1

number of possible realisations of a set of size in {—1,1}* that are determined

by the choice of the h;. Note that this number is bounded by (%)dk, as the
VCD(H) = d and at most k hypothesis from H are used. Thus, if we choose m

large enough so that,
em \"T" fem\ ™
= 2m 4.10
(k mn 1) (d) =S (4.10)

then m gives an upper bound on the VCD(THRESHOLDS (H)).
It is then straightforward to show that for a suitable constant cg, for all
m > cokdlogk, Eq. (4.10) holds. O

k+1
of the ays) are at most () . However, we need to also account for the

Combining 4.3 and Theorem 3.8 we can obtain a generalisation bound on
the error of the hypothesis output by Adaboost, whenever the weak learning
algorithm, WEAKLEARN, outputs hypothesis from a class H with VCD(H) =
d < 0.

4This is not a stringent requirement on a weak learning algorithm. However, this
condition is not necessary and in fact it can be shown that AdaBoost generalises even without
such a condition on the weak learning algorithm.

44

4.3

4.1.

4.2.
4.3.

CHAPTER 4. BOOSTING

Exercises

Consider the AdaBoost algorithm described in Algorithm 4.1.

a) Show that the error of h; with respect to the distribution D,; is
exactly 1/2.

b) What is the maximum possible value of Dy(i) for some 1 <t < T
and 1 << m?

¢) Fix some example, say i, let ¢; be the first iteration such that
ht,(x;) = y;. How large can t; be?

Give a formal proof of the statement right after Lemma 4.3.

Consider the instance space X, = {0,1}"™ and the following hypothesis
class
Hn = {O7]., 21, 21, Z2, 22, ceey Rmy Zn}.

The hypothesis class, H,, contains 2n + 2 functions. The functions
“0” and “1” are constant and predict 0 and 1 on all instances in X,,.
The function “z;” evaluates to 1 on any x € {0,1}" satisfying x; = 1
and 0 otherwise. Likewise, the function “Z;” evaluates to 1 on any
x € {0,1}" satisfying z; = 0 and 0 otherwise. Thus a single bit of
the input determines the value of these functions; for this reason these

functions are sometimes referred to as dictator functions.

a) Show that the class CONJUNCTIONS is j—-weak learnable using
H.

Hint: The factor 10 is not particularly important, just a sufficiently
large constant.

b) Let CONJUNCTIONSy, denote the class of conjunctions on at most k
literals. Give an algorithm that PAC-learns CONJUNCTIONS; and
has sample complexity polynomial in k, log n, % and %. What would
be the sample complexity if you had used the algorithm for learning
CONJUNCTIONS discussed in the lectures?

Hint: First show that the weak learning algorithm in the previous
part can be modified to be a ﬁ—weak learner in this case.

¢) Show that there is no weak learning algorithm for PARITIES using
H.

Chapter 5

Cryptographic Hardness of
Learning

We have seen a few efficient learning algorithms in the PAC learning framework
for concept classes such as conjunctions, decision lists and linear halfspaces.
We've also studied the Occam principle that “short consistent hypotheses”
generalise well on unseen data. For finite hypothesis classes the sample complexity
scales polynomially with log|H|, 1/e and 1/§. When using infinite hypothesis
classes, the Vapnik Chervonenkis (VC) dimension plays a similar role as log |H|.
We'’ve seen upper and lower bounds on sample complexity in terms of VC-
dimension that almost match. In particular, provided one can identify a
hypothesis that is consistent with the observed data (as long as the sample
size is large enough as a function of the VC dimension, € and 0), we obtain a
hypothesis that has error bounded by € with respect to the target concept and
distribution.

Thus, in a sense the VC-dimension captures the notion of learnability, if
sample complexity is the only thing we care about. However, when we consider
computational complexity the picture is considerably different. We’ve already
shown that there are concept classes for which finding proper consistent learners
is hard unless RP = NP. In the case of 3-term DNF formulae, we can avoid
this hardness by choosing the output hypothesis from a larger concept class,
that of 3-CNF formulae. One may wonder, whether this is always the case, i.e.
can we always identify a larger hypothesis class from which we can identify a
consistent learner in polynomial time?

In this chapter, we’ll answer this question in the negative, provided a certain
widely believed assumption in cryptography holds. We will show that there
are concept classes that cannot be efficiently PAC-learnt, even in the case of
improper learning, where the output hypothesis is allowed to come from any
polynomially evaluatable hypothesis class.

5.1 The Discrete Cube Root Problem

Let p and ¢ be two large primes that require roughly the same number of bits to
represent. Furthermore, we’ll assume that these primes are of the form 3k + 2.
Let N = pq be the product of these primes. It is widely believed that factoring
such an N, when p and ¢ are chosen to be random n bit primes, cannot be

45

46 CHAPTER 5. CRYPTOGRAPHIC HARDNESS OF LEARNING

performed in time polynomial in n.! Let ¢ denote Euler’s totient function,

then we have p(N) = (p—1)(¢ — 1). As p and q are chosen to be of the form
3k + 2, 3 does not divide ¢(N).

Let Zy = {i | 0 <i < N,ged(i, N) = 1}. It is well-known that Z%, forms a
group under the operation of multiplication modulo N. We consider a function
N+ Z% — Z% defined as fy(y) = y® mod N. As 3 does not divide ¢(NV),
it is straightforward to observe that fx is a bijection. As ged(3,¢(N)) = 1,
there exist d,d’ > 1 such that 3d = ¢(N)d’ + 1 (the existence of d,d’ can be
shown by a constructive proof of Euclid’s algorithm to obtain the ged). Then,
we have,

(fn(y)=y* = y?Md+1 = o mod N.

The last equality follows from Euler’s Theorem, which states that y?(N) = 1
mod N for all y € Z}. Readers unfamiliar with elementary number theory
may follow any basic text (e.g. [18]); however, most of the material in this
chapter can also be understood just starting from Definition 5.2 without fully
understanding the discrete cube root problem.

Definition 5.1 — Discrete Cube Root Problem. Letp and q be two n-bit
primes of the form 3k +2, and let N = pq. Let o(N) = (p—1)(¢—1) and note
that 3 does not divide ¢(N). Given N and x € ZY as input, output y € Z%;,
such that y> = mod N.

Observe that if we can factorise N, the discrete cube root problem is easy to
solve. We can simply obtain ¢(N) and then find d such that 3d =1 mod ¢(N)
using Fuclid’s algorithm. However, factoring N is believed to be hard in general
and in fact, no polynomial-time algorithm that finds the discrete cube root is
known. Note that in this case, polynomial-time means polynomial in n, not N.
The discrete cube root problem is also widely believed to be computationally
intractable. We define the formal hardness assumption and use this to show
that there are concept classes that are computationally hard to learn.

Definition 5.2 — Discrete Cube Root Assumption (DCRA). For any
polynomial P(-), there does not exist any (possibly randomised) algorithm, A,
that runs in time P(n) and on input N and x, where N is the product of two
random n bit primes of the form 3k 4+ 2 and x is chosen uniformly at random
from Z%,, outputs y € Z% that with probability at least 1/P(n) satisfies y> =
mod N. The probability is over the random draws of p, q, x and any internal
randomisation of A.

Although this is not the main objective here, let us quickly observe how
this assumption may be used in public-key cryptography. The integer N is the
public key, and any message that can be encoded as an element of Z}; can be
encrypted simply by taking its cube modulo N. Under the discrete cube root
assumption, this cannot be decrypted, except if one has access to d, such that
3d =1 mod ¢(N). The integer d is the private key. The holder of the private
key generates two random primes, using which they can obtain d; they only
publicly release N.

INote that factoring can easily be done in time polynomial in N. However, the input
size is O(n) = O(log N) if the number N is provided in binary.

5.2. A LEARNING PROBLEM BASED ON THE DCRA 47

5.2 A learning problem based on the DCRA

Let us try to phrase the question of finding the cube root of € Z} as a
learning question. Let us suppose that we have access to a training sample,

S = {(:E1,y1)7 (x27y2):) (xmym)})

where yf’ =1x; mod N fori=1,...,m, and z; are drawn uniformly at random
from Z3};. The learning question is: Given such examples, can we obtain A :
Zy — 7y, such that for x drawn uniformly at random from Z%;, it holds with
probability at least 1 — 4, that P [(h(x))® # 2 mod N| < €?

How can these pairs (x;,y;) help? It is easy to see that they cannot help,
as it is easy to generate these pairs ourselves. This is because, although finding
the cube root is hard, finding the cube is easy. As fn is a bijection, we can
choose y; € Z% uniformly at random, and then pick z; = y? mod N from
Z}. Note that this implies that the distribution of x; is uniform over Zj,.
Thus, clearly access to random examples of the form (x;,y;) where x; is drawn
from the uniform distribution over Z% and y? = x; mod N, can’t help to find
h:Zy — Zy, that satisfies P [(h(z))® # 2 mod N| # ¢, under the DCRA.

This almost fits into our notion of PAC learning, except that the output of
the target function is not in {0,1}. This can be fixed rather easily. We know
that the output of f;,l is some 2n bit string. Thus, we can consider 2n different
target functions, (f&li)fgl, where f]_,,li is a function which outputs the i*" bit

of the function f J(,l. If we could learn all the function, f N}i to accuracy 5,

then we can reconstruct f&l to accuracy €. Thus, if learning f&l is hard, then

at least one of the boolean functions (fﬁ)?gl must also be hard to learn.

5.2.1 A hard-to-learn concept class

So far, we’'ve established that if we choose random n bit primes p and ¢ of the
form 3k + 2, there exists a boolean function, f](,li, such that if we get labelled
examples from a specific distribution D over 2n bit strings, viz. the uniform
distribution over bit representations of elements in Z};, we cannot output a

(polynomially evaluatable) hypothesis h, such that P,.p f&ll(:r) # h(z)| <

5. 1f we can identify a class, C, such that f]_,11 € Cs,, then this also implies
that the class C' is not PAC-learnable.

Let us try and understand what such a concept class could be. First, we
note that if d is known, there is a rather simple polynomial time algorithm
to output f&l(x). All we need to do is perform the operation z¢ mod N.
Naively computing z? is not efficient as d may be as large as ¢(N), i.e. d may
itself be 2n bit long. The first thing we need to ensure is that all operations
are repeatedly performed modulo V; this way none of the representations get
too large. The second is that we start by computing, z mod N, 22 mod N, z*
mod N,2z® mod N, ... ,:cQUOW(N” mod N, i.e. we compute 22" mod N for
i=0,1...,|logp(N)]|. To obtain ¢ mod N, we simply take the product of
the terms #2° mod N such that the i bit of d is 1. This shows that there
exists a circuit of polynomial size that computes fg,l where d is hard-wired into
the circuit itself. In particular, this also implies that there exist polynomial-size
circuits for fJ(,lZ for all i = 1,...,2n. This gives us the following result.

48 CHAPTER 5. CRYPTOGRAPHIC HARDNESS OF LEARNING

Theorem 5.3. There exists a polynomial P(-), such that class of concepts,
C, where C,, consists of circuits of size at most P(n), is not efficiently PAC-
learnable under the discrete cube root assumption.

5.2.2 Reducing the depth

We've established that under DCRA, PAC-learning polynomial-sized circuits
is hard. However, in a way, this is the weakest such result one could hope
for. Polynomial-sized circuits are in some sense the most expressive class that
we could ever hope to learn. The question is whether there exist significantly
smaller concept classes that are also hard to learn. We will outline a proof that
one such class, that of concepts representable by circuits whose depth is only
logarithmic in the number of inputs, is also hard to PAC-learn under DCRA.
The complete proof requires showing how low-depth circuits for repeated multiplication
and division can be designed; we will not see these constructions here as they
are quite involved. We will highlight the basic idea and point to the appropriate
references for complete details.

One of the reasons why the circuit described above is deep (it has depth

o

©(n)) is that it requires computing the powers x* mod N for each value of i =

0,1,...,[log(N)]; the reason being that 22" mod N can only be computed
after 22° mod N has been computed. However, notice that this computation
does not require the knowledge of d, the secret key, at alll So, if instead
of being given the input z, we were given a longer string of length (2n)? as
input, the concatenation of (z mod N,z? mod N,z* mod N, ... ,p2tieEe]
mod N), the question of learning flf[li would still remain intractable under
the DCRA, as the additional input jliSt represents something we could have
computed ourselves in polynomial time. Note that a hard to learn target
function and distribution now would involve having a distribution over strings
of length (2n)?, where the first 2n bits represent @ € Z% chosen at the
uniformly at random and the remaining bits are the powers, z2 mod N,
i =1,2,...,[logp(N)|. It is relatively straightforward to show that there
exists a circuit of depth O((logn)?) that when given as input (z mod N, x?
mod N, ..., 22" mod N) outputs fy'(z). This is because in order to
compute 2% mod N, we need to compute a product of at most 2n terms from
the input, which can be done pairwise in parallel to have multiplication depth
O(logn); however, multiplying two 2n bit numbers itself requires a circuit of
depth O(logn), yielding an overall circuit depth of O((logn)?). To show that
there is a circuit of depth O(logn) requires more work using the techniques
of Beame et al. [9]. To summarise, we have the following theorem.

Theorem 5.4. There exists a constant kg > 0, such that the class of circuits,
C, where C,, consists of circuits on n inputs with depth bounded by kglogn is
not efficiently PAC-learnable under DCRA.

5.3 Chapter Notes

The material covered in this chapter is presented in greater detail in the
textbook by Kearns and Vazirani [34, Chap. 6]. Further details, including
complete proofs and reductions showing cryptographic hardness of learning

5.3. CHAPTER NOTES 49

other concept classes such as finite automata appear in the original paper
by Kearns and Valiant [33]. The proof that the class of polynomial-size circuits
cannot be efficiently PAC-learnt if one-way functions exist, even when membership
queries are allowed (cf. Chap. 6.1), first appeared in the work of Goldreich et al.
[27]. The assumption that one-way functions exist is much weaker than the
discrete cube root assumption; indeed, it is hardly conceivable to have any
cryptography at all if one-way functions don’t exist. On the other hand, if
the discrete cube root assumption were to be untrue, it would simply call into
question the security of the RSA cryptosystem, but not rule out the existence
of other kinds of cryptosystems.

In general, making stronger assumptions leads to stronger hardness results
for efficient PAC-learning results. Recently, there has been work using different
kinds of assumptions, not directly related to cryptography, to establish hardness
of PAC-learning of much smaller classes such as DNF [22, 21, 20]. However,
it is worth bearing in mind that not all of these assumptions have been as
thoroughly tested; for example, recently Allen et al. [1] showed that one of the
assumptions made by Daniely et al. [22] was in fact not true.

Chapter 6

Exact Learning using
Membership and Equivalence
Queries

In the PAC learning framework, we receive labelled examples (x, ¢(x)), where
x is drawn from some distribution over the instance space X, and ¢(x) € {0,1}
is the target label. Thus far, we have focused on two different questions—
the first regarding sample complexity asks how much data is necessary and
sufficient for learning, the second regarding computational complexity asks
when learning algorithms run in polynomial time. For questions concerning
sample complexity, we have seen that capacity measures such as the VC dimension
give an answer that is essentially tight, in that the lower and upper bounds
on sample complexity in terms of the VC dimension match each other up
to constant and some logarithmic factors. On the question of computational
complexity, we can make a distinction between proper learning, where the
learning algorithm is required to output a hypothesis from the concept class
that is being learnt, and improper learning, where the learning algorithm may
output any polynomially evaluatable hypothesis. For proper learning, we
have already established that even relatively simple concept classes such as
3-TERM-DNF are hard to efficiently PAC-learn unless RP = NP. However, as
we have seen it may be possible to learn these classes if the learning algorithm
is allowed to output hypotheses from larger classes. In the case of improper
learning, we established in Chapter 5 that the class of log-depth circuits is not
efficiently PAC-learnable under the discrete cube root assumption.

In this chapter, we will consider a richer model of learning that allows
the learning algorithm to be more active. In addition to requesting random
labelled examples from the target distribution and concept, we’ll allow the
learning algorithm to pick an instance x € X and request the label ¢(x). We’ll
investigate this model in greater detail and show that there are concept classes
that can be efficiently learnt under this more powerful model of learning, that
are not efficiently PAC-learnable under the discrete cube root assumption.! For
stylistic reasons, it will be easier to define a new model of exact learning that
does not require the existence of a distribution over the instance space, and also

LAll hardness results of this kind that we can establish are conditional; they rely on
assumptions such as the discrete cube root assumption or something else.

o1

CHAPTER 6. EXACT LEARNING USING MEMBERSHIP AND
52 EQUIVALENCE QUERIES

allows us to drop the accuracy parameter, ¢ and the confidence parameter, ¢,
from consideration. Exercise 6.2 relates this model of ezact learning defined in
Section 6.1 to an enriched model of PAC learning. We will see two algorithmic
results in this new model in this chapter.

6.1 Exact Learning with Membership and Equivalence
Queries

We will consider learning algorithms that are allowed to make two different
types of queries: membership queries or value queries,> and equivalence queries.
As we did in the case of PAC learning in Chapter 1, it is convenient to define
the model in terms of oracles which may be queried by a learning algorithm.

Definition 6.1 — Membership (Value) Query Oracle, MQ(c). A membership
(or value) query oracle for a concept ¢ : X — {0,1}, MQ(c), when queried with
an instance © € X returns the value c(x).

Next we define the equivalence oracle which takes as input (a representation
of) h: X — {0,1} and either agrees that h is equivalent to the target concept
¢, or returns a “counterexample” z such that h(x) # c(x), a proof that ¢ and
h are not equivalent. Formally, we define:

Definition 6.2 — Equivalence Oracle, EQ(c). An equivalence oracle for
a concept ¢ : X — {0,1}, EQ(c), when queried with a representation of a
hypothesis, h : X — {0,1}, either returns equivalent indicating that h and
¢ are equivalent as boolean functions, or a counterexample x € X, such that

c(x) # h(z).

We can now define a model of exact learning using membership and equivalence
query oracles. The goal of the learning algorithm is to obtain a hypothesis h,
such that h(z) = c(z) for every x € X. Thus the distribution over the instance
space does not play a role, and indeed in the model we consider we will not have
access to any random examples at all. The goal of exact learning and the lack
of a target distribution over X renders the accuracy parameter, €, irrelevant.
As there is no inherent randomness, we will also not include the confidence
parameter, §. However, one could make the distinction between deterministic
learning algorithms and randomised learning algorithms, and in that case one
would have to reintroduce the confidence parameter, §, to account for the
failure of the algorithm due to its internal random choices rather than the
external randomness in the data. For simplicity, we will only define efficient
exact learning, however, in principle one could individually account for the
number of queries made by the learning algorithm and the its running time.
This would allow us to investigate tradeoffs between “information complexity”
and “computational complexity” of learning in the exact learning framework,
as we have done in the PAC learning framework.

2The name membership query originated from the fact that boolean functions may be
viewed as subsets of the instance space; the instances that evaluate to 1 are members of the
set and those that evaluate to 0 are not. Querying the value of a boolean function at a point
can be thought of as querying the membership of this point in this set. The name value
query may be more suitable as it can be applied to non-boolean functions as well.

6.1. EXACT LEARNING WITH MEMBERSHIP AND EQUIVALENCE
QUERIES 53

Definition 6.3 — Exact Learning with MQ + EQ. We say that a concept
class C is efficiently exactly learnable from membership and equivalence queries,
if there exists a polynomially evaluatable hypothesis class H, a polynomial p(-,-)
and a learning algorithm L, such that for all n > 1, for all ¢ € C,,, L when
given access to the oracles MQ(c) and EQ(c), and inputs n, size(c), halts in
time p(n,size(c)) and outputs a hypothesis h € H,,, such that for each x € X,,,
h(z) = c(x), i.e. h is equivalent to c. Furthermore, we required that every
query made by L to EQ(c) is with some h € Hy,.

The model of exact learning may seem quite far removed from the practice
of machine learning, and in some ways it is. However, it is designed to allow us
to isolate interesting results and design learning algorithms. The key addition
is the ability to make membership queries. From a point of view of practical
machine learning, one may imagine that we can identify expert human labellers
to provide responses that would simulate an MQ(c) oracle;® it is harder to
expect humans to be able to simulate an EQ(c) oracle. The latter however is
primarily defined for mathematical convenience. Exercise 6.2 shows how any
algorithm designed in the exact learning with MQ 4+ EQ framework allows one
to design a PAC learning algorithm provided the algorithm has access to the
membership oracle MQ(¢). Thus, in short if one is willing to settle for a PAC-
guarantee, i.e. err(h) < e with probability at least 1 — §, then access to the
equivalence oracle EQ(c) is not necessary. The notion of PAC+MQ learning is
formally defined below as Definition 6.4.

Definition 6.4 — PAC4+MQ Learning. Forn > 1, let C,, be a concept
class over instance space X, and let C =J,,~, Cn and X =J,,~, Xy. We say
that C' is learnable using the hypothesis class H in the PAC+MQ framework,
if there exists an algorithm L that satisfies the following: for every n € N, for
every concept ¢ € Cy,, for every distribution D over X, for every 0 < e < 1/2
and 0 < 6 < 1/2, if L is given access to EX(c, D) and MQ(c), and inputs n,
size(c), € and 8, L outputs h € H,, that with probability at least 1 — § satisfies
err(h) < e. The probability is over the random examples drawn from EX(c, D)
as well as any internal randomisation of L. The number of calls made to
EX(¢, D) and MQ(c) (sample complexity) must be bounded by a polynomial in
n, size(c), % and % and H must be polynomially evaluatable.

We further say that C is efficiently PAC+MQ learnable using H, if the
running time of L is polynomial in n, size(c), 1/€ and 1/4.

We will now focus on learning algorithms for two concept classes. In
Section 6.2, we show that the class of monotone DNF formulae is efficiently
exactly learnable using membership and equivalence queries. In Section 6.3,
we show how to learn languages that are recognisable by deterministic finite
automata (DFA), which is also the class of regular languages. In that section, it
will be convenient to move somewhat away from the specific learning framework
introduced above, but we will limit those changes and that discussion to that
section.

3Recently this has become easier using various online labelling services that allow
interaction with humans. There are of course still practical considerations, such as whether
one should expect examples constructed by learning algorithms to be classifiable by humans.
However, this distinction is not unlike many others when comparing theory and practice.
Willingness to ignore such considerations is a price that we must pay in order to be able to
develop the suitable theory.

CHAPTER 6. EXACT LEARNING USING MEMBERSHIP AND
54 EQUIVALENCE QUERIES

6.2 Exact Learning MONOTONE-DNF using MQ + EQ

In this section, we show that the concept class MONOTONE-DNF that is
not known to be PAC-learnable is in fact ezact learnable using membership
and equivalence queries. Exercise 6.1 asks you to show that the problem of
learning DNF formulae and MONOTONE-DNF formulae are equivalent (up
to polynomial time reductions) in the PAC Learning framework discussed in
Chapter 1. However, while the results in this section together with Exercise 6.2
show that MONOTONE-DNF formulae are learnable in the PAC learning framework
with access to an MQ oracle, the same is not known for learning DNF formulae.
In fact, a result of Angluin and Kharitonov [4] suggests that for learning
DNF formulae, access to a membership query oracle, MQ(c), does not help for
learning DNF formulae under certain plausible assumptions used in cryptography.
Taken together this suggests a separation with regards to polynomial time
learnability between the PAC learning framework, or the PAC learning framework
with access to an MQ oracle. However, the main evidence we have for the
hardness of learning DNF formulae is our inability to have come up with
a polynomial time learning algorithm.* Let us formally define the class of
concepts that are represented by monotone DNF formulae. A term is a conjunction
over the literals; we say that a term is monotone if the conjunction only contains
positive literals, i.e. literals that are variables (but not their negations). A
monotone DNF formula is a disjunction of monotone terms. The class MONOTONE-DNF
consists of concepts that can be expressed as monotone DNF formulae. Let ¢
be a monotone DNF formula that contains s terms. Any term T; that is part
of ¢ can be associated with a subset S; C [n], i.e. T; = /\ x;. We assume
i€5;

that ¢ is of the form that if T; and T} are both terms ojf ¢, with S; and S;
being the corresponding subsets of variables appearing in them, then it is not
the case that S; C S;. If it were the case, dropping 7 from ¢ would yield a
formula that represents the same boolean function. We will refer to this as the
minimal representation of ¢; it is not hard to show the uniqueness of minimal
representations for monotone DNF formulae, justifying the use of the definite
article “the”.

The class MONOTONE-DNF,, s over {0,1}" contains boolean functions that
can be represented as DNF formulae with at most s terms over n variables,
and where each term only contains positive literals. Then define,

MONOTONE-DNF = U U MONOTONE-DNF,, ..

n>1s>1

Alg. 6.1 presents an algorithm for learning MONOTONE-DNF using membership
and equivalence queries. We will prove the following theorem.

Theorem 6.5. The class MONOTONE-DNF is efficiently exactly learnable
using MQ + EQ.

4There have been recent attempts to establish the hardness of learning DNF formulae
based on assumptions from average case complexity theory. See Section 5.3 for some
discussion about this. The fact that parity functions on logn bits can be represented as
DNF formulae with at most n terms together with Theorem 7.6 in Chapter 7 establishes the
hardness of learning DNF formulae in the statistical query framework. This can be viewed
as further evidence of the hardness of learning DNF formulae.

6.2. EXACT LEARNING MONOTONE-DNF USING MQ + EQ 55

Algorithm 6.1: Learning MONOTONE-DNF using MQ + EQ oracles
1 Let ¢ =0 // Always predict false

2 Let s < false // Determine whether we have succeeded
3 while s = false do

4 Let ans be the response of EQ(c) to query ¢

5 if ans = equivalent then

6 S < true

7 break

8 else

9 Let x = ans be the counterexample

10 // 1t must be that p(x) =0 and ¢(x) =1

11 Let S={i| z; =1}

12 for j € S do

13 x' +—x

14 2 0

15 Let y be response to MQ(¢) with query x’
16 if y =1 then

17 X x

18 T {i|x;=1}

19 Y~V /\ Z;
JET
20 Output: Hypothesis ¢

Proof. Let ¢ be the target monotone DNF formula. Let n denote the number
of variables and let s be the number of terms in the minimal representation of
¢, i.e. there isn’t any term in c¢ that implies another. The learning algorithm
is allowed running time that is polynomial in n and s.

We argue that every iteration of the while loop on Line 3 of Alg. 6.1 finds
a term T that is present in the target monotone DNF formula ¢, that we have
not yet included in ¢. First, we establish that if p(x) = 1 at any stage in
the algorithm, then ¢(x) = 1. Clearly, it is the case at the beginning of the
algorithm; we’ll show that if it holds at the beginning of the while loop (Line 3
of Alg. 6.1), then it continues to hold at the next iteration of the while loop.

Since, p(x) = 1 implies ¢(x) = 1, any counterexample x that establishes
that ¢ # ¢ must be such that ¢(x) =1 and ¢(x) =0. Let P = {j | Tj(x) =1}
denote the indices of terms in the minimal representation of ¢ that are satisfied
by x. As ¢(x) = 1, we know that P is non-empty. We claim that when the for
loop on Line 11 of Alg. 6.1 ends, it is the case that there is exactly one index
j in P is such that Tj(x) = 1, where x is now the assignment updated in the
for loop. Clearly, that there is at least one such index j is ensured by the if
statement on Line 15, as x will never be modified to be such that ¢(x) = 0. On
the other hand, if there were two such indices, say j and j', then let ¢ € [n] be
the smallest index such that z; is a literal in 7}, but not in 7}/. Setting z; =0
would have continued to have satisfied T}, and hence this is what would have
happened in the if clause of Line 15. A similar argument also shows that all
bits of x that could have been set to 0 and still have allowed x be a satisfying

CHAPTER 6. EXACT LEARNING USING MEMBERSHIP AND
56 EQUIVALENCE QUERIES

assignment of some term 7T} for j € P, would have been set to 0. Thus, Line 18
finds a new term that appears in the minimal representation of ¢, but is not
(vet) in ¢ and adds it to . This also shows that at the end of the while loop,
it continues to be the case that ¢(x) = 1 implies ¢(x) = 1. Since each new term
added is a term that is actually a term in the minimal monotone DNF formula
representing c, this can happen at most s times, after which the algorithm has
exactly identified c.

Thus, the algorithm makes at most s+ 1 queries to EQ(c), and at most n- s
queries to MQ(c). Clearly, the running time of the algorithm is polynomial in
n and s. O

6.3 Learning DFA

In this section, we will consider the problem of learning Deterministic Finite
Automata (DFA). We will deviate from the notation introduced in Definition 6.3
slightly, in that we will not require the input instances to be all strings of the
same length and the output hypothesis will itself be a DFA which will recognise
a language over some finite alphabet 3.

We will introduce some notation that will be primarily restricted to this
section and the corresponding exercises. Let € denote the empty string which
has length 0 and let ¥ be a finite alphabet. For i > 0, we denote by ¢ finite
strings of length i using the alphabet X, and let ¥* denote the set of finite

strings over 3, i.e.,
=[x

i>0

We refer to elements of 3* as strings or words. Given two words u,v € X*, the
word uv denotes the word obtain by concatenating the two strings.

A deterministic finite automaton is defined by a 5-tuple, (@, %, 4, qo, F),
where @) is a finite set of states, 3 is the finite alphabet, § : @ x X — @
is the transition function, gy € @ is the starting state, and F' C @ is the
set of accepting states. A DFA can be represented by a directed graph with
nodes denoting the states and labelled directed edges representing the transition
function. The label associated with an edge is a letter in ¥ and the (directed)
out-degree of every node is exactly |X|. The starting state, go is marked with
an incoming arrow unconnected to any other node, and the accepting states
are marked by using nodes with double circles. Figure 6.1 shows an example
of a DFA; the DFA accepts words over the alphabet {0,1} where the number
of times 1 appears is an integer that is 3 modulo 4. We will use this example
to illustrate the algorithm in this section.

6.3.1 Access Words and Test Words

Let L be the language over ¥ recognised by some DFA A. Let |A| denote the
number of states of A and suppose that A is the smallest such DFA recognising
L. The learning algorithm will maintain a pair of sets, (Q,T), where Q C ¥*
contains access words and T' C ¥* contains test words. We define the notion
of T-equivalence given a non-empty 7' C >*.

6.3. LEARNING DFA 57

Figure 6.1: A DFA that accepts words in {0, 1}* in which the number of times
1 appears is 3 modulo 4.

Definition 6.6. Given a non-empty set T C X* and a language L, we say
that two words v,w € X* are T-equivalent for L, denoted by v =7 w, if vu € L
if and only if wu € L for every u € T.

It is easy to see that T-equivalence is indeed an equivalence relation as all
the three properties: reflexivity, symmetry, and transitivity, are immediate. As
the target language L we are seeking to learn is fixed, we will not make any
dependence on L explicit. However, implicitly, all notions defined also depend
on the language L.

We next define what it means for a pair (Q,T) of access and test words to
be separable and closed.

Definition 6.7. A pair (Q,T) of access and test words is separable if there
are no two words q,q' € Q such that q =7 q'.

Definition 6.8. A pair (Q,T) of access and test words is closed if for every
q € Q and every a € X, there ewists some ¢' € Q, such that qa =7 ¢'.

6.3.2 Constructing a Hypothesis Automaton

Suppose (Q,T) is a pair of access and test words and further suppose that
¢ € @ and that the pair (Q,T) is both separable and closed. Then, we can
construct hypothesis automaton Aqg 1), defined to be (Q, %, 4, qo, F'), where

e 0(q,a) = ¢’ where ¢ is the unique word in @ such that ga =1 /. The
existence of ¢’ follows from the fact that (Q,T) is closed; the uniqueness
follows from the fact that (Q,T) is separable.

® go = €.

o« F={qe€ Q] qe€ L} Notethat F can easily be determined using access
to the membership oracle, MQ for L.

Figure 6.2 shows the construction of the corresponding automata A r)
whenever the pair is separable and closed in the simulation of Algorithm 6.2.

6.3.3 Properties of Access and Test Words

We now prove a few lemmas that will help us prove the correctness and
termination in polynomial time of Algorithm 6.2.

CHAPTER 6. EXACT LEARNING USING MEMBERSHIP AND
58 EQUIVALENCE QUERIES

Lemma 6.9. Suppose that A is an automaton with the minimum number
of states recognising L. Let (Q,T) be a pair of access and test words that is
separable. Then |Q| < |A].

Proof. Suppose for the sake of contradiction |@| > |A|, then there must exist
two words ¢, ¢’ € @ such that ¢ and ¢’ reach the same state in the automaton
A. However, this means that for any v € X*, qu and ¢’u will reach the same
state in A. This must mean that ¢ =r ¢/, a contradiction. O

The next lemma shows that provided the pair (Q,T) is separable, if it is
not also closed, we can add some new word ¢’ so that (Q U {¢'},T) remains
separable.

Lemma 6.10. Let (Q,T) be a pair of access and test words that is separable,
but not closed. Then there exists ¢ ¢ Q, such that (Q U {q'},T) is separable.
Furthermore such a ¢’ can be identified in time polynomial in |Q|, |T| and ||
using access to the membership oracle, MQ, for L.

Proof. Given set T and any set of words W, we observe that whether or not
any two words in W are T-equivalent can be determined by making |T| - [W]|
membership queries. We can consider the set of words Q U {qa | ¢ € Q,a €
¥} which has size no greater than |Q|- (|X]| + 1). Thus, by making at most
|Q| - |T| - (JX] + 1) queries, and in time polynomial in |Q|, |T'| and |X|, we can
find a ¢’ € @, such that (Q U {q¢’'}, T) remains separable. O

Finally, the next lemma shows that if (Q,T') is separable and closed, and
if the resulting automaton, A(g 1) is not identical to the target automaton A,
then using a counterexample, w € X*, we can find words ¢’ and ¢’, such that
(QU{¢'}, T U{t'}) remains separable.

Lemma 6.11. Suppose (Q,T) is separable and closed. If w € X* is such
the behaviour of Aq,r) is different from the behaviour of A on w, i.e. w
is a counterexample, then in time polynomial in |w| and using at most |w]
membership queries, we can identify ¢ € Q andt’, such that (QU{¢'}, TU{t'})
is separable.

Proof. Let n = |w| and we consider the state transitions of A7) on w. We
thus have,
qo 2 qr g B B g TGy T g,

Above the states ¢;, represented by words in @), may not be distinct, so we use
the pair (g;,7) to distinguish possible multiple occurrences of the same state.
We say that the pair (g;, 1) is correct if g;w;q1 -+ w, € L if and only if w € L.
The fact that go = € implies that (go,0) is correct, and the fact that w is a
counterexample implies that (g,,n) is not correct. Thus, there must be some
i €{0,...,n — 1}, such that (g;,7) is correct and (g;4+1,¢ + 1) is incorrect. We
can identify one such ¢ by making no more than |w| membership queries.

Having identified such an 4, let ¢’ = ¢;w;+1 and let ' = w;1o - - - wy,. Setting
Q' =QU{¢} and T = T U {t'}, in order to show that (Q’,T") is separable,
we need to show that no two words in Q" are T’-equivalent. Obviously, since
T C T’ and since (Q, T) was separable, no two words in @ can be T’-equivalent.

6.3. LEARNING DFA 99

Also, for the same reason, the only word ¢ € @ that can possibly be T'-
equivalent to ¢’, is ¢;11. This is because we know that ¢w; 11 =1 gir1, SO
if gswit1 =7 ¢;, then ¢; =r ¢i41, which can only happen if j = i + 1 by
separability of (@, T). However, the addition of ¢’ to T to obtain 7", ensures
that gw;+1 Z1 git1, as (qg;,1) was correct and (g;+1,% + 1) was not. Thus,
(Q',T") is separable as required. O

6.3.4 The L* Algorithm

Algorithm 6.2: L*: Learning DFA using MQ + EQ oracles

1 Let Q « {e}, T < {&}
2 while true do
3 while (Q,T) not separable and closed do

4 Use Lemma 6.10 to obtain ¢’

5 Q<+ QU{d}

6 // (Q,T) now separable and closed

7 Let A(g 1) be hypothesis automaton
8 Let ans < EQ(Aq.1))

9 if ans = equivalent then
10 break
11 else
12 Let w € ¥* be the counterexample
13 Use Lemma 6.11 to obtain ¢’, ¢/
14 QR+ QuU{d}
15 T+ TU{t'}

16 Output: Hypothesis A g 1)

Algorithm 6.2 shows the L* algorithm of Angluin [3]. Figure 6.2 shows the
simulation of this algorithm when the target language is the one recognised by
the automaton in Figure 6.1.

The main result we prove here is the following.

Theorem 6.12. Let L C ¥* be a regular language over ¥ and let A be an
automaton with the fewest states recognising L. Algorithm 6.2 when given
access to a membership oracle, MQ, and equivalence oracle, EQ, for L, outputs
a hypothesis automaton that recognises L. The running time of the algorithm is
polynomial in |A|, & and n, where n is the length of the longest counterexample
returned by EQ.

Proof. We first prove the termination condition. Line numbers referred to are
the ones in Algorithm 6.2. We note that as long as (Q,7T) is not separable
and closed, the loop in Line 2 increases the size of |@Q| by at least 1. Likewise
if we are in the else part on Line 10, then the size of |Q| increases by at
least 1. Lemma 6.9 shows that the size of |Q| < |A], as a result the algorithm
must terminate correctly with automaton A g 7y exactly recognising the target
language L.

The running time argument follows from Lemma 6.10 and Lemma 6.11. [

CHAPTER 6. EXACT LEARNING USING MEMBERSHIP AND

60 EQUIVALENCE QUERIES

| State Action

0,1
L1 Q={e}, T={e} %
2 | Receive counterexample 111 Set Q =QU{1},T=TU{l11}

0 0

3 1 Q={e1},T ={e, 11} %

1
4 | Receive counterexample 111 Set Q =QU{11},T=TU{1}

Q=1 1,11}, T ={e, 1,11} . _
% | Make (Q,T) closed Set Q =QU{I11}, T =T
0 0 0 0

6 | Q={e1,11,111},T = {¢,1,11} e

Figure 6.2: Simulation of the L* algorithm (Alg. 6.2) with the target
automaton from Fig. 6.1

6.4 Exercises

6.1 The class MONOTONE-DNF,, ; over {0,1}" contains boolean functions
that can be represented as DNF formulae with at most s terms over
n variables, and where each term only contains positive literals. Then
define,

MONOTONE-DNF = U U MONOTONE-DNF,, ..

n>1s>1

The class DNF is defined analogously, except that the literals in the terms
may also be negative. An efficient learning algorithm is allowed time
polynomial in n, s, % and %. Show that if the class MONOTONE-DNF is
efficiently PAC-learnable, then so is DNF.

6.2 Let C be a concept class that is exactly efficiently learnable using membership
and equivalence queries. We will consider the learnability of C' in the
standard PAC framework. Prove that if in addition to access to the
example oracle, EX(¢, D), the learning algorithm is allowed to make
membership queries, then C'is efficiently PAC-learnable. Formally, show
that there exists a learning algorithm that for all n > 1, ¢ € C,,, D over
Xn, 0<e<1/2and 0 < § < 1/2, that with access to the oracle EX(¢, D)
and the membership oracle for ¢ and with inputs €, § and size(c), outputs
h that with probability at least 1 — § satisfies err(h) < e. The running
time of L should be polynomial in n, size(c), % and % and the h should
be from a hypothesis class H that is polynomially evaluatable.

6.5. CHAPTER NOTES 61

6.5 Chapter Notes

The L* algorithm was first presented by Angluin [3]. The presentation we have
used is largely based on [34, Chap. 8]. We have not attempted to give an
efficient implementation beyond being polynomial time, however, considerable
savings can be achieved by moving away from naive implementations of the
lemmas in Section 6.3.3. For details the reader may refer to [34, Chap. 8].

In Chapter 5, it was shown that the class of functions that can be represented
using circuits of depth O(logn) are not efficiently PAC learnable under the
DCRA. Through a sequence of reductions, it can be shown that DFA, even
ones where all accepting paths have a fixed length n, cannot be efficiently
under the DCRA. Thus, the result in Section 6.3 shows that the PAC+MQ
model is strictly more powerful from the point of view of efficient learning
under the DCRA.

Theorem 6.5 shows that MONOTONE-DNF is efficiently exactly learnable
using membership and equivalence queries, and hence also efficiently PAC4+MQ-
learnable. On the other hand, there is no known algorithm for PAC-learning
DNF even when membership queries are allowed. In fact, under a suitable
cryptographic assumption, it has been shown that PAC-learning DNF with or
without membership queries is equivalent [4]. In the absence of membership
queries, Exercise 6.1 shows that learning DNF can be reduced to learning
MONOTONE-DNF. These observations provide further evidence that allowing
membership queries is powerful, in the sense that concept classes that are likely
not efficiently learnable in the PAC framework without membership queries,
become efficiently learnable when membership queries are allowed.

Chapter 7

Statistical Query Learning

The learning frameworks we’ve studied so far have assumed that the learning
algorithms have access to perfectly labelled data. This is clearly not an accurate
reflection of what one would encounter when accessing data in the real-world.
In this chapter, we shall study a model that seeks to capture noise or imperfections
in the observed data. Some of the learning algorithms we’ve studied are not
robust to noise; we’ll study modifications to these algorithms that make them
robust to noise. For some concept classes, there is evidence that while these are
learnable in the absence of noise, there may not exist any efficient algorithms
for learning these classes in the presence of noise.

7.1 Random Classification Noise Model

We begin by studying what can be considered as a uniform label noise model.
The data we receive has labels flipped independently with probability 7. Let
us define the example oracle with random classification noise formally.

Definition 7.1 — RCN Example oracle, EX"(¢, D). An example oracle
with random classification noise rate n, for a concept ¢ over instance space X
and for distribution D over X, denoted by EX" (¢, D), when queried does the
following: x € X is drawn according to the distribution D, independently of
all other random choices, with probability 1 — n, it returns (x,c(x)) and with
probability n returns (x,1 — ¢(x)).

Before we study algorithms that can be implemented using such a noisy
example oracle, let us make a couple of observations. The noise is assumed to
be independent in each example; the case when noise could be correlated or a
function of the instance can be much harder to deal with. Clearly, no learning
algorithm can succeed when the noise rate, 7, equals %, as the labels have
nothing to do with the target concept in that case. We’ll assume that n < %; if
n > %, we are just trying to learn the flipped concept. The measure of interest
is 1 — 2n: the smaller the value, the harder the learning problem. Thus, we
will allow the sample complexity and running time of our algorithms to depend
polynomially on ﬁ The requirement for the output hypothesis h remains
exactly the same as in the PAC-learning framework, we want err(h;c, D) =
Pxp [h(x) # c(x)] < €, ie. we are comparing ourselves to the true target

63

64 CHAPTER 7. STATISTICAL QUERY LEARNING

function (not with a noisy target). Let us formally define the model of PAC-
learning in the presence of random classification noise.

Definition 7.2 — PAC Learning with Random Classification Noise. For
n > 1, let C, be a concept class over instance space X, and let C = Un>1 Ch
and X =J,;~; Xn. We say that C is PAC learnable with Random Classification
Noise (RCN) using the hypothesis class H if there exists an algorithm L that
satisfies the following: for every n € N, for every concept ¢ € C,, for every
distribution D over X,,, for every 0 < e < 1/2, for every 0 < 0 < 1/2, and for
every 0 < n < 1/2, if L is given access to EX"(c, D) and inputs n, size(c), e,
0, and ng, such that 0 <n <mng < 1/2, L outputs h € H,, that with probability
at least 1 — & satisfies err(h;c, D) < €. The probability is over the random
examples drawn from EX"(c, D) as well as any internal randomisation of L.
The number of calls made to EX(c, D) (sample complexity) must be bounded
by a polynomial in n, size(c), %, % and ﬁ and H must be polynomially
evaluatable.

We further say that C' is efficiently PAC learnable with RCN using H, if
the running time of L is polynomial in n, size(c), 1/e, 1/§ and 1/(1 — 2nq).

In the definition above, instead of the (perfect) example oracle EX(c, D)
introduced in the PAC learning framework, the learning algorithm has access
to the noisy oracle, EX"(¢c, D). The learning algorithm is also given as input a
parameter 79 < %, which is an upper bound on the noise rate. It is straightforward
to show that this input, 7, is not really required, the learning algorithm can
simply try all possible upper bounds in a systematic way and then test which
of the produced hypotheses is the (almost) best one (see Exercise 5.4 in [34,
Chap. 5)).

7.1.1 Learning Conjunctions

Let us revisit one of the the first algorithms we studied, Algorithm 1.1 to learn
CONJUNCTIONS from Section 1.3, when there was no noise in the data. The
algorithm starts with a hypothesis consisting of a conjunction of all 2n literals;
thus it begins with a hypothesis that always predicts 0. Then for every positive
example (x,1), it deletes the literals present in its hypothesis that cause this
example to be classified as negative. As long as sufficiently many examples are
used, it is guaranteed that this algorithm outputs a hypothesis that has error
at most €.

This algorithm does not work when there is noise in the data. For instance,
if an example that was a negative example was observed with label 1 (due to
noise), the algorithm may drop several literals from the hypothesis that are
actually required. The decisions made by the algorithm are not robust as they
are based on a single example. We will design a more robust algorithm for
learning conjunctions. To begin with, let us continue to assume that the data
we receive is noise-free; later, we’ll discuss how this more robust algorithm can
also be used when the data is noisy.

Let ¢ be the target conjunction and let ¢ be a literal that appears in c.
We will use the notation £(x) = 1 to indicate that the literal ¢ evaluates to 1
(true) on the instance x € X. For any literal ¢ that is present in the target
conjunction, it holds that Pxp [((x) =0 A c(x) = 1] = 0. We would like to
identify all such literals and put them in the output hypothesis. However, the

7.1. RANDOM CLASSIFICATION NOISE MODEL 65

literals that are truly harmful are those that would cause us to make lots of
errors. Let us make this idea more concrete.

o A literal ¢ is harmful if Pxp [({(x) = 0Ac(x) = 1] > &

— 8n

Let h be a hypothesis that is a conjunction of all literals that are not
harmful. By definition, literals that appear in ¢ are not harmful so they all
appear in h. Thus, we are once again in the scenario there h(x) = 1 implies
¢(x) = 1. So the only possible errors occur when h(x) = 0 A ¢(x) = 1. Any
such error must be due to some literal, ¢, and the corresponding event ¢(x) =
0 A ¢(x) = 1. Thus, we have,

err(h) = Pxop [A(x) = 0 A c(x) = 1]

If h(x) = 0, but ¢(x) = 1, it must be due to a literal ¢ that is not harmful
which was added to h.

err(h) < Y Pyup [((x) =0Ac(x) = 1]
£ not harmful
€

<2n- o = €

We haven’t said how exactly to find significant and harmful literals; however,
it is easy to see that they could be identified almost correctly with high
probability. The size of the sample required to guarantee correctness can be
obtained using Hoeffding’s Inequality (A.2), and it is polynomial in n, % and
%. More precisely, what this boils down to is using the observation that we can
get an empirical estimate, D, of the true probability, p, of some event with the
guarantee that with probability at least 1 — ¢’ |p — p| < 7, by using a sample
of size © (25 log ;). The events in consideration are (£(x) =0 A ¢(x) = 1) for
all possible £. Ignoring the failure case whose probability is bounded by ¢’, we
know that if p < €/(8n), then p < ¢/(8n) + 7. Say a literal is approzimately
harmful if p > €/(8n); clearly if a literal is not approximately harmful, it is also
not harmful if 7 < ¢/(16n). On the other hand if 7 < ¢/(16n) any literal that
is not deemed to be approzimately harmful is also not in the target conjunction
¢. Thus, provided we chose 7 < ¢/(16n), if the algorithm outputs a hypothesis
h that is a conjunction of all literals that are not approximately harmful, we
still have err(h) < e with high probability. We will choose ¢’ = 6/(2n) so that
even after considering a union over all failure events, the probability of the
combined failure event is bounded by 0. From now on, we will avoid spelling
out such intricacies in full detail every time; it will be assumed that the reader
can fill in the details. Compared to Algorithm 1.1 from Section 1.3, this new
algorithm is more robust. A single example is not used to determine whether
or not a literal should be present in the target hypothesis; this decision is made
using aggregate statistics.

It is not at all hard to show that if we know the noise rate 7, these probability
estimates can be obtained even when receiving samples from EX7(c, D), rather
than EX(¢, D). The sample complexity (and hence also the computational
complexity) will be worse by a factor of 1/(1 — 2n)2. However, rather that
showing how these estimates can be obtained with only access to EX"(c, D) in
each case separately, we will study a model that formalises this idea of using

66 CHAPTER 7. STATISTICAL QUERY LEARNING

statistics to design learning algorithms and show that any algorithm in this
framework can always be simulated with access to the noisy example oracle,
EX"(¢, D).

7.2 Statistical Query Model

In the statistical query model, the learning algorithm is not given any access
to examples at all, but instead is given access to a statistical query oracle,
STAT (¢, D). As was the case in PAC-learning, let X be the instance space,
¢: X — {0,1} the target concept, and D the target distribution over X. A
statistical query is a tuple, (x,7), where x : X x {0,1} — {0,1} is a boolean
function that takes as input an instance x € X and a bit b € {0,1} (one of
the two possible labels of the instance), and 7 is the tolerance parameter. The
response of the oracle, STAT (¢, D), to the query (x,7), is a value ¥ € [0,1],
such that,

X@D (x(x,c(x))] —v| < 7.

Learning Conjunctions using Statistical Queries

Before, we formally define the notion of learning using statistical queries, let us
see how the algorithm we described above can be implemented using statistical
queries. The main task was to identify literals that are approximately harmful.
This can be done easily, for a literal, ¢, define the query function, y, : X X
{0,1} — {0, 1}, as follows:

1 ifé(x)=0and b=1
’ b) =
Xe(x,9) {0 otherwise

Thus, x¢(x,b) = 1(¢(x) =0A b= 1), and hence,

ED [xe(x,¢(x))] =Pxp [€(x) =0 A c(x) =1].

X~

We set the tolerance parameter 7 = 15-. Let ¥y be the response received

from STAT (¢, D) to (x¢, 15;;), then we treat all literals for which v, > ¢ as
approximately harmful. This guarantees that any literal that we call as not

approximately harmful satisfies

Pewp [€(x) =0 A c(x) =1] < Ton-

Thus, the STAT (¢, D) oracle can be used to identify approximately harmful
literals. The exact details of choosing the tolerance values and completing the
proof are left as an exercise.

7.2.1 Statistical Query Learnability

Let us formally define the notion of learning with statistical queries.

Definition 7.3 — Efficient Statistical Query (SQ) Learnability. Let C
be a concept class and H a polynomially evaluatable hypothesis class. We say

7.2. STATISTICAL QUERY MODEL 67

that C is efficiently learnable from statistical queries using H, if there exists a
learning algorithm, L, and polynomials p(-,-,-), q(-,-,), and r(-,-,+), such that,
for all n € N, for every target concept ¢ € C,,, for every distribution D over
Xp, for 0 <e < %, L with access to the statistical query oracle, STAT (¢, D),
and inputs n, € and size(c), satisfies the following:

e For any query (x,T) made by L, the predicate x can be evaluated in time

q(n,size(c), 1) and L is bounded by r(n,size(c), L)

e L halts in time bounded by p(n,size(c), %)

e L outputs h € H, such that err(h;c, D) < e

The confidence parameter, §, doesn’t appears in the definition above; this
is because we require the statistical query oracle, STAT (¢, D), to return a
value that is within the tolerance with probability 1. We could extend the
definition of statistical query learnability to allow randomised algorithms, in
which case the confidence parameter would be required to bound the failure of
the algorithm itself. Let us first establish the relatively simple result that any
concept class that is efficiently SQ-learnable is also efficiently PAC-learnable.
We'll only provide a sketch of the proof, but the main idea is that with access
to the example oracle, EX(¢, D), the algorithm can simulate STAT (¢, D) with
high probability.

Theorem 7.4. If C is efficiently SQ-learnable using H, then C is efficiently
PAC-learnable using H .

Proof. Let A be the algorithm that learns C' using H in the SQ model. Let k be
an upper bound on the total number of queries made to the STAT (¢, D) oracle
by A. We simulate the algorithm A; every time a query (x, 7) is made, we draw
m = ©(; log &) fresh examples from EX (¢, D), say (x1, ¢(x1)), - - -, (Xm, ¢(Xm)),
and return - 37" x(x;, ¢(x;)). Using the Hoeffding’s Inequality (A.2), we

know that with probability at least 1 — %, the following holds:

erE:D [X(X, c(x))] <T.

When A halts, we simply output the hypothesis h that was produced by A. By
using the union bound and as A makes at most k queries, we know that with
probability at least 1 — §, all simulations of the statistical query oracle used to
provide responses to A are valid, and hence the output hypothesis h satisfies,
err(h;c, D) < e. O

The more surprising result that we prove next is that the statistical query
oracle can be simulated even with access to noisy examples, i.e. the oracle
EX" (¢, D). This automatically implies that all concept classes learnable in the
SQ framework are also PAC-learnable with random classification noise. This
formalises the intuition that robust algorithms that make decisions on the basis
of statistics rather than individual examples can be adapted to work with noisy
data.

68 CHAPTER 7. STATISTICAL QUERY LEARNING

7.2.2 Simulating STAT (¢, D) using EX"(c, D)

In order to make the mathematical manipulations simpler, we’ll assume that
the output of boolean functions are in the set {—1,1}, rather than the more
common {0,1}. For reasons that will be clear later, we’ll map 0 to 1, and 1 to
—1. We will also require that the query, x, is defined as, x : X x {—1,1} —
{—1,1}. Note that this still allows us to compute, Px.p [x(x,c(x)) = —1],
which is what we want as part of the statistical query learning framework,
rather easily. To see this, observe that:

Pep [X(x,c(x)) = —1] = XLED [1_X(2X’C(X))} ; ;wa

Furthermore, for any query, x : X x {—1,1} — {—1,1}, we can express this as
follows:

E [x(xe(x)] = E [x(x1)-Ue(x) = D] + E_[x(x, 1) 1(e(x) = =1)]

x~D X

As c(x) € {-1,1}, 1(c(x) = 1) = H%(x); similarly, 1(c(x) = —1) = 17%(")
Thus,

14 c(x 1—c(x
B, Ixet)] = B e)) - 2520
E[x(xe()] = 5 (B [x(x D] + _E_[x(x,~1)
+ B [Xx D] = B, [xx~1el)])

We observe that x(-, 1) and x(-, —1) are simply functions from X — {—1,1}.
The first two expectations on the RHS above don’t depend on the target
concept at all; the last two compute the correlation between some function
from X — {—1,1} and the target. Formally, we allow the learning algorithm
to make two kinds of queries—target independent and correlational. A target-
independent query is of the form (¢,), where ¢ : X — {—1,1} and 7 € (0,1),
and it receives an answer vy, from STAT (¢, D), such that \XED [¥(x)] —0y| < 7.

A correlational query is also of the form (¢, 7), where ¢ : X — {-1,1} and
7 € (0,1); in this case, however, the response ¥, of STAT(c, D), satisfies,

]ED [p(x)c(x)] =0, < 7. Thus, it suffices to show that we can simulate
X~

responses of STAT (¢, D) to target-independent and correlational queries using
the noisy oracle EX"(¢, D). For target-independent queries, the label noise is
irrelevant, as the response to the query doesn’t depend on the target at all.
We only need examples drawn from the distribution D; these are obtained
by simply ignoring the labels of the observed data. We will now show how
to simulate the responses of STAT (¢, D) using examples from EX"(c¢, D) for
correlational queries.

Simulating responses to correlational queries

Let B(n) denote a random variable taking values in {—1, 1}, which takes the
value 1 with probability 1 — 7 and —1 with probability n. Let (x, ¢(x)) denote

7.2. STATISTICAL QUERY MODEL 69

a random example drawn from EX(c, D), let & ~ B(n) be a random variable
independent of everything else, then (x,c(x)&) is distributed as a random
example drawn from EX"(¢, D). Consider the following:

0)4] = 5, |, B, (et

E
(x,y)~EX"(c,D) x~D | &c~B(n)

= E lg@(x)c(x) E [&]| As & is independent

x~D Ex~B(n)

=1 =2 E [p(x)c(x)]

Suppose we draw m examples from EX"(¢c, D), say (x1,¥1),---, (Xm,Ym) and
let U= -L 3" ©(x;)yi. Let m be chosen to be large enough such that

v — E x <

0= By (PP 1 <1
with probability at least 1 —¢§. Suppose that we don’t have access to the exact

value of 1, but only to some 77 < 1y (where 7 is an upper-bound on the noise
rate) such that |7 — n| < A/2. We have the following;:

0
s B, e
E
v LR (x,y)~EX7 (¢, D) oG]
1-2n 1-2n 1-2n 1-—2n
1 1 1
< |9 - — o — E
=P ‘1 -2y 1- 277‘ e 2 |" T @y~ [e(@)]

< 2A + T1
- (1 — 2’)’}0)2 1—2n

If A and 7 are chosen so that the RHS above is at most 7, then we have
successfully simulated the response of the statistical query oracle. This can be
achieved, for instance by setting A = 7(1 —2n9)?/4 and 7, = 7(1 — 219)/2.
Choosing a sample size m that is polynomially large in n, ﬁ, + and 1
suffices to achieve this with high probability. In order to find a suitable 7, we
simply run the algorithm with all possible values of 7 = iA for i = 1,..., | R].
Clearly, one of the values among these satisfies the properties that we require of
7. When we run the procedure for that particular value, we will obtain a h that
with high probability satisfies, err(h;c, D) < e. We obtain hy, hg,.. .,hL%oJ,
and we know that with high probability at least one of theses hypotheses is
good, in that it has error at most e. In order to identify the best (or good
enough) hypothesis from this set, we can simply test each of them on a fresh
sample drawn from EX"(c, D). Simply using the hypothesis h that has the
smallest empirical error does the trick. This is because for any h, we have,

Px,y)mExn(e,0) [(X) £ y] = (1 =) - Pxap [A(x) # c(x)] + 11+ Pxap [A(x) = c(x)] .
=(1—mn)-err(h;e,D)+n-(1—err(h;,c, D)
=n+ (1 —2n)err(h;c, D).

70 CHAPTER 7. STATISTICAL QUERY LEARNING

So even if we evaluate empirical error estimates of hq, ..., hl%oj using EX"(¢, D),
provided we pick a large enough sample, using Hoeffding’s inequality (A.2), it
can be shown that picking h; that has the least empirical error estimate suffices.

We'’ve described all the main ingredients of the proof of the following
theorem. Writing the proof in full detail is left as an exercise to the interested
reader.

Theorem 7.5. If C is efficiently SQ-learnable using H, then C is efficiently
PAC-learnable with random classification noise using H.

7.3 A hard-to-learn concept class

In Section 7.1.1, we designed an algorithm for learning conjunctions using only
statistical queries. In Exercise 7.1, you are asked to design an SQ algorithm
for learning axis-aligned rectangles in the plane. In fact, most of the efficient
PAC learning algorithms we’ve seen so for, those for learning decision lists,
3-CNF formulae, etc. have analogues that use only statistical queries. Given
this one may wonder, if in fact, every concept class that is PAC-learnable is
also SQ-learnable. We answer the question in the negative. We show that the
class PARITIES is not efficiently learnable using statistical queries. Formally,
we will prove the following theorem in this section.

Theorem 7.6. Any algorithm for learning PARITIES using statistical queries
with € = 1—10, when learning a target from PARITIES,,, and which makes queries
of the form (x,T), where T > 7o for each query, must make (73 - 2") queries.

Before we sketch a proof of the result, let us look at the statement of the
theorem in greater detail. Efficient SQ learnability requires that the tolerance
parameter for any query not be too small. In particular for efficient learning
parities to accuracy %, we require that % be bounded by a polynomial in n
(in the case of parities size(c¢) = O(n)). The statement of the theorem implies
that if the inverse tolerance for all queries is bounded by some polynomial
in n, the algorithm must make 2" queries! In particular, this rules out
a polynomial time algorithm for learning PARITIES in the statistical query
model. Furthermore, observe that unlike the result where we showed that
proper learning 3-TERM-DNF is hard unless RP = NP, there are no unproven
conjectures required to prove the hardness of learning PARITIES in the statistical
query framework. The reason for this is that the proof is purely information-
theoretic. In particular, even an algorithm that uses unbounded computation
and uses query functions x that are not evaluatable in polynomial time (or
indeed even uncomputable ones!), requires a superpolynomial number of queries
to the STAT (¢, D) oracle.

Let us now sketch a proof of the result. To make our notation simpler, we
will assume that the instance space is {—1,1}", rather than {0,1}". We will
also assume that the output of boolean functions is in the set {—1,1}. Then
for a subset S C [n], the parity function on bits in S, is defined as:

fs(x) = [i

€S

7.3. A HARD-TO-LEARN CONCEPT CLASS 71

If we interpret a bit ; = —1 as being on and x; = +1 as being off, then fs(x) =
—1 if and only if an odd number of bits in S are on, i.e. fs computes the parity
over bits in S. We will consider U, the uniform distribution over {—1,1}", as
the target distribution. We will assume that the distribution is known to the
algorithm, and as a result, without loss of generality, we may assume that the
algorithm only makes correlational queries to the oracle STAT (¢, D).

Let us observe some basic facts about PARITIES with respect to the uniform
distribution ¢. For any non-empty set S, x]EM [fs (x)] = 0. This is because the

uniform distribution U over {—1,1}" can be viewed as a product distribution
over the individual bits, i.e. all bits are independent. The distribution over
each bit is also uniform, so that E [x;] = 0 for each i. Then, we also have:

:Eu [fS(X)fT(X)] = E H%H%

x~U

€S €T
5|1 =
x~U
i€SAT

Above, SAT denotes the symmetric difference of the sets S and 7. This
establishes that if S # T, then Eu [fs(x)fr(x)] = 0. Clearly, it is also

the case that Eu [(fs(x))?] = 1, since fs(x) € {—1,1}. Since there are 2"

such parity functions and there are exactly 2" points in {—1,1}", the set of

parity functions form an orthonormal basis for the vector space of real-valued

functions defined over {—1,1}", with inner product (p,) = Eu [o(x)1(x)].
X~

Formally, any ¢ : {—1,1}™ — R can be expressed as:

p(x) = > B5)fs(x)

SC[n]
Furthermore, Parseval’s identity establishes that Eu [(p(x))?] = > sC] (@(9))2.
In particular, if o : {—1,1}" — {—1,1}, then ng[n](@(S»Q = 1; the coefficient

B(5) = E_ [o(x)fs(x)].

Suppose that there is an algorithm, A, that learns PARITIES using at most
q queries, each of which has a tolerance parameter larger than 5. We show that
it must be the case that ¢/7¢ > 2" — 2. For the sake of contradiction, suppose
that this is not the case. We show that in fact there must be a target parity on
which the algorithm fails. The definition of SQ learning requires that a single
algorithm work for all target functions. We will show that this cannot be the
case. We run the algorithm A and every time a query is made, we return the
answer 0. Let h be the target hypothesis when A terminates. We will show that
when ¢/7¢ < 2" — 2, there must be at least two parity functions, represented
by subsets S and S’, such that for all the queries made by the algorithm 0 was
a valid answer. Let’s first see that this finishes the proof. Clearly, both fg and
fs» could be a valid target; thus it must be the case that err(h; fs,U) < 1—10
and err(h; fs,U) < 15. However, Py [fs(x) # fs/(x)] = %; thus h cannot
be a %0 accurate hypothesis for both fg and fg/.

Let ¢1,..., ¢4 denote the queries made by the algorithm. There is a subtle
point to be mentioned here; in principle the queries made by the algorithm

72 CHAPTER 7. STATISTICAL QUERY LEARNING

could be adaptive, i.e. the query depends on past answers from the oracle
STAT (¢, D). However, since we always supply 0 as the answer, we may as well
assume that the queries ¢1,..., ¢, are known ahead of time. We claim that
for any ¢ : {—=1,1} — {=1,1}, there are at most % parity functions, such

Eu [o(x)fs(x)]| = 7o. This follows from that fact that 2_5Cn] (@(S)* =1

and that $(S) = Eu [¢(x)fs(x)]. Thus, a single query rules out at most 5

parities as the possible target, if we supply a response of 0. Consequently, ¢
queries rule out at most q/7¢ parities as the possible target. Provided, ¢/78 <
2" — 2, there must be at least two different parity functions that are consistent
with all the answers supplied to the algorithm, as a simulation of the oracle
STAT (¢, D). This completes the proof.

There is another subtle observation worth making. The above proof sketch
can be made completely rigorous for deterministic algorithms. However, one
may wonder whether randomised algorithms may help avoid the difficulty of
learning PARITIES. The answer to this is negative, i.e. randomised algorithms
do not help in this case. This can be shown formally by picking a target
parity function uniformly at random and computing the probability that the
simulation becomes invalid after each query response. The proof is not difficult,
but the details are somewhat technical, and it is left as an exercise to the
interested reader to fill those in.

7.4 Exercises

7.1 We will consider an extension of the statistical query model, where in
addition to making queries of the form (x,7) to the oracle STAT(c, D),
the learning algorithm is allowed access to unlabelled examples from D,
i.e. it may get points x € X drawn according to D, but not the labels

c(x).

a) Briefly argue why any concept that is (efficiently) learnable with
access to STAT (¢, D) and unlabelled examples, is also (efficiently)
learnable with access to the noisy example oracle, EX"(¢, D).

b) Give an efficient algorithm for learning axis-aligned rectangles in the
plane using STAT (¢, D) and unlabelled examples.

7.5 Bibliographic Notes

The variant of PAC learning with random classification noise was introduced
in the work of Angluin and Laird [5]. Our presentation of the statistical query
model differs a bit from that in the textbook by Kearns and Vazirani [34,
Chap. 5]. Bshouty and Feldman [16] first used the idea of separating a general
statistical query into target-independent and correlational queries. The proof
that PARITIES cannot be learnt in the statistical query model appeared in the
work of Kearns [31]. The proof provided in the lecture follows along the lines
of that introduced by Blum et al. [11] who also show lower bounds for general
concept classes in terms of what is called the statistical query dimension.

Of course, the fact that PARITIES is not SQ-learnable does not rule out an
efficient algorithm for learning PARITIES in the presence of random classification

7.5. BIBLIOGRAPHIC NOTES 73

noise. Blum et al. [12] provide an algorithm whose complexity (both statistical
and computational) is 20(n/logn) Improving this dependence in terms of
computational complexity is a long standing open problem. It is widely believed
that learning parities with noise is hard and cryptographic systems based on
the hardness of this and related problems have been designed. Blum et al. [12]
also demonstrate the existence of a concept class that is not polynomial-time
learnable in the SQ model, but can be learnt in polynomial time in the PAC
model with random classification noise provided the noise rate is a constant
bounded away from 1/2 (their algorithm does not have polynomial dependence

on 1/(1 —2n)).

Chapter 8

Learning Real-valued Functions

So far our focus has been on learning boolean functions. Boolean functions are
suitable for modelling binary classification problems; in fact, even multi-class
classification can be viewed as a sequence of binary classification problems.
Many commonly used approaches for multi-class classification, such as one-vs-
rest or one-vs-one, solve several binary classification problems as a means to
perform multi-class classification. However, sometimes we may need to learn
functions whose output is real-valued (or vector-valued). In this chapter, we
will study linear models and generalised linear models. In order to give bounds
on the generalisation error, we’ll need to introduce some new concepts that
play a role analogous to the VC dimension. We will also study some basic
convex optimisation techniques.

8.1 Learning Real-Valued Functions

Let us start with the general question of learning real-valued functions. Suppose
our instance space is X,, = R", though we can easily generalise to other forms
of instance spaces. Let F denote a class of real-valued functions from R™ — R.
Let f* € F, where f*: R™ — R is the target function.

At this point, it is worth considering models for data. We will let D denote
some joint distribution over X,, x R. So all observations sampled from D are
of the form (x,y), where x € R", and y gives us some information about the
target function. It will be convenient to also denote the marginal distribution
of D over X,, by u. If we generalise the notion of PAC learning directly, we will
restrict the distribution D to have support {(x, f*(x)) | x € R™}, whenever f*
is the target function. Thus, an example drawn from D would be the same as
an example obtained from the example oracle, EX(u, f*). When learning real-
valued functions, it is completely unrealistic to assume that we would observe
the target value, f*(x), exactly.

Before we elaborate further on the data model, we need to discuss the
measure of performance. When considering boolean functions, the indicator,
1(h(x) # c(x)), is in some sense the only meaningful measure of error at a
given point x. When considering real-valued functions, how far our hypothesis’
prediction h(x) is from f*(x) may matter. We will define this in terms of loss
functions. We denote the loss function by £: R x R — Rx>¢; here R>(denotes

(6]

76 CHAPTER 8. LEARNING REAL-VALUED FUNCTIONS

the non-negative real numbers.! For the most part, we will concern ourselves
in the setting where £(y/,y) = (¥’ — y)?. Another notion that is important
is that of the risk functional, which depends on the loss function ¢ and the
distribution D over X,, x R. For some function h : X,, — R, define the risk of
h, denoted by R(h) = R(h;¢, D) (we will use the shorthand R(h) when ¢ and
D are clearly from the context), as,

R(h) = R(h;¢,D) = (XEND [ﬂ(h(x),y] .

It is worth noting that without some restrictions on the function h and
D, there is no reason to expect that the above expectation exists at all.
Throughout this chapter, we will assume that we are in the setting where
expectations (and when needed higher moments) exist. We will not elaborate
particularly on this point further. Let us now return to our discussion of data
models.

8.1.1 Realisable Setting

In this section, we will restrict ourselves to the case when /¢ is the squared
loss. Suppose that F is some class of functions. In the realisable setting, any
data generating distribution, D, must satisfy the condition that there exists
some f* € F, such that E[y|x] = f*(x) for every x € R".? We can view
this setting as a generalisation of the random classification noise setting. Let
f* € F be the target function. For (x,y) ~ D, denote &(x,y) = y — f*(x).
Then £(x,y) is a random variable that is independent of x, though its law may
be a function of x, and it satisfies E [E (%, y)] = 0. Alternatively, we can view
the data generating process as follows:

e Draw x ~ p.

o Let & ~ vy, where £ is a real-valued random variable distributed according
to some law vx and satisfies E [¢] = 0.

o Return (x,x +¢).

Thus, in this context, realisability refers to the fact that the noise in the
observations is zero-mean. What would be a suitable goal for a learning
algorithm in this context? For some function h : X,, — R, we define the
following quantity, denoted by (h) = e(h; f*, 1) (again we will omit f* and p
when clear from context), as,

e(h) =e(h; f*, 1) = E [((h(x),f*(x))] = E {(h(X)—f*(X))2 SR

o X~ X~

IThe non-negativity constraint on the output of £ is not strictly necessary. However,
when using loss functions that can potentially be negative, we need to be more careful to
ensure that we are not achieving trivial results. We will indeed use a loss function that may
take negative values in Section 8.5.

2Again, we will avoid getting drawn into technicalities about what happens when the
conditional expectation is not well-defined on some subset of X,,. We shall assume that all
expectations we use are well-defined, though it is possible to remove some of these restrictions.

8.1. LEARNING REAL-VALUED FUNCTIONS 7

We can establish a relationship between R(h), R(f*) and €(h), as follows:

(x,y)~D
= B (6 = 7169 + 100 — v’
= B |00 -1 eor v B {0700 -0y
=2 E [(hG) =)) - w)]
=e(h) +R(f) -2 E [(h(x) — 60) E [- yIX]} |

Since Ely|x] = f*(x), the last term above is 0, and we get,

R(h) = R(f*) +(h). (8.2)

Note that e(h) > 0 for all h. Thus, Eq. (8.2) establishes that f* is indeed
the minimiser of the risk. Although, it may seem intuitively that this should be
the case, it is something that requires proof. In this case, it holds because we
are using the squared loss, and fixing x, the value v that minimises E[(y—v)?|x]
is exactly given by v = E[y|x] = f*(x). Thus, the zero mean assumption for
realisability is tied to using squared loss as the notion of error.?

Equation (8.2) also is important in the sense that it suggests an algorithmic
approach. As our algorithm can only have access to a sample S drawn from D,
it is not clear what the empirical counterpart of ¢(h) would be. However, the
empirical counterpart of R(h) can easily be defined, indeed it is a fundamental
notion called empirical risk. Let S = ((xi,yi)):il ~ D™ be a sample drawn
from D. For some function h : X;, — R, define the empirical risk of i, denoted
by RS(h)ﬂ as,

m

Rs(h) = — S~ tlhixi),). (53

Provided we can find a way to relate the empirical risk to the population
risk, this suggests an algorithmic paradigm where we try to find a function
h that minimises the empirical risk. This principle is known as the empirical
risk minimisation (ERM) principle, and is one of the fundamental concepts in
statistical learning theory.

8.1.2 Non-Realisable Setting

In a way, we don’t need to restrict the data distribution, D, as we did in the

previous section. Let F be some class of functions. Consider the quantity
defined below,

R(F;D) := ;ngR(f,D)

3Indeed, if we were using the absolute loss, we would want to pick the conditional median
and so on.

78 CHAPTER 8. LEARNING REAL-VALUED FUNCTIONS

Thus R(F; D) represents how good the class 7 may be to explain the data
(though it may be scale-dependent, so the absolute value of the above term
may not mean very much). We can still however use any such class F as a
comparator class. Thus, we will phrase our learning goal as finding a hypothesis
function A : X,, — R, such that,

R(h; D) < J}gg__R(f, D) +e. (8.4)

Clearly, since F; C F» implies that R(Fa; D) < R(Fi; D), the larger the
class F for which we can provide a guarantee of the form (8.4) the better the
result. The flip side of this is that the larger the class F we use, the larger
our sample size, |\S|, may need to be, to ensure that the empirical risk and the
true risk are close to each other. This is the common underfitting vs overfitting
tradeoff in machine learning.

Although we have not studied such a setting, where we make no assumptions
on the joint distribution over the instances and their labels, in the case of
boolean functions, one can ask a similar question there. This is commonly
known as the agnostic setting in that context.

8.1.3 A General Algorithmic Paradigm

We can now develop a general algorithmic paradigm for learning real-valued
functions (or indeed even more broadly than that). Let F be a class of functions
from X,, — R that will serve as our comparator class. Let G be a class of
functions from X,, — R such that G O F. Let S ~ D™ be a sample such that
the following holds for all g € G,

~ €
Rs(g) - Rlg)| < 5. (5.5)
Furthermore suppose we can find some g € G, such that,
~ ~ €
Rs(g9) < inf R = 8.6
s(9) < inf Rs(g) + 5 (8.6)

Then for any f* € F, we have,
R(g) - R(f*) = R(§) — Bs(@) + Rs(3) — Rs(f*) + Rs(f*) = R(f*)
Since, f* € F C G, using Egs. (8.5) and (8.6), we have,

R(g) - R(f") <e
Since f* € F was chosen to be arbitrary, we have,

R(g) < jnf R(f) +e.

Thus, this gives us an algorithm in the non-realizable setting. It also works
in the realizable setting, as we then know that f*(x) = E [y[x] is the minimiser
of R(f) and also that (g) = R(g) — R(f™).

There are two main outstanding issues. The first is to understand when a
guarantee as strong as Eq. (8.5) may hold for a class of functions G. Intuitively,

8.2. PROJECTED GRADIENT DESCENT FOR LIPSCHITZ FUNCTIONS

the “smaller” G is, the better it is from the point of view or relating the
empirical risk to the true risk. This question will be discussed in detail in
Section 8.3. The second is to design an algorithm to find g that satisfies
Eq. (8.6). We will resort to generic convex optimisation techniques for this
problem. We discuss convex optimisation briefly in Section 8.2. Intuitively,
the “larger” G is, the easier the optimisation problem. Thus, there is a tradeoff
between the statistical complexity of this problem and the computational one,
not unlike the one we’ve seen previously in the context of learning boolean
functions. In order to obtain good statistical and optimisation guarantees, we
will need some restrictions on the range of functions in G as well as on the
support of the distribution D. Together with some concrete applications, these
will be discussed in Sections 8.4 and 8.5.

8.2 Projected Gradient Descent for Lipschitz functions

This section can be read independently of the rest of the chapter (or indeed
the lecture notes) and concerns with one specific convex optimisation technique
and its analysis. We will briefly describe an algorithm for minimising Lipschitz
convex functions over closed and bounded convex sets. Our treatment of convex
optimisation is at best cursory and for further details the student may refer to
any of the following references [17, 15, 38].

Consider a function f : R™ = R; f is convex if f(Ax+ (1—A\)x) < Af(x)+
(1 =N f(x) for all x,x" € R™ and for all A € [0,1]. Let K C R™ be a closed,
bounded, convex set. We are interested in solving the following constrained
optimisation problem: minimise f(x) subject to x € K. Furthermore, we will
assume that f is differentiable over K and that there exists some L, such that
HVf(x)H2 < L for all x € K. Also let B = maxx xex Hx —X'H2 denote the
diameter of K.*

We will see a proof that the average iterate of Projected Gradient Descent
(Algorithm 8.1) is an approximate minimiser of f over K. The algorithm
requires a projection operation: for some point x € R", this operation gives the
point in K that is closest to x. More formally, define the projection operator,

Ik (x) := argmin ||x — x|, .
x'eK

Note that such point exists as the set K is closed, and is unique because of the
convexity of K.

Algorithmically, one may wonder how to perform the projection operation.
In general, projection is itself a convex optimisation problem. There are other
convex optimisation algorithms that could be used to solve the projection
problem. However, for many applications in machine learning, typically projection
is only required onto fairly simple convex sets, such as ¢1- or £s-balls. In these
cases, this operation is very easy to perform.

We will first prove a useful property about the projection operator.

4Convergence of variants of gradient descent, at different rates, can be established in
much more general convex optimisation settings. The settings described above are sufficient
for the purpose of the applications in this chapter; however, an interested reader should refer
to the books [17, 15, 38] and beyond.

80 CHAPTER 8. LEARNING REAL-VALUED FUNCTIONS

Lemma 8.1. For anyz € K, if X' € R and x = g (x'), then,
1z — x|, < ||z = x'||,-
Proof. Consider the following:
Iz =x'|l; = ll2 = x+x = x||;
= ||z = x[l5 + [x = x[[; - 2(z = %) - (x' = x)

Now if, (z—x) - (x' —x) < 0 we are done. Suppose for the sake of contradiction
that (z — x) - (x —x) > 0. We will establish that x cannot be the projection
of x" onto K. Consider the following:

H)\z +(1-XNx— X/H§ = Hx - x/Hz + Az — x||g —2Mz —x) - (x' —x)

This implies that for A € (0, min {1, (Z_x)(xl_x)})

llz—xl13

H)\z +(1-XN)x— x’H2 < Hx — X/H2.

As K is a convex set and x,z € K, A\z+ (1 — \)x € K, contradicting the claim
that Ik (x') = x. Thus, it must be the case that ||z — X’H2 > |z — x||,. O

We can now proceed to analyse the convergence of Iterative Projected
Gradient Descent which is presented as Alg. 8.1 below.

Algorithm 8.1: Projected Gradient Descent
Input: n, T
Pick x; € K
fort=1,...,T do
Xip1 =X — NV f(x¢)
xe1 = Ik (X441)
Output: + Zthl Xy

S U A W N -

Theorem 8.2. Suppose K C R" is a convez, closed and bounded, maxx xc i ||x - X’H2 <
B, and that sup, g HVf(X)H2 < L. Then Alg. 8.1 run with n = %, outputs

X, such that,
RL
X) < min f(x) + —.
60) < min £+
Proof. Let x; denote the point at the ¢ iteration of the gradient descent
procedure. Let x* € K be any point. Then by the convexity of f, we have the

following:

fxi) = F(x7) < VF(xe) - (%0 = x7)

1

= E(Xt - Xiﬂ) (% —x7)
1

= g5 (I =1 e = X[} = i = . 5)
1

* * 17
gy (e =15 = e =" [3) + 59 Geo)

8.3. RADEMACHER COMPLEXITY 81

We use the bound HVf(Xt)H2 < L and the fact that HXQH - x*H2 > ||1xe41 — x*|5,
to obtain,

L2
(e = %713 = llxesn = x713) + L= (8.7)

Fox) = Fx") < .

Fl-

By convexity of f, it follows that f (% ZZ;I xt) <1 Zthl f(x¢). We can
average Eq. (8.7) over t = 1,...,T to obtain,

T T
]' *]' *
Flgdox | =&)< 5D (fla) = F(x7))
t=1 t=1
< o (I = %13 = ks = x713) + 222
= 2Tn 2 2) "2
2
< [[x1 = x*[|3 + ﬁ
= 2Ty 2
2 2
< B7 L7
=Ty 2
Setting n = % and choosing x* to be the minimiser of f in K completes the
proof. O

8.3 Rademacher Complexity

Let us now address the question of bounding the generalisation error. Let
G be a class of functions from some space X to the bounded interval [a,b].?
Note that typically, we will not be thinking of G as being the class of target
functions (or hypothesis functions), but functions obtained by composing the
loss function with the class of target functions. Let D be some distribution
over X and let S = (2z1,...,2,) ~ D™ be an i.i.d. sample drawn from D. Let
us define the following random variable, ®(S), as,

m

O(S) = B(z1, .., zm) =sup{ E_[g(2)] — = g(z)

geg z~D m 4

Before we proceed to understand the above object, it is worth thinking
about why we want to bound a random variable defined in terms of the
supremum over G. The output h of a learning algorithm will be a function
of the data S, thus h (which is a random variable) is not independent of S.
Thus, we can’t use standard results to relate the empirical risk Rg (ﬁ) to the
true risk R(/l{) The class G we will consider will be functions composing the
loss ¢ with functions in the range of the algorithm. If we can show that ®(S)
is bounded, both in expectation and in probability, then we can relate ES (/f\z)

to R(ﬁ) even without stochastic independence between hand S.

5While some results can be generalised to the case when the range of functions is not
bounded, for simplicity, we will only consider bounded functions.

82 CHAPTER 8. LEARNING REAL-VALUED FUNCTIONS

8.3.1 (Empirical) Rademacher Complexity

We now define a concept called the Empirical Rademacher Complexity for a
family of functions.

Definition 8.3 — Empirical Rademacher Complexity. Let G be a family
of functions mapping some space X — [a,b] and let S = (z1,22,...,2m) € X™
be a fized sample of size m. Then the empirical Rademacher complexity of G
with respect to the sample S is defined as,

— 1 &
RADs(G) =E sup—Zaig(zi) ,

o m
9€9 ™ i

where o = (01,09,...,0,) are i.i.d. Rademacher random variables, i.e. o;
takes value in {—1,1} uniformly at random.

The formal reason for defining the Empirical Rademacher Complexity in
this way will become clear when we consider the proof of Lemma 8.5. It
is worth getting some intuitive understanding of this concept as well. The
empirical Rademacher complexity measures how well functions from a class
correlate with random noise, where the notion of noise refers to Rademacher
random variables. This corresponds to our notion that the more complex the
class G, the more easily it can fit noise. In particular, let us suppose that G
is a class of boolean functions (with range {—1,1}) with VCD(G) > m and let

S be a set that is shattered by G, then ms(G) = 1. However, Rademacher
complexity can be defined for any class of real-valued functions.%

Let us now define Rademacher complexity, which is defined as the expected
empirical Rademacher complexity of sequences of length m drawn from a
distribution D over X.

Definition 8.4 — Rademacher Complexity. Let D be a distribution over
X and let G be a family of functions mapping X — [a,b]. For any integer,
m > 1, the Rademacher complezity of G, is the expectation of the empirical
Rademacher complezity of G over samples of size m drawn independently from
D, i.e.

RAD,(G) = E [F&\Ds(g)} .

S~Dm

To be more precise, we should write RAD,,,(G; D) as the Rademacher Complexity
depends on the distribution. When the distribution is clear from context, we
will ignore this to simplify notation.

8.3.2 Uniform Convergence Results

Our main results in this section, concern understanding the behaviour of ®(.5)
in expectation and probability. It will be helpful to introduce some shorthand
notation. We will use Ig[g] to mean ED [9(z)] and we will use,

Z~

SWe will ignore issues of measurability; this will not be a matter of concern for the
function classes we study in this course.

8.3. RADEMACHER COMPLEXITY 83

where S = (z1,...,2,,) is a sample.
We will now prove the following result.

Lemma 8.5 — Symmetrization. Let G be a class of functions from X to
[a,b] and let D be a distribution over X. Let S = (z1,...,2m) ~ D™, then for,

O(S) = P(z1,...,2m) =supg E [g(z)] — iZg(zl) ,

geg z~D m “

we have,
E [®(8)] < 2RAD(G).

Proof. We have

£ (009 =

sup {Ig 9] — Es[g]}] :

We can rewrite]g 9] = g [IES/ [g]} where S’ ~ D™ is independent of S. Thence,

E[®(5)] =E sup {g [ES/ [g]} - Es[g]}]
< & |sup (Bt - ﬁs[g]}] 59

= E |[sup iZ(g(zg)—g(Zi))

S,8’
g€ | M=

In (8.8), we obtain the inequality by pushing the sup inside the expectation.
We can now use the fact that S and S’ are independent and identically redistributed
to rewrite the RHS above. In particular, we can thinking of obtaining

/ / 2m
(Z1y -y Zmy 21y e oy Zy) ~ D

but then deciding to put either z; or z; in S and the other in S’ uniformly at
random. Clearly this doesn’t change the expectation. So we can introduce the
Rademacher random variables o = (o71,...,0.,) to indicate this choices. We
have,

E[2(5)] < GE, sup ;Z;Ui(g(zé) —9(2:))

1 & 1 ¢
SS],P;U %E;mg(zi) JrSEU ZE 101‘9(%’)

9eg =
— 2RAD,(G).

84 CHAPTER 8. LEARNING REAL-VALUED FUNCTIONS

Above, we used the fact that o and —o are identically distributed, that
S and S’ are also identically distributed, and the definition of Rademacher
complexity. O

We can see how the symmetrisation using Rademacher random variables
in the above proof leads to terms that motivate the definition of Rademacher
complexity. Thus, the formal reason for defining the Rademacher complexity
the way we have is that it gives us an upper bound on ISE [®(9)].

In order to bound ®(S) in probability, we will use McDiarmid’s inequality,
which we state below without proof. A proof can be found in in [37, Theorem
13.7).

Theorem 8.6 — McDiarmid’s Inequality. Let X be some set and let f :
X™ — R be a function such that for all i, there exists ¢; > 0, such that for all
21,29, ...,2m,2Z;, the following holds:

/
) =
“(Zl ...,ZZ_1,ZZ7Z1+1,...,Zm) f(Zl,...7Z1_17Z1,Z1+17...,Zm)| C;

Let Z1,Zs, ..., Zy be independent random variables taking values in X. Then,
for every e > 0, the following holds:

P [f(Zl,...,Zm) >E[f(Z1,....2Zn)] +e} < exp <_Z:72£102> :

McDiarmid’s inequality is a generalisation of Hoeffding’s inequality. For
instance, if X = [a,b], using f(z1,...,2m) = % > ziand ¢; = (b—a)/m, we
obtain Hoeffding’s inequality. McDiarmid’s inequality shows that as long as no
single variable has significant influence over the function f, then the random
variable f(Z1,...,Z,,) is concentrated around its expectation.

We can now prove the following lemma.

Lemma 8.7. Consider the same setting as Lemma 8.5. Let G be a class
of functions from X to [a,b] and let D be a distribution over X. Let S =
(2z1,...,2Zm) ~ D™, then for

1 m
D(S) = P(z4,. .. =5 E - = ,
() = B, m) =sup § E [g(z)] — ;g(zz) :
the following holds with probability at least 1 — 6,
®(S) < 2RAD,,(G) + (b — a) log 3
= m a om

Proof. For some i € [m], let S’ be obtained by replacing z; by z, for some
z;, € X. We have,

8(5) ~ a(5") = sup (5ol ~ Bl) —sup (£l - sl

geg \DP geg \P

1 b—a
< = N —g(z))) <
<— slelg(g(zz) g(z;)) < -

8.3. RADEMACHER COMPLEXITY 85

Above, we used the fact that the difference of suprema can be upper bounded
by the suprema of the difference, and that since both ¢(z;), g(z’) € [a, b], their
difference is bounded by (b — a). Since S and S’ are symmetric, we can get
the same bound for ®(S’) — ®(S). Thus, we can apply McDiarmid’s inequality
(Theorem 8.6) with ¢; = (b — a)/m for all ¢. Thus, we have,

P [B(S) > 2RAD,, () +] <P [q»(S) > E[®(5)] + e} < exp(—2me2/(b — a)?).

The result then follows by setting e = (b —a) - {/ 1(;g i O

We can of course define a function ¥, which is like ®, but with the quantity
inside the supremum negated, i.e.

and prove the equivalents of Lemmas 8.5 and 8.7. Thus, combining all this we
can prove the following theorem.

Theorem 8.8. Let G be a family of functions mapping X — [a,b] and let D
be a distribution over X. Let S = (z1,...,2Zm) ~ D™ be a sample of size m
drawn according to D. Then for any § > 0, with probability at least 1 — §, the
following holds for all g € G,

m

> 9(z:)| < 2RAD(G) + (b —a) -

i=1

N
14

o}
3=

The above theorem combined with the algorithm design paradigm in Section 8.1.3
shows that provided we find a minimiser of the empirical risk from a suitable
class of functions, then we are guaranteed to have low true risk. Actually, if
the algorithm outputs some function A from some class H of functions, and the
loss function is ¢, then we consider the class,

G ={(xy) = lh(x),y) | h € H},

and it is RAD,,(G) that we are interested in bounding. We will see how to
apply Theorem 8.8 in the remaining sections of this chapter. However, first we
will see some composition results concerning Rademacher Complexity that will
be useful in deriving bounds on the Rademacher complexity of function classes
of interest.

8.3.3 Composition Properties for Rademacher Complexity

We note (and prove) some results that indicate how the Rademacher complexity
is affected by simple transformations to function classes.

Lemma 8.9. Let X be some set and S = (z1,...,2m) € X™. Let F,G be
classes of functions from X to some bounded interval [a,b]. Let c,v € R. The
following hold:

86 CHAPTER 8. LEARNING REAL-VALUED FUNCTIONS

e Define the class F + G as,
F+G={f+glfeF.geq}

and note that the range of functions in F + G is contained in [2a,2b].
Then,

RADs(F + G) = RADg(F) + RADs(G).
e Define the class cF + v as,
cFrv=A{cf+v| feF}

and note that the range of functions in cF+v is contained in [—u+v, u+v)
where u = |c| max{|al,|b|}. Then,

RADs(cF + v) = |c|RADg(F).

The proof of the above lemma is straightforward and is left as an exercise.
Let us now see a result that will be quite useful. The following lemma is
usually referred to as Talagrand’s (Contraction) Lemma in the learning theory
literature, as it follows from a much more general theory developed by Talagrand.

Lemma 8.10 — Talagrand’s Lemma. Let G be a family of functions from
X — [a,b] and let S = (z1,...,2m) € X™. Let ¢1,...,¢m be univariate
real-valued functions, for each i, ¢; : [a,b] = R being l-Lipschitz. Then,

E |sup L > oidilg(z)) | <1- RADs(G).

o m
9€9 i

We will provide a proof of this lemma, though readers may well skip this
proof without hurting their understanding the applications of this lemma.
Before we do that, let us observe the following immediate corollary, which
immediately follows from setting each ¢; to be the same in the above lemma.

Corollary 8.11. Let G be a family of functions from X — |a,b], let ¢ :
[a,b] — R be l-Lipschitz. Then define the class,

poG={pog|ged}
Then, for any S € X™, FZ’—\\DS(gf)o g) < FSA\DS(Q),
Proof of Lemma 8.10. We have the following:

SUP U —1(9) + OmPm (9(2:)) |,

G 1
-E |sup » 0i0i9(zi)| = — - E E
E [sup Y 0idig(z) sup

geg P m o01,..,0m—10m

3=

m—1
where u,,—1(g9) = Z 0:0i(g(z;)). Let us concentrate on just the inner expectation:
i=1

E [supum-1(g9) + Um¢mg(zm))] .
Im | geg

8.4. LINEAR REGRESSION 87

Note that by definition of supremum, we have the existence of g1,90 € G
satisfying the following for every € > 0:

Um—1(91) + Om(91(2Zm)) > iteug) (um-1(9) + dm(9(zm))) — € (8.9)
Um—1(92) = Om(92(2m)) > sup (tm—1(9) = dm(9(zm))) — € (8.10)

Then, we have the following for every ¢ > O:

E

Om

zlelgum—l(g) + Um¢m(g(zm))] —€e< % [um—l(gl) + dm(91(zm))

Fm—1(92) — (g2 (ZM))}

AS b, s ILipschitz, we have | (g1(zm)) — b (g2(@m))l < 1 - |g1(2m) —
92(2m)| = 15(91(2m) — 92(Zm)), where s = sign(g1(zm) — 92(2m)). Thus, we
have

E

Om

[tm—1(91) + Um—1(g2) + 15(g1(2m) — g2(2m))]

Ztellg) Um-1(9) + Um¢m(g(zm))] —e<

N = DN =

[umfl(gl) + ngl (Zm) + umfl(g2) - 1892(Zm):|

As {s,—s} = {-1,1}, we can rewrite the above as:

E

Om

geg Im | geg

sup um—l(g) + Um¢m(g(zvn))] —e< E lsup Um—l(g) + U’rnlg(zm)‘|

As this inequality holds for every € > 0, we can in fact write,
B lsup um-1(9) + Gmaﬁm(g(zm))] <E lsup um-1(g) + Umlg(zm)‘|
om | geg om | geg
We can repeat the above for i =m —1,m —2,...,1, to show that,
E|sup L ooz <1 E |sup LS oig(e)| =1 RADs(G)
- TiQi i > — 0ig\z;) | =1t~ S
7 |geg M 7 |geg M
O

In the following sections, we will see some examples of how these composition
lemmas together with Theorem 8.8 can be used to give guarantees on either
e(h) or R(h) —infser R(f) for learning algorithms derived using the paradigm
outlined in Section 8.1.3.

8.4 Linear Regression

Let us look one of the most well-studied problem in statistics and machine
learning—Ilinear regression. In linear regression, we assume that the target

88 CHAPTER 8. LEARNING REAL-VALUED FUNCTIONS

function, f*, is of the form f*(x) = w* - x for w* € R™. The goal is to
estimate, f, represented by parameters w, such that,

e(f) = ZIEM (W* - x — w* ~x)2} <e
In order to apply Theorem 8.2 and Theorem 8.8, we will require some boundedness
assumptions. We shall assume that there exists some W, such that [|[w*||, < W.
For some R > 0, let B,,(0,R) = {x € R" | |x[|, < R}. We will assume that
the support of D is contained in B,,(0, B) x [—M, M] for some B, M > 0.

For any w € R", let fw : B,,(0,B) — R be the linear function defined
as fw(x) = w-x. Consider the class of linear functions from B,(0,B) —
[-BW, BW] defined as,

Fwp =1{fwl W], < W}

Note that using the Cauchy-Schwarz inequality, |x-w| < ||x||, [|[w]|, < BW, so
the range of these functions is indeed contained in [—BW, BW] as stated.

8.4.1 The Least Squares Approach

Let S = {(x1,¥1),---,(Xm,ym)} denote the observed training data sample.
Let £(3,y) = (§ — y)*>. The ERM approach suggests that we should obtain
by minimising the empirical risk, Rg(f)over f € Fwp.

By slight abuse of notation, we can view the empirical risk directly as a
function of the parameters w,

1 m
EZW Xz_yz

Then, if we define K = {w € R" | ||w]||, < W}, we are solving the following
optimisation problem,

iy Rs(w).

For x,y, define the function, 7 : R* — R, r(w;x,y) = (w - x — y)2. Thus,
Rs(w) = 2 S r(w;x;,4;). We note that, Vyr(w;x,y) = 2(w-x —y)x and
the Hessian H(r) = 2xx | * 0 is positive semi-definite. Thus, the function Rg
is a convex function of w. Furthermore, since

[Vwr(w;x,y)||, < [2(w-x =) [|x],.
under the boundedness conditions above, and using the Cauchy Schwarz inequality,
we have HVWES(W)H2 < 2(BW 4+ M)B. Clearly, for any w,w’ € K, we have
HW — w’||2 < 2W. Thus, we can apply Theorem 8.2 and by choosing T' to be

] (M), we can obtain w € K such that,

Rs(W) < min R .
Rs(w) < nin Rs(w) +e€

It is worth pointing out that without constraining the solution to lie in
K, there is a simple closed form solution to obtain a minimiser of Rg(w).”

"The constrained problem is closely related to ridge regression which also has a closed
form solution.

8.4. LINEAR REGRESSION 89

However, in certain cases gradient-based approaches might be preferable in any
case, as the closed-form solution requires inverting matrices which is computationally
expensive.

8.4.2 Rademacher Complexity of Linear Functions

Let us now compute the empirical Rademacher complexity for the class F,p
defined above. For this purpose, let X = B, (0, B) and let S = (x1,...,X,;,) €
X™. We have,

_— 1 &
RADs(Fw,g) =E sup — oi(w-x;
(7 | weB,(0,W) T ;)

Il
Q=

1 m
sup W — E 0;X;
weB, (0,W) mi3

Using the Cauchy-Schwartz Inequality (the equality case),

— 1 &
RADs(Fw.5) =W -E EZ;@XZ«

2

Using Jensen’s Inequality,

2

— 1 &
RAD g (F; <W-|E||— X5
s(Fw,p) < m;tfx

2

[N

1 & 5 2
=W-[E WZHXz‘Hz*‘WZUW(Xz"Xj)
1=1

i<j

As o; are i.i.d. and have mean 0, the cross terms are all 0. Using the bound
IIx:ll, < B, we get,

W - B
T

Let us now see how we can apply the composition results from Section 8.3.3
to bound the Rademacher Complexity of classes of functions that also incorporate
the loss. Let F be a family of functions from X, to [a,b] and furthermore
suppose that for every x € X,,, ||x|, < B. Let X = X,, x [-M, M] and let
S = (z1,...,2m) € X", where each z; = (x;,y;). Let S = (x1,...,%X,,) € X™
denote the sequence obtained from S by ignoring the observations y;.

Define the class of functions that map X to [a — M, b+ M],

Fl={(xy) = f(x)—y | feF}

R/A\[)s(fw,B) <

90 CHAPTER 8. LEARNING REAL-VALUED FUNCTIONS

An easy calculation shows that the Rademacher complexity, @5(}' b =
RADz(F). Alternatively, we may appeal to the first part of Lem/mi 8.9 by using
the class G that contains only 1 function, (x,y) — y. Clearly RADg(G) = 0.

Now consider the class of functions that map X to [0,a?], where o =
max{|a — M|, |b+ M|}, defined as,

Fr={(x9) = (fx)-y)?| feF}
Alternatively, we can view F? as,

F'={(x,y) = ¢poh(x,y) | he F'},
where ¢ : [—a,a)] — R is the square function, ¢(z) = 2z2. We note that as
@'(z) = 2z, ¢ is 2a-Lipschitz on the interval [—«, «]. Thus, using Lemma 8.10,
we have,

RADg(F!) < 2aRADg(F') = 2aRAD5(F).

In the case of linear functions, let }"51,’ p denote the corresponding class
obtained when starting from the class Fw, g. Note that if f € Fy, g corresponds
to some function, h €]—'5[,737 ie. h(x,y) = (f(x) —y)?, then,

E_[hexy)]= E |(f(x)=-y)] = R(.

(x,y)~D (x,y)~D
In the case of linear functions, we have that,

RADs(Fjy5) < 2(BW + M) - T

1
Thus, applying Theorem 8.8, we get that provided m = © BW(BW:;M)HOg 2),

then with probability at least 1 —§, W obtained from the optimisation problem
above would guarantee,

P . .
R(w) weéril(%,W) R(w) + O(e)

This completes the analysis in the case of Linear Regression.

8.5 Generalised Linear Models

Let us now look at a more expressive class of functions. In the statistics
literature, these are referred to as generalised linear models. These are models
of the form, g(x) = u(w-x), where x e R", w e R and v : R - R. It is
common to assume that u is monotone and Lipschitz, however these models
can be defined more broadly. Suppose that u is strictly monotone, so that v !
is well-defined. Then although g is no longer a linear function of x, u=!(g(x))
is linear. The function v ™! is referred to as the link function.

Generalised linear models are widely used in machine learning and also
form the basis of a single unit in most neural networks. Note that units with a
sigmoid, hyperbolic tangent, or rectifier activation functions, are all generalised
linear models.

8.5. GENERALISED LINEAR MODELS 91

In what follows we’ll assume that u is monotonically increasing (not necessarily
strict) and 1-Lipschitz, i.e. |u(z) —u(z")] < |z — 2/| for all 2,2’ € R. We will
also assume that u is known to the learning algorithm. We will assume that
the instance space is X,, = B,,(0, B) for B > 0, and for W > 0 consider the
class of generalised linear models, of functions from X,, — R:

Owpu={x—uw-x)|weB,(0,W)}

Note that as we are allowing W to be an arbitrary parameter, the requirement
u is 1-Lipschitz is not an extra restrictions beyond just Lipschitzness. For
example, if u were [-Lipschitz, we can use some u, where u(z) = wu(z/l) is
1-Lipschitz, and instead allow ||w||, to be as large as W1.

For simplicity we’ll assume that «(0) = 0 (although, this is not the case for
some functions, we can easily centre u for the purpose of the algorithm and
then undo the centring at the time of prediction). As in the previous section,
suppose that the distribution D has support contained in X = X,, x [-M, M]
for some M > BW. Then, observe that as |w - x| < BW for all w € B,,(0, W)
and x € X,,, and since u is 1-Lipschitz, it is possible for the distribution to
satisfy the condition that E [y|x] = u(w* - x) for some w* € B, (0,W). For
the rest of the analysis in the section, we shall assume that this is the case, i.e.
we are in the realizable setting.

8.5.1 Empirical Risk Minimisation

As in the case of linear regression, we can attempt to find a minimiser of
the empirical risk, defined, with slight abuse of notation, on a sample S =

{(x1,y1)s -+ Xm, Ym)}, as,

~ 1 &
Rs(w) = — u(w-x;) — y;)°.

() = Dl))
The trouble is that unlike in the case of linear regression, the empirical risk is
no longer a convex function of w. In fact, it has been shown by Auer et al.
[8] that for even relatively simple inverse link functions, such as the sigmoid,
u(z) = 1-&-%’ the empirical risk may have exponentially many local minima
as a function of the dimension.

Surrogate Loss Function

In order to avoid optimising a non-convex function (for which there are no
general purpose algorithms), we’ll use a strategy often employed in machine
learning—using a surrogate convex loss function. Remarkably, in the case of
generalised linear models, there exists a surrogate loss function, such that, in
the realizable setting, the minimiser of the risk functional arising from this
surrogate loss function and that from the squared loss is exactly the same! In
addition, we can also show that an approximate minimiser of the risk for the
surrogate loss function is also an approximate minimiser of the risk for squared
loss.

Technically, the function we define is not strictly a loss function as we
defined in this chapter. However, if u is strictly monotone, then we can by
translation make it satisfy the conditions required for a loss function. Instead,

92 CHAPTER 8. LEARNING REAL-VALUED FUNCTIONS

we will directly define the function, r(w;x,y) which will define a penalty term
for using the vector w on the datapoint (x,y). Formally, for x € B,,(0, B),y €
[-M, M], and for w € B,,(0, W), define

i) = | ") -).

We will define the empirical risk of the surrogate loss as,

m
1
= — § T Wi xzayz
m
=1

It is useful to compute the gradient and Hessian of r(w;x,y). Note that we
have,

Since w is monotonically increasing, u'(z) > 0 for all z. What this shows is
that r(w;x,y) 1§ a convex function for every x,y. Since ﬁg is an average
of r(w;x;,v;), R is also convex and so we canAapply convex optimisation
algorithms to find the approximate minimiser of R%.

Let us write down the gradient of]/ig(w),

VwRs(w) = ZVWT‘ (W; x4, y;) = %Zm: Yi)X

i=1

For comparison, let us also write the gradient of the empirical risk for the
squared loss, Rg(w),

2 — ,
Vw gg W X;) — y)u (W - X;)X;.

Notice that apart from the factor 2, the main difference is that the i example
has u/(w - x;) as a multiplicative factor in the gradient. Although, v’ >0 as u
is monotonically increasing, it may at times be very small.®

Next, let us also show that w*, a minimiser of R(w), is also a minimiser of
R"™(w), which is defined as,

R (w) = (X,END [r(w;x,y)] .

Let w* € R™ be used to define the target function, i.e. it is the case that
E [yx] = u(w*-x). Eq. (8.2) shows that w* is a minimiser of R(w). Consider

8For instance, when u is the sigmoid function u’(z) &~ 0 when |z| is somewhat large. This
is also the reason why using the cross-entropy loss is better than using the squared loss to
avoid the vanishing gradient problem.

8.5. GENERALISED LINEAR MODELS 93

the following for any x € B, (0, B):

B [rtwix)b — E vl =E[[()~ s)islx]
= [()~ B i)
— [)~ atw s
> L (u(w %)~ u(w* %))’

The last inequality in the calculation above follows from the fact that w is
monotonically increasing and 1-Lipschitz. We can take expectations with
respect to x to get,

e(w)
5

This shows that R"(w) > R"(w*), i.e. w* is a minimiser of R"(w).

This shows that it is sufficient to identify a w, for which R"(w) is at
most § larger than R"(w*). In order to find a good enough minimiser of
WEBzM)

R"(w) — R"(w*) > L E |(uw(w-x)—u(w* ~x)2} =

2 x~p

the empirical quantity, ﬁg (w), it is sufficient to perform roughly © (

projected gradient steps. We will see below how to use Rademacher complexity
bounds to give bounds on |R"(w) — Rg(w)| for all w € B,,(0, W) with high
probability.

Bounding the Generalisation Error for learning GLMs

Let us now consider the surrogate loss function, r(w;x,y), used for learning
GLMs. We can write r(w; x,y) as follows:

i) = [(ule) -)iz = (/ “u(z)dz) —y(w %)

Thus, we can write r(w;x,y) = ¥(w-x) —y(w-x)), where 1 is a BW-Lipschitz
function.

Recall that X,, = B,,(0, B) and consider the following classes of functions
from X,, x [-M, M] — R:

Grw ={(x,y) = r(w;x,y) | w € B(O,W)}
Grw = {(x,y) = ¥(w-x) | w € B, (0, W)}
Grw = {(x,y) = —y(w-x) | w € B,(0,W)}
Let S = {(x1,%1),--+» Xm>Ym)} € Xp x [-M, M]. and let S = {x1,..., X }.

First, observer that
Grw C gi,w + Q?,w

Thus, it suffices to bound R//—WDS(},W) for ¢ = 1,2 and use Lemma 8.9.
We know that if we consider the class of functions over X,, x [—M, M] of
linear functions,

Gw ={(x,y) = w-x [weB,(0,W)},

94 CHAPTER 8. LEARNING REAL-VALUED FUNCTIONS

then ﬂ\Dg(gw) < %. Then, by applying Corollary 8.11, and using the fact
that ¢ is BW Lipschitz, we get
(BW)?

Jm

For, gf}w, we let 1;(z) = —y;z and observe that when |y;| < M, each ; is
M-Lipschitz. We can then apply Lemma 8.10 to obtain that

RADs (G}) <

BWM
vm

Putting everything together, we get that,

RADs(G2yy) <

BW (BW + M)
—

Using Theorem 8.8 and Theorem 8.2, this shows that the class of generalised
linear models Gy, can be learnt with running time polynomial in W, B, M, n,
% and % and with sample complexity polynomial in B, W, M, % and %. Notice
that there is no direct dependence on n in the sample complexity; it may appear
implicitly through B and W. An advantage of this lack of dependence on n is
that, provided B and W can be suitably bounded these models and algorithms
can be kernelised.

RADs(Grw) <

8.5.2 Application to /, loss functions

Let S = {(x1,91),---, Xm,ym)} C X x [-M,M]. Let H be a family of
functions mapping X — [-W,W]. Let S = {xi1,...,Xn}. Let ¢(z) = [2[P
for p > 1; |¢'(2)] = p|z[P~! (we can also consider p = 1, though it is not
differentiable at 0). Thus, ¢ is pa?~!-Lipschitz on the interval [—a,a]. Let
G ={(x,y) = |h(x)—y|? | h € H} be a family of functions from X x[—M, M| —
[—a, a], where a < (M +W)P. Suppose, H = {h(x) —y | h € H} be a family of
functions from X x [-M, M] — [—(M 4+ W), (M + W)]. Let us observe that,

sup — § Uz z
heH T

RADg(H) =

A=

E —_ i 4 — ll: S(H
aszzmzw g Zw RAD(H)

Then, using Talagrand’s lemma, we have that:
RADg(¢o H) <p- (W + M)?' .RADg(H) = p- (W + M)P~* - RADg(H)

For instance, when using the squared loss, we use ¢(z) = |z|?, and thus, we get
RADs (¢ o H) < 2(W + M)RADg(H).

Chapter 9

Mistake-Bounded Learning

Thus far we’ve mainly looked at settings where there is an underlying distribution
over the data and we are given access to an oracle that provides random labelled
examples from this distribution. While this framework provides a useful way to
analyse the behaviour of learning algorithms, it is not always the case that one
may get independent training examples in practice. In reality, the distribution
from which the data is generated may change over time. In this chapter, we
will look at a specific learning framework that removes the requirement that
data comes from a fixed distribution as (stochastically) independent examples.

9.1 Online Prediction Framework

We consider the setting where the learning algorithm is interacting with an
environment and has to make predictions at discrete time-steps. Let X be an
instance space and C a class of concepts.! The setup is as follows:

(a) At time ¢, the learning algorithm is presented an instance x; € X.
(b) The learning algorithm makes a prediction g; € {0, 1}.

(¢) The true label y; is revealed and the learning algorithm is said to have
made a mistake if y; # y;.

The process defined above repeats indefinitely for ¢t = 1,2,.... How might
one measure the performance of such a learning algorithm? For a learning
algorithm L and infinite sequence ((x;,¥;))52, for time ¢t € N, define,

t

MISTAKES (t; L, (xi,:))321) = 3 1T # vs).

s=1

In the process defined above, the access L gets to the data ((x;,v:))32,
is sequential, where it has to make a prediction 7; before seeing ;. We will
only consider sequences ((x;,¥;))2; for which there exists ¢ € C, such that

IWe will forgo the slightly cumbersome notational overhead of writing X = Un>1 Xn

and C = Un21
of instances. Likewise, we assume that there is a function size(c) that gives the representation

size of concepts.

Cr, and implicitly assume that there is a parameter n that captures the size

95

96 CHAPTER 9. MISTAKE-BOUNDED LEARNING

Algorithm 9.1: Mistake-bounded algorithm for learning conjunctions

1 Input: Sequence ((x;,¥;))2; provided online.
2 // initialise hypothesis conjunction with all literals
3 Set hlzzl/\zl/\ZQ/\EQ/\"'/\Zn/\En

4 fort=1,2,3,...do

5 Receive x;
6 Y= hi(xs)
7 Receive y;
8 if y; # y; then // mistake made
9 for j=1,...ndo
10 if ;; = 0 then // 3t bit of x; is 0
11 Drop z; from hy if it exists
12 else // 3t bit of x, is 1
13 Drop Zz; from h, if it exists

14 Call the resulting hypothesis ;41

yi = c(x;) for all 5. We will say that C is learnable with a finite mistake
bound B, if there exists an online learning algorithm L, that for every sequence
((xi,9:))52, that satisfies for some ¢ € C that for all 4, y; = ¢(x;), satisfies for
all t € N, MISTAKES(¢; L, (x4, v:))2,) < B.

It is worth making a couple of observations at this point. If X is finite and
there is no restriction on the computational resources available to L, one can
always trivially get a mistake bound of |X|. We will typically be interested in
algorithms that are efficient in their use of space and time. We will define the
notion of efficiency later, but first let us consider an example. We will design an
algorithm for online learning CONJUNCTIONS in the mistake-bounded setting.
The Algorithm is described in Alg. 9.1.

Theorem 9.1. CONJUNCTIONS can be learnt online with mistake-bound n +
1. Furthermore, the running time of the algorithm is polynomial in n at each
time-step t.

Proof. First observe that because we start with all literals in the hypothesis
conjunction and only drop literals when we are sure that the literal can’t be
part of the target conjunction, the only mistakes we make are of the form y; = 1
and y; = 0.

To begin, hi has 2n literals. When the first mistake occurs, exactly n literals
are removed: for each ¢, exactly one of z; or Z; is dropped. At every subsequent
mistake at least one literal is dropped. Thus, the number of mistakes cannot
exceed n + 1.

Finally, note that the algorithm is only maintaining a hypothesis conjunction
and using it to make the prediction 7. So the running time of the algorithm
at each time-step is O(n). O

Exercise: Show that the above bound is tight for this particular algorithm.
What can you say about a general mistake bound for any algorithm for online
learning CONJUNCTIONS?

9.1. ONLINE PREDICTION FRAMEWORK 97

9.1.1 Resource Constraints on Online Algorithms

In the most generous setting, we can allow the algorithm L to predict 7; using
any computable function of (x1,y1,X2, Y2, - . -, Xt—1, Yt—1,X¢). For computationally
efficient algorithms, we may require that this function be computable in time
polynomial in n, size(c) and t. However, as we observed in the algorithm
for learning CONJUNCTIONS, the algorithm did not need to store the entire
history of observations, but the current hypothesis h; was sufficient as a sketch
of the history up to that point.

We consider space-bounded algorithms, where at time ¢, the algorithm
maintains a state S, such that for each ¢, |S¢| < poly(n, size(c)). For an efficient
algorithm, we will require that there are two polynomial time computable
functions f and g, such that 4, = f(S¢,x;) and Siy1 = g(Si, x¢,y¢). Thus,
the function f is used to make a prediction ¥; at time ¢, and g is used to
update the state.

Note that the we can define hy : X — {0,1} as hi(x) = f(St,x), thus
essentially this is equivalent to the algorithm maintaining a hypothesis at each
time ¢. Furthermore, because of the requirement that |S¢| < poly(n,size(c)),
the total number of possible hypothesis is at most 2P°W(nsize(c)) = thug the
algorithm in this case is making predictions using a hypothesis that comes
from a fairly restricted class of hypotheses. We will refer to such algorithms as
efficient online algorithms.

9.1.2 Conservative Online Learning

Definition 9.2 — Conservative Online Learner. We say that an online
learning algorithm is conservative, if it only changes its prediction rule after
making a mistake. Equivalently it only updates its state if it makes a mistake.

Proposition 9.3. If C is learnable with a mistake bound B using an online
learning algorithm A, then C is learnable with mistake bound B using a conservative
online learning algorithm. The conservative online learning algorithm is efficient
if A is efficient.

Proof. The proof of this result is relatively straightforward. We design an
algorithm A’ as follows. A’ initialises itself exactly the same way as A does.
Let S; be the state of the A’ at time ¢ and let m(¢) denote the number of
mistakes made by A" up to (but no including) time ¢. We will simulate A on
a subsequence of examples on which A" makes mistakes. We will maintain the
invariant that S; = S,,4)+1. Note that by definition Sj = Si.

A’ behaves as follows. If there is no mistake at time ¢, then S;, ; = Sj.
If on the other hand a mistake is made, then we pass the example x; to
the simulation of A and set S;,; = Sp,441)4+1- Clearly A’ is conservative
by definition. However, the prediction rule used by A’ at time ¢ is the same as
the one used by A at time m(t) + 1; as a result every time A’ makes a mistake
so does A. Since A has a mistake bound of B, so does A’. O

The requirement that an online learning algorithm be conservative is a
natural one and the above result shows that it is not a restrictive one. This
result will be useful to establish that efficient mistake-bounded online learning
implies PAC learning.

98 CHAPTER 9. MISTAKE-BOUNDED LEARNING

9.2 Relationships to Other Models of Learning

In the PAC learning framework, we have access to an example oracle EX(¢, D)
that when queried returns an example (x,c¢(x)) where x ~ D. Earlier in
the course, we also considered two other oracles, a membership query oracle,
MQ(¢), which when queried with x, returns ¢(x), and an equivalence query
oracle, EQ(c), which when queried with a hypothesis h, either returns that
¢ = h or returns a counterexample x, such that h(x) # c¢(x). We will now
relate mistake-bounded learning to learning using some of these other oracles.

9.2.1 Relationship to PAC Learning

Theorem 9.4. If C is efficiently learnable with a mistake bound B using an
online learning algorithm A, where B < poly(n,size(c)), then C is efficiently
PAC learnable.

Proof. Without loss of generality, let A be a conservative online learning algorithm.
We generate each example (x;,y;) at time ¢ by querying the example oracle
EX(c,D). Let h; denote the hypothesis used by A at time ¢t. Since A is
conservative and has a mistake-bound of B, we need to consider no more than

B + 1 distinct hypotheses.

We either stop the simulation of A after B mistakes have been made and
output the hypotheses that is then guaranteed to be equal to the target c,
or we stop the simulation if we simulate s = %log % steps without making a
mistake. The probability that a hypothesis, h, with err(h) > € will go for s
steps with examples drawn i.i.d from EX(c, D), without making a mistake is at
most (1 —€)® < e % < §/B. Thus, a simple union bound suffices to show the
correctness.

We remark that the condition that B < poly(n,size(c)) together with the
efficiency of A suffices to conclude that the resulting PAC learning algorithm
is efficient. Note that the sample complexity of the resulting algorithm is

O(%log%). O

Remark 9.5. If we wanted to allow non-efficient algorithms, but insist on
polynomial sample complexity and polynomial-time evaluatability of the hypothesis
class, we would still require B < poly(n,size(c)) and would require that the
online learning algorithm A had a polynomial time prediction rule, even if the
state update could potentially take more than polynomial time.

9.2.2 Relationship to Learning Using Equivalence Queries

Proposition 9.6. If C is learnable with a mistake bound B using an online
algorithm A, then C can be learnt using EQ(c) only with at most B+1 equivalence
queries. Furthermore, if A is efficient so is the algorithm that learns using

EQ(c).

Proof. Let h; be the hypothesis used by A at time ¢ for ¢ > 1. We will query
EQ(c) with h;: if we get that ¢ = hy, then we are done, otherwise we get a
counterexample x; which forces A to make a mistake at time ¢. In fact, this
forces A to make mistakes at every single time-step in the simulation. Thus,

9.3. THE HALVING ALGORITHM AND SOME EXAMPLES 99

Algorithm 9.2: Halving algorithm for online learning C'

1 Input: Sequence ((x;,¥;))2, provided online.

2 Let Cl =C

3 fort=1,2,3,...do

4 Receive x;

5 Y = majority{c(x;)|c € C,}

6 Receive y;

7 if y; # 7y, then // mistake made
8 Cipr ={c € C | c(xt) =y}

9 else
10 Ct+1 = Ct

after B mistakes hpyi will be identical to c. We can verify this by an additional
query to EQ(c). O

Proposition 9.7. If C is learnable using only EQ(c) and makes at most Q
queries to EQ(c), then C is learnable with a mistake bound of Q using an online
algorithm. Furthermore, if the algorithm that learns using EQ(c) is efficient,
then so is the online algorithm.

Proof. Let L be the learning algorithm that only uses EQ(c). At any point in its
simulation when it is about to make an equivalence query, it has a hypothesis
h, we will use h to make predictions in the online setting. If we make a mistake,
we have successfully simulated the oracle EQ(c) to get a counterexample. After
(@ such mistakes L has a hypothesis h that is equivalent to ¢ and will make no
further mistakes. Thus, the mistake bound is Q. O

Theorem 9.4 also follows using Proposition 9.6 and an exercise previously
seen that simulates an equivalence oracle using EX(¢, D). The results in this
section show that online learning with a finite mistake bound is at least as
hard as PAC learning. In fact it can be shown that it is strictly harder in
that for the class of linear threshold functions in general we cannot get a finite
mistake bound. We will discuss this point further in Section 9.4. We will
study the Perceptron algorithm in Section 9.4 that gives a finite mistake bound
for learning linear threshold functions with a margin. In Section 9.5, we will
study an algorithm that learns sparse disjunctions with a significantly improved
mistake-bound than can be achieved directly using the Perceptron algorithm.

9.3 The Halving Algorithm and Some Examples

In this section, we will see some information-theoretic bounds for mistake-
bounded online learning algorithms. We will not be concerned with computational
efficiency but see how these compare to other notions such as the VC dimension.

Theorem 9.8. For any finite concept class C over an instance space X, the
Halving algorithm (Alg. 9.2) has a mistake bound of log |C|.

Proof. The proof is immediate. If there is a mistake at time ¢, then |Ciq| <
|Ct|/2. Thus, after log, |C| mistakes, we can have at most one concept left,
which must be the target concept. O

100 CHAPTER 9. MISTAKE-BOUNDED LEARNING

It is also straightforward to see that VCD(C') is a lower bound for any
achievable mistake bound for deterministic algorithms, as we can give any
learning algorithm points from a shattered set and force it to make a mistake
on every one of them. We do know that for finite C, VCD(C) < log |C|. We
will now see some examples where the gap between VCD(C') and log |C| is large
and show that it is possible for the mistake bound to lie at either end of this
interval.

Dictators

Let X = {e1,...,e,} be the instance space where e; is the i*" basis vector
which has 1 in the i co-ordinate and 0 everywhere else. Let C' be the class
of dictator functions C' = {cy,...,c,}, where ¢;(x) = z;, i.e. the output of ¢;
is simply the it bit of x regardless of the remaining bits.? In this case, the
mistake bound of the Halving Algorithm is 1, as is the VCD(C); obviously in
this case log |C| = logn. As an exercise, the reader is invited to show that if
X ={0,1}", then the mistake bound is indeed logn rather than 1.

Binary Search

Let X = {1,2,...,2"} C N. Let C be the class of half intervals defined as
C = {0 < i < 2™}, where,

1 ifz>1
ci(x):{ ifx>1

0 otherwise

In this case it is easy to see that VCD(C) = 1, however the mistake-bound
for any algorithm must be ©(logn) = O(log |C]).

9.4 Perceptron

The Perceptron algorithm is perhaps the most famous online learning algorithm.
It was designed by Rosenblatt [41] and the first proofs of its convergence were
given by Block [10] and Novikoff [39].

For the purpose of this section it will be convenient to treat Boolean
functions as taking values in {—1,1} and also letting sign(0) = 1. We consider
homogeneous halfspaces, or linear threshold functions passing through the
origin, characterised by w € R™. This defines a threshold function fy : R" —
{-1,1} as,

1 fw-x>0
X) =
fu(x) {—1 otherwise
The Perceptron algorithm is given as Alg. 9.3.
Before we formally analyse the algorithm, it is worth understanding geometrically
what the algorithm is doing. Let w* be the true vector that defines the labels

2This terminology comes from social choice theory. The bits 0 and 1 can represent binary
preferences of a group of n individuals and a dictator rule essentially uses the preference of
the ith individual, ignoring the rest. Obviously, the majority rule also lies in this framework
of social choice theory.

9.4. PERCEPTRON 101

Algorithm 9.3: The Perceptron Algorithm

1 Input: Sequence ((x;,¥;))2, provided online.
2 // initialise with the 0 vector

3 Set w; =0 e R"

4 fort=1,2,3,...do

5 Receive x;
6 U =sign(x; - wy)
7 Receive y;
8 if y; # 4, then // mistake made
9 Wil = Wi + YeXy
10 else
11 Wit = Wi

y;. If the algorithm makes a mistake at time ¢ it must be the case that w* - x;
and w; - x; have opposite signs. Thus adding y:x; to w; has the effect of
rotating w; in the direction of w*. This is reasonably correct intuition, but it
is not perfectly accurate, it only does this on average as will be established by
Lemmas 9.10 and 9.11. Rather than analyse the angles between w; and w*,
it will be easier to show that the inner product between w; and w* increases
every time a mistake is made and that the length of w; doesn’t increase too
much. This means that the increase in the inner product is at least in part
caused by the decrease in the angle and not merely by the increase in the
length. We state and prove the following theorem.

Theorem 9.9. Suppose ((xi,y:))52, is a sequence such that for everyt, ||x¢|, <
D and there exists w* € R™ with |[w*|, = 1 and v > 0, such that for every
t, ys(W* - x4) > . Then the total number of mistakes made by the Perceptron
Algorithm (Alg. 9.3) with input sequence ((Xi,y;))$2, is bounded by D?/~2.

Proof. Let m; denote the number of mistakes made by the Perceptron algorithm
up to but not including time ¢. Using Lemmas 9.10 and 9.11, we have the
following,

myy < W' wy Lemma 9.10
< W™l [[Well, By the Cauchy-Schwarz Inequality
< mD. Lemma 9.11

This gives that m; < D?/~? for every t.
O

Lemma 9.10. Let m; denote the number of mistakes made by the Perceptron
algorithm (Alg. 9.3) up to, but not including, time t on a sequence ((x;,4:))2,
satisfying the conditions of Theorem 9.9. Then,

Wy - W* Z Y.

Proof. We prove this by induction. When ¢t = 1, w; = 0 and m; = 0, so this is
clearly true.

102 CHAPTER 9. MISTAKE-BOUNDED LEARNING

Now suppose this is true for time ¢. If no mistake occurs at time ¢, then
my41 = my and W1 = Wy, so the inequality continues to hold. On the other
hand, if there is a mistake, then m;y; = m; + 1, and we have,

Wip1 - W= (W +yxy) - W™
> myy + ye(xe - W)
> (my + 1)y = my17.

This completes the proof. O

Lemma 9.11. Let m; denote the number of mistakes made by the Perceptron
algorithm (Alg. 9.3) up to, but not including, time t on a sequence ((X;,v;))52,
satisfying the conditions of Theorem 9.9. Then,

[wells < D*my.

Proof. We prove this by induction. When ¢t = 1, wy; = 0 and m; = 0, so this is
clearly true.

Now suppose this is true for time ¢. If no mistake occurs at time ¢, then
mey1 = my and W1 = Wy, so the inequality continues to hold. On the other
hand, if there is a mistake, then m;11 = m; + 1, and we have,

[Wesally = [we + vexell3
< lwells + lIxell3 + 2yewe - %
< m;D?* + D?
< (my +1)D?* = my 1 D?.

Above, in the second last step, we used the fact that ||x;||, < D and that
ye(wy - x¢) < 0 as the Perceptron algorithm made a mistake at time ¢. This
completes the proof. O

Some Comments

Notice that for convergence, we require a margin condition: y(w*-x) >y >0
for all points (x,y) seen by the algorithm. Clearly, the condition implies that
y has the same sign as w* - x, but it further says that the projection of x in
the direction of w* must have length at least v (as w* is a unit vector). This
means that there is a region of width 2 around the hyperplane {x | w*-x = 0}
in which we do not observe any data. This is what it means to say that the
linear threshold function has a margin v under the distribution. On Problem
3 of Sheet 6, you will essentially show a matching lower bound on the mistakes
made by the Perceptron algorithm. It is in fact possible to show that no online
algorithm can achieve a finite mistake bound without a margin condition for
learning threshold functions. This can already be seen in the one-dimensional
case by generalising the binary search example from Section 9.3. It is worth
recalling that in the PAC setting we do have efficient algorithms for learning
linear threshold functions. Thus, this also yields a separation between PAC
learning and mistake-bounded online learning.

It is also worth comparing the updates of the Perceptron algorithm to the
algorithm we developed for learning GLMs. Note that we can consider sign :

9.5. THE WINNOW ALGORITHM 103

R — R as a function that is monotone; it is however not Lipschitz. If we used
the same surrogate loss approach we would get update rules that are the same
as the one used by Perceptron (up to constant factors); this corresponds to
an online gradient descent approach. The margin condition allows us to use a
Lipschitz approximation of the sign function as there is no data in the region
around the boundary.

9.5 The Winnow Algorithm

We will now look at an online learning problem where the target function
depends on a relatively small number of features, but the total number of
available features is very large. The particular example we shall look at is the
class of monotone disjunctions. Let X = {0,1}" be the instance space, for any
subset S C [n], then define the monotone disjunction,

fs(x) = \/ z;.

€S

The class of monotone disjunctions is the set of all such fg, S C [n]. For any
monotone disjunction, fg, it can be expressed as a linear threshold function,

fs(x) = sign le - %)

i€S

where we map {0,1} to {—1,1} in order to ensure the equivalence. This
suggests that one can use the Perceptron algorithm for online learning monotone
disjunctions. There are a couple of tweaks required to make this work. First,

the way we have defined the Perceptron algorithm it only works for homogeneous
halfspaces. This is relatively easy to handle. We instead consider the instance
space to be X, 11 and let the last bit of all examples always be 1. Then, any
threshold function of the form sign(w-x+b) where w € R", x € X, and b € R
can be written as sign((w,b) - (x,1)), where (w,b) € R"™ and (x,1) € X,,41.

Second, we need to look at target vectors having norm 1 in order to apply
Theorem 9.9. For S C [n], let w§ € R""! be such that w} = cif i € S and
wr =0fori¢ S andi<n,andlet w;,, =—c/2. By setting ¢ =1/(|S|+ 1)
we can ensure that [|[w*||, = 1. Note that fg(x) = sign(wy-(x,1)) for every x €
X,,. Clearly, we have that ||(x, 1)”; <n+1. And y(w§-(x,1)) > ¢/2. Thus, we
can use v = ¢/2 and D = /n + 1, to get a mistake bound of 4(n + 1)(|S|+ 1).
If we knew that |S| < k, applying Theorem 9.4 this would give us a PAC
learning algorithm with a sample complexity O((nk/e)log(nk/e)). However,
using Occam’s Razor, we would expect a sample complexity of O((klogn)/e+
log(1/9)/e).

We will study an online algorithm called Winnow which achieves a mistake
bound of O(k log n) for this problem. This will essentially give us a near optimal
sample complexity after applying Theorem 9.4. The online algorithm itself is
of independent interest as it uses multiplicative weight updates which we shall
study in greater detail later. This algorithm and its analysis appeared in the
work of Littlestone [35]. The algorithm in the paper can be generalised to
certain types of linear threshold functions which we won’t consider here.

104 CHAPTER 9. MISTAKE-BOUNDED LEARNING

Algorithm 9.4: The Winnow Algorithm

1 Input: Sequence ((x;,y;))2, provided online.
2 // initialise with a vector of 1s

3 Set wi = (1,1,...,1) of length n

4 fort=1,2,3,... do

5 Receive x; € {0,1}"™

6 =1 (w; x> %)

7 Receive y;

8 if y; =1 and y; = 0 then // mistake made; elimination case
9 for j=1,...ndo

10 if 2, ; = 1 then // 3t bit of x, is 1
11 W1, =0

12 else

13 Wi41,5 = We,j

14 else if 3y =0 and y; = 1 then // mistake made; promotion case
15 for j=1,...ndo

16 if #;; =1 then // 7t bit of x, is 1
17 Wi41,5 = 2wt}j

18 else

19 Wt41,57 = Wt,5

20 else

21 Wil = Wi

Winnow starts by assigning a weight of 1 for every input feature. It adjusts
these weights every time it makes a mistake by either doubling the weight for
some feature or setting it to 0. Once a weight is set to 0 it can never become
non-zero again. The predictions are made using a weighted majority rule. The
main result we will prove is that for online learning monotone disjunctions, the
mistake bound of Winnow is O(klogn), where k is the number of variables in
the target disjunction.

Theorem 9.12. Let ((x;,y:))52; be an infinite sequence with y; = fs(x;) for
every i where |S| = k. Then if Winnow (Alg. 9.4) is given this input in an
online fashion, the number of mistakes made by Winnow is at most 2k logy n+2.

Proof. We will prove this theorem through a sequence of claims which are
proved separately. Let P be the number of times the algorithm makes mistakes
of the form where y; = 1 and ; = 0. These are promotion steps, as the weights
increase for some of the features. Let E be the number of times the algorithm
makes mistakes of the form of y; = 0 and 3; = 1. These are elimination steps,
as some weights are set to 0.

The total number of mistakes is P+ N. Claim 9.15 shows that P < klog, n
and Claim 9.14 shows that £ < P + 2. Together these yield the required
result. O

Claim 9.13. Under the conditions of Theorem 9.12, if wy; is the weight of
the ith feature at time t for the Winnow Algorithm (Alg. 9.4), we have w; < n.

9.5. THE WINNOW ALGORITHM 105

Proof. Suppose there is a mistake at time ¢. Clearly the weights only increase
when y; = 1 and y; = 0. Only those indices ¢ for which z;; = 1 can have their
weights changed. The fact that g, = 0 means that w,; < n/2 for each i such
that x;; = 1. Then, it follows that w:;1; < n. O

Claim 9.14. Under the conditions of Theorem 9.12, if P is the number of
mistakes when Yy = 0 and E is the number of mistakes when y, = 1, we have
E<P+2.

Proof. We consider how the quantity), w;; varies with time. Note that this
quantity is always non-negative and when t = 1, Y. w;; = n. Every mistake
where y; = 1 and 7; = 0 increases the sum of weights by at most n/2. This is
because the weights are doubled for all 7 such that z;; = 1; however, the reason
y: = 0 was that ZZ wy Tt < n/2. So doubling these weights can’t increase
the total weight by more than n/2.
On the other hand, by essentially the same logic, every mistake where y; = 0
and gy = 1 decreases the total weight by at least n/2.
Thus, we have for all ¢,
OSZwm §n+P-g—E~%.
K3

The conclusion then follows. O

Claim 9.15. Under the conditions of Theorem 9.12, if P is the number of
mistakes when y; = 0, we have P < klogyn.

Proof. We look at each time a mistake of the type where y; = 1 and g = 0
occurs. There must be some i € S, where S is the set of literals in the target
disjunction, such that z;; = 1. Thus w;; will be doubled. Note that for any
i € S, we; can never be set to 0 and every mistake that is counted in P doubles
the weight of at least one of the relevant variables. The fact that |S| < k and
Claim 9.13 finishes the proof. O

Chapter 10

Online Learning with Expert
Advice

In this chapter, we will move away from the prediction learning framework,
either binary or real-valued, and consider a more abstract sequential decision
making framework. The general framework turns out to be very powerful, and
as applications, we will re-derive a boosting algorithm similar to AdaBoost, as
well as see a proof of von Neumann’s Min-Max theorem.

10.1 Learning with Expert Advice

We consider a sequential decision making problem as a repeated game between
a learning algorithm or a decision maker (DM) and an environment. The game
will be played for T rounds and we assume that 7" is known to the decision
maker.! The decision maker has to choose between n options at each time
step; the decision maker can pick a probability distribution over n options, i.e.
a point from the probability simplex,

A ={x|x€R"z; >0, x =1}
i
These options are sometimes called experts; this is because we can view this
as the decision maker having advice from n different experts and seeking to
combine the advice to come up with their own decision rule. Hence the name
learning with ezpert advice. The game proceeds in rounds as follows. For
t=1,2,...,T:

o At time ¢, DM picks x; € A,,.
e The environment picks a loss vector 1, € [0, 1]™.

e The loss suffered by DM at time ¢ is x; - ; and DM observes the entire
loss vector, 1.

First, we consider the choice of the decision maker. The decision maker may
choose x; at time t based on all the available information, i.e. x1,1y,...,x;_1,1;_1.
In principle, we would allow x; to be an arbitrary computable function of

IThis is not a serious restriction. For tricks to remove this restriction refer to [19)].

107

108 CHAPTER 10. ONLINE LEARNING WITH EXPERT ADVICE

the history, though the algorithms we study turn out to be computationally
efficient.

Second, we can consider the loss vectors 1; produced by the environment.
We will not constrain the environment beyond the requirement that each entry
of 1; be in the interval [0,1]. In fact, the environment may chose the loss vector
I; in response to all the available history, including the choice x; made by the
decision maker at time t.

How do we measure performance of the decision maker in this case? Clearly
simply requiring the DM to minimise loss across the T time steps is not sufficient
as the environment could simply require all n options to have a loss of 1 at each
time step. Instead, we will be interested in a notion of relative performance with
respect to a class of strategies. We will look at the simplest set of strategies,
i.e. strategies that don’t change over time. However, we will find the best such
strategy in hindsight. We define the notion of regret of the decision maker,
DM, as,

T T
Regret(DM) = E Xt lt — mgl E X lt~
XEAR
t=1 t=1

It is worth commenting on the notion of regret before we design algorithms to
minimise regret. The decision maker has the advantage of being able to change
its decisions every time step but has the disadvantage of not knowing the future.
On the other hand, the performance comparison is to a fixed strategy which
has the benefit of hindsight. (It is worth observing that regret may be negative
in this case.) What this suggests is that if there were a fixed strategy that
would have performed “well”, then having low regret would suggest that the
decision maker performs almost as well. Thus, if the environment was relatively
benign with loss vectors not changing very rapidly and the same options doing
well over time, we would expect the decision maker to eventually figure out
a good distribution over options. On the other hand, if the environment was
very adversarial and no fixed strategy could have achieved a good performance
then we would not expect the decision maker to have low loss even if it had
low regret. Of course, one may take the view that the comparison to fixed
strategies is too restrictive and we would like the decision maker to have low
regret with more complex strategies. Indeed, such problems can be considered
and the interested reader is referred to the excellent book by Cesa-Bianchi and
Lugosi [19] for several generalisations and extensions.

A natural interpretation of the above formulation is in terms of betting over
n different options which may change in value over time in uncertain ways. We
can spread a unit amount of money every day and we would like our long
term performance to be not much worse than the single best option (or single
distribution) in hindsight. In fact, because the loss function 1-x is linear in x,
the minimum is (also) achieved at a vertex of the simplex A,,. So we may in
fact simply compare our performance with the best single option and rewrite
the definition of regret as,

T T
Regret(DM) = th -1; — min Zlm.
t=1 1

1€[n] P

10.2. FOLLOW THE LEADER 109

10.2 Follow The Leader

We will use the notation L; = 22;11 I;. A natural strategy is to pick x; at
time ¢ that minimises the cumulative historical loss, i.e. pick x; € A, that
minimises x; - L;. In fact, this x; can be chosen to be one of the vertices of the
simplex A, i.e. we may pick x; with z;; = 1 for ¢ € argmin; L; ; and x¢ ; =0
for j # i. This algorithm is sometimes called Follow-the-Leader as it picks the
strategy that has historically proved the best.

It turns out however that a strategy that would have performed best on
historical observations, may not perform well in the future, and indeed this
algorithm does not get a good bound on the regret. The following example with
only two options, when T is even, establishes the problem with this strategy.

11 12 13 14 e IT
Option1 [05| 0 | 1|0 . 0
Option 2 0 1101 . 1

The strategy may pick either option at time ¢ = 1, but subsequently it
would always pick option 2 in even time steps and option 1 in odd time steps.
Thus, it would incur a total loss of at least T"— 1. However, the first option
only has a loss of T/2 — 1/2. Thus, the regret incurred is at least 7/2 — 1/2
which grows linearly in T'. If we ignore constant factors, this is a completely
trivial regret bound as no algorithm incurs a loss of more than 7" as the losses
are constrained to be in [0, 1] at each time step; as all losses are non-negative
the regret can be at most 7.

Although the Follow-the-Leader strategy does not work well in this particular
case, there are online optimisation problems in which the strategy does give
non-trivial (and in fact close to optimal) regret bounds. The problem in this
specific setting is that the decision rule is too unstable, i.e. it may change
drastically at every time step based on small changes to the loss vectors. In
the next section, we will see a small modification to the algorithm that is more
stable that does actually give optimal regret bounds.

10.3 The Multiplicative Weight Update Algorithm
(MWUA)

Algorithm 10.1 presents the Multiplicative Weight Update Algorithm (MWUA)
for the sequential decision making problem. This algorithm, or close variants,
go by various names including Weighted Majority, Exponentially-weighted Forecaster,
Hedge, etc. The reason for these names and indeed variants is that very
similar abstractions of this sequential decision making problem have been
studied in various fields including information theory, game theory, learning
theory, complexity theory, among others. The excellent survey article by
Arora et al. [7] gives several variants of this algorithm and applications to
approximation algorithms and optimisation. The book by Cesa-Bianchi and
Lugosi [19] considers various problems in learning theory, game theory, information
theory and optimisation.

Before we analyse the algorithm, let us see in what sense this algorithm is a
tweak of the Follow-the-leader Algorithm. Let L; = 22;11 1, as defined above.
Then the Follow-the-leader strategy simply picks x; that minimises L;, which

110 CHAPTER 10. ONLINE LEARNING WITH EXPERT ADVICE

Algorithm 10.1: The Multiplicative Weight Update Algorithm
(MWUA)

1 Input: Time Horizon T'; parameter n
2 // initialise wq with a vector of 1s

3 Let wy = (1,...,1)T € R"

4 fort=1,2,...,T do

5 Xy =%t 2y = D i Wi
6 Play x;
7 Receive loss x; - 1;
8 Observe 1;
9 for j=1,...ndo
10 Wit1,; = Wy j - exp(—nly,i)

can be represented in vector form as picking from argmin,n X - L. In fact,
all vectors in argmin, . x - L; are exactly the subgradients of the function
f:R™ = R, given by f(z) = min; z; at the point L;. Instead, if we define the
function,

n

f”(z):—lln Ze*”’zi ,

N i=1

then it is easy to see that in the limit as n — co f7(z) = min; z;. Thus, 7"
is from a family of soft min functions, which are differentiable; the gradient
of f7 is called the argsoftmin function and indeed the MWUA algorithm sets
x; = Vf1(L;). The softening of the min function can be viewed as a form
of regularisation. Yet another view of the x; picked by the algorithm is the
following, x; is the constrained minimum of the following optimisation problem,

1
min L; - x — —H(x).
xXEA, "7
where H(x) = — > ", z;Inx; is the entropy function. The negative entropy

term above acts as a regulariser. Minimising the function L; - x pushes the
solution to a corner of the simplex, whereas minimising the negative entropy
term pushes it towards the centre of the simplex, i.e. encourages more hedging.
Indeed, many analyses of the regret bound of MWUA are possible using the
interpretations above, some of which lead to more insightful proofs. We will
consider a short potential-based proof which uses Z; as a potential function.

Theorem 10.1. For the MWUA algorithm run with n = lr‘T”, we have,
Regret(MWUA) < 2vTInn.

Proof. Consider the following,

Ziv1r _ 3 Wik Doi—q Wei eXp(—le,i)
Zy Zy Zy

10.3. THE MULTIPLICATIVE WEIGHT UPDATE ALGORITHM
(MWUA) 111

By the convexity of z — e~ "* we have exp(—nz) < 14+ (e~ "7—1)z for z € [0, 1].
Thus, we have,

L (14 (e =)iy)

7z t
>

=1+ (6777 — l)Xt . lt.

Above, we have used the definition x; = w;/Z;. Further, using the fact that
1+ x < e”, we have,

Z,
Zl < exp ((e_” — 1)xy - lt))

We can multiply the ratios Z;1/Z; for t = 1,...,T, and use the bound above
to obtain,

T
Zri1 _
7 S e (7" —1)- ;xt 1. (10.1)

On the other hand, we note that w;; = exp(—n Zi;ll ls;). So we have the
following for each i € [n],

T
Zri1 S Wi _ exXp (777 Zt:llt7i>
Zy n n ’

(10.2)

Combining Equations (10.1) and (10.2), and taking natural logarithms, we
have for each i € [n],

*Uthz 1HTL< th lt

Moving Inn to the RHS and adding 7 EZ;I x; - 1; to both sides, we get,

T T T
th'lt_zlt,i §(e*"—(1—n))2xt'lt+lnn.
t=1 t=1 =1

Using the fact that e=” < 1 —n +n? for n € [0,1] and dividing both sides by
71, we have for all 4,

th lt_zltz <7]ZXt lt+1nn

Finally, noticing that x; - 1; < 1 for each ¢, setting 7 as in the statement of
the theorem, and observing that because the above holds for each i € [n], by
linearity, it applies to each x € A,,, we get the result as follows:

ZXt lt—ZZZ‘ltl <’I7T+T <2\/T1nn

t=1 i=1

As the above applies to each x € A,;, the proof is complete. O

112 CHAPTER 10. ONLINE LEARNING WITH EXPERT ADVICE

We remark that the choice x; made by the algorithm at time ¢ only depends
on the loss vectors 1y, ...,1;,_1 given by the environment (in fact only on their
sum). There is no dependence whatsoever on the past choices made by the
algorithm, and the algorithm itself is completely deterministic. Hence, even if
the environment completely adversarially picks the loss vectors 1, the algorithm
still retains the guarantee. In fact, there is no need for the environment to wait
to see the choice made by the algorithm as it can be computed directly using the
previous loss vectors. In this sense, the MWUA algorithm achieves guarantees
against adaptive and adversarial environments. This particular aspect will be
useful in applications to game theory.

10.3.1 Lower Bound

In this section, we will give a sketch of why the bound achieved in Theorem 10.1
is essentially tight (up to constant factors). We will not give a formal proof,
though writing a formal proof is not very difficult. We will also only establish
a lower bound of Q(v/T) for deterministic algorithms, when there are only
n = 2 options. The environment at time ¢ picks the loss vector (1,0) or
(0,1) with equal probability independently at each time step. Now for any
algorithm, its expected loss is exactly 7'/2. On the other hand the expectation
of min;e 23 23:1 ly; is T/2 — Q(V/T). This follows from a simple exercise: if
X ~ Binomial(T,1/2), what is the E [min{X,T — X}|? This shows that the
VT factor in the regret bound is tight; a slightly more detailed construction
shows that v/In n is also required in the regret bound as a multiplicative factor.
The formal proof appears in [19].

10.4 Application: Boosting Algorithm

In this section, we will see an application of the MWUA algorithm to get a
boosting algorithm. As in the case of AdaBoost, we will assume that the
weak learner returns hypotheses from a hypothesis class, H, of finite VC
dimension and focus on finding a (combined) hypothesis that is consistent with
the training data. We will not worry about the generalisation error here, as it
can be bounded using the bound on the VC dimension of the resulting classifier
exactly as in the case of AdaBoost. In fact, there are many similarities between
the AdaBoost algorithm and MWUA and indeed in their analyses.

Let S = {(x1,¥1),- -, (Xm,ym)} be a training dataset with m points, where
y; = c(x;) for some ¢ € C. Here C is the concept class for which we have a
weak learning algorithm available.

We are going to treat this as a sequential decision making problem with m
options. At each time ¢, the decision maker, DM, will use MWUA to pick a
distribution, which we will call d; € A, to distinguish it from the data (x,y).

We will also simulate the environment. For this reason, we will use the
weak learning algorithm, WEAKLEARN. We shall assume for simplicity that
the weak learning algorithm succeeds with probability 1 instead of probability
1 — 4. At time ¢, let h; be the hypothesis returned by the weak learning
algorithm with respect to the distribution d; € A,,. Note that the distribution
d;, puts probability mass d;; on (x;,y;) for ¢ = 1,...,m. In particular, we
have err(h;;d;) < % — 7, where 7 is the parameter of WEAKLEARN. We define

10.5. APPLICATION: VON NEUMANN’S MIN-MAX THEOREM 113

the loss vector 1, € [0,1]™ as follows, I;; = 1 if hy(x;) = y; and I;; = 0
otherwise. Based on the construction and the property of the weak learner, we
have d; - I; =1 — err(hy;dy) > % + ~ for every t.

We can make use of the regret guarantee. Note that I, ; = 1(hy(x;) = ;).
Theorem 10.1 allows us to conclude that provided the DM uses MWUA to
generate the decisions d; € A,,, we have for each ¢,

T T
Dodi L =Y 1(h(x) =yi) < 2VTInm.
t=1 =1
Using, the fact that d; - 1; > 1/2 4+ v for each ¢, and rearranging, we get,
1 T
T- <2 —|—’y> —2vTInm < Z]l(ht(xi) =y;).
=1

Hence,

E

% VT - (WT —2vVInm) < Y 1(he(x:) = v2).

~
I
—

Observe that for T > 4Inm/~?, the LHS is strictly larger than T//2. This
means that the majority of the hypotheses h; classify the ith example (x;,y;)
correctly for every ¢. Thus simply outputting majority{hi(x),. .., hr(x)} will
give a hypothesis that is consistent with the training set. Note that the number
of calls made to the weak learning algorithm is of the same order as that made
by AdaBoost and as the majority function can be written as thresholds of
hypotheses from the hypothesis class used by WEAKLEARN, the generalisation
error can be bounded in exactly the same way as in the analysis of AdaBoost.

10.5 Application: von Neumann’s Min-Max Theorem

As another application of the MWUA algorithm, we will give a proof von
Neumann’s Min-Max theorem. We will be brief and terse in our description of
two player zero-sum games. Readers unfamiliar with these notions may wish
to read an introductory chapter in a book on game theory.

We will consider finite two player zero-sum games with bounded payoffs.
We will assume that all payoffs for one player are bounded in [0, 1]; so for the
other player they are in [—1,0]. The game has two players, typically called a
row player and a column player. The game is specified as an n X m matrix,
P, with n rows and m columns. The row player has to pick one of n options
and the column player has to pick one of m options. If the row player picks @
and the column player picks j, then the row player gets a payoff of P;;. (As
it is a zero-sum game, the payoff to the column player is —FP;;.) Clearly, there
is an advantage in moving second as you can observe the option picked by the
other player. Suppose the row player moves first: if they pick i, the column
player will certainly pick j that will minimise the payoff of the row player (as
it is a zero sum game), resulting in a payoff of min; P;;; thus to maximise their
payoff, the row player will pick i for which this quantity is the largest. In other

words, the best achievable payoff for the row player is max; min; F;;.

114 CHAPTER 10. ONLINE LEARNING WITH EXPERT ADVICE

An entirely identical argument shows that the best payoff achieved by the
row player if they go second is min; max; P;;. This is of course assuming that
both players are playing rationally. Thus, clearly we have that,

max min P;; < min max P;;.
i J 7 7
When players are forced to pick a single option, something which is known as
pure strategies, the above inequality can indeed be strict. The following simple
game in which both players have two options establishes a strict inequality.

112
17110
21011

For this game, max; min; P;; = 0 and min; max; P;; = 3. However, we
can also consider mized strategies, where rather than picking a single option,
each player picks a distribution over their options. The other player can see
the distribution of their competitor, but not the actual random choice. For
example, think of playing rock-paper-scissors with someone, where you know
their (random) strategy, but can’t predict what particular random choice they
will make when actually playing the game. Now suppose the row player has a
strategy x € A,, and a column player has strategy y € A,,, then the payoff to
the row player (in expectation) is,

~E [P;]=x"Py.
a2l SYiad's

We can similarly define optimal strategies for the row player depending
on whether they are going first or second. When the row player goes first, the
optimal value they can achieve is called the maxmin value, denoted by vmaxmin,
and defined as,

Umaxmin = Max min XTPy.
XEA, YEA,
Similarly, the best value achievable by the row player if they go second is the
minmax value, denoted by vminmax, and defined as,

Uminmax = Min max XTPy.
YEA,, XEA,

As in the previous case, we can immediately see that,?

Umaxmin S Uminmax- (103)

What von Neumann’s theorem states is that, for finite two player zero-sum
ganes, Umaxmin = Uminmax-

We could of course frame this theorem in terms of losses rather than payoffs,
but that would deviate from standard statements of this result. Instead, we
make a series of observations. It is without loss of generality to assume that
payoffs are in [0, 1]. First, we can always make payoffs for the row player to be
positive because in terms of solution concepts, zero-sum games and constant-
sum games are identical. Second, we can always scale payoffs so that they are

2Essentially, this part of the argument is weak duality, and von Neumann’s theorem
states that strong duality holds.

10.5. APPLICATION: VON NEUMANN’S MIN-MAX THEOREM 115

in the interval [0,1]. Finally, we can replace losses in the sequential decision
making problem by payoffs, or rather consider loss vectors as coming from
payoff vectors, p; and set I; = 1 — p;. Then, we can rephrase the statement of
Theorem 10.1 as,

T
Regret(MWUA) = max Zx p: — th p: <2vTlnn. (10.4)
] t=1
We will simply run the algorithm by using 1, = 1 — p; as our loss vectors when
we are actually given payoff vectors p;.

With that out of the way, we are ready to give a proof of von Neumann’s
Min-Max theorem using the MWUA algorithm. The row player will implement
the MWUA algorithm (with payoff vectors suitably converted to loss vectors).
Let x; € A,, be the strategy picked by MWUA at time ¢. The column player
picks y; as,

Y+ € argminx, ! Py.
y

Clearly, we have that,

Py = min x, Py < max min XTPy = VUmaxmin-
YEA,, XEA, YEA,,

We set the payoff vector p; = Py; € [0,1]"; and note that the above inequalities
show that x; - pr < Uminmax for all ¢. Hence,

T

th * Pt S Tvmaxmin- (105)
t=1

On the other hand, we have,

T
irel%(l;x-pt T- maxx Tp Zyt
> T . min max XTPy TVminmax- (10.6)
YEA,, XEA,,

Combining Eqns. (10.4), (10.5) and (10.6), we get that,

/1
Uminmax — Umaxmin < Regret(MWUA) <2 r;n

Since the above holds for all 7' > 1, it must be that vminmax < Umaxmin, Which
combined with Eq. (10.3), completes the proof of the theorem.

Appendix A

Inequalities from Probability
Theory

It is assumed that the reader has sufficient familiarity with the basics of the
theory of probability.

A.1 The Union Bound

This is an elementary inequality, though surprisingly powerful in several applications
in learning theory and the analysis of algorithms. If A;, Ag,... is a (at most
countable) collection of events, then

P JAi| <> PA). (A1)
This inequality is known as the union bound (or Boole’s inequality) as it shows

that the probability of the union of a collection of events can be upper-bounded
by the sum of the probabilities of the individual events in the union.

A.2 Hoeffding’s Inequality

Let Xy,..., Xy, bem independent random variables taking values in the interval
[0,1]. Let X = L™ X, and let = E[X]. Then for every ¢ > 0,

P UX u’ > t} < 2exp (—2mt2> . (A.2)

This inequality is known as the Hoeffding’s inequality [29].

A.3 Chernoff Bound

Let Xi,..., X;, be m independent random variables taking values in the set
{0,1}. Let X =Y, X, and let y = E[X]. Then for every 0 < ¢ <1,
P[X < (1-0)u| <exp (~0%u/2)., (A.3)
P [7{ > (14 5),4 < exp (—5%/3) . (A.4)

117

118 APPENDIX A. INEQUALITIES FROM PROBABILITY THEORY

The above pair of inequalities are known as the Chernoff bound. These are
not the tightest possible bounds that can be obtained, but will be sufficient
for our purposes. The interested reader may refer to more complete works on
concentration inqualities, e.g. [24, 14].

Appendix B

Elementary Inequalities

B.1 Convexity of exp
For any x € R, the following inequality holds,
1+x<e”. (B.1)

The proof is immediate using the convexity of the exponential function.

B.2 Auxilliary Lemmas

Lemma B.1. For anya > e, b> 0, for every x > max{8,2 + 2logb}aloga,
x > alog(bx).

Proof. Let f(xz) = x — alog(bzx). Tt is easy to check that f'(z) > 0 for > a.
Note that if C' = max{8,2 + 2logb} and as a > e, we have Caloga > a. As a
result, f(x) > f(Caloga). Thus it suffices to show that f(Caloga) > 0.

This can be verified as follows:

f(Caloga) = Caloga — alog(Cabloga)
= Caloga —alogC —aloga — alogb — alogloga
= (2aloga — aloga — alogloga) + a((C — 2)/2 — log C)
+a((C —2)/2 —logb)
> 0.
Above we have used that logloga < loga, loga > 1, C' > 2 + 2logb and

that for C' > 8, C' > 2+ 2logC.
O

119

Appendix C

Notation

C.1 Basic Mathematical Notation

The set of natural numbers (not including 0)
The set of integers

The set of rational numbers

The set of real numbers

AFON Z

C.2 The PAC Learning Framework

X A datum or the input part of an example
z; The i co-ordinate (attribute) of example x

121

Bibliography

Sarah R Allen, Ryan ODonnell, and David Witmer. How to refute a
random csp. In Foundations of Computer Science (FOCS), 2015 IEEE
56th Annual Symposium on, pages 689-708. IEEE, 2015.

Noga Alon and Joel H Spencer. The probabilistic method. John Wiley &
Sons, 2004.

Dana Angluin. Learning regular sets from queries and counterexamples.
Information and computation, 75(2):87-106, 1987.

Dana Angluin and Michael Kharitonov. When won’t membership queries
help? In Proceedings of the twenty-third annual ACM symposium on
Theory of computing, pages 444—454. ACM, 1991.

Dana Angluin and Philip Laird. Learning from noisy examples. Machine
Learning, 2(4):343-370, 1988.

Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, 2009.

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights
update method: a meta-algorithm and applications. Theory of Computing,
8(1):121-164, 2012.

Peter Auer, Mark Herbster, and Manfred K Warmuth. Exponentially
many local minima for single neurons. Advances in neural information
processing systems, pages 316-322; 1996.

Paul W Beame, Stephen A Cook, and H James Hoover. Log depth circuits
for division and related problems. SIAM Journal on Computing, 15(4):
994-1003, 1986.

Hans-Dieter Block. The perceptron: A model for brain functioning. i.
Reviews of Modern Physics, 34(1):123, 1962.

Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay
Mansour, and Steven Rudich. Weakly learning dnf and characterizing
statistical query learning using fourier analysis. In Proceedings of the
twenty-sixzth annual ACM symposium on Theory of computing, pages 253—
262. ACM, 1994.

Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning,
the parity problem, and the statistical query model. Journal of the ACM
(JACM), 50(4):506-519, 2003.

123

124

[13]

[24]

[25]

[26]

[27]

BIBLIOGRAPHY

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K
Warmuth. Occam’s razor. Information processing letters, 24(6):377-380,
1987.

Stéphane Boucheron, Géabor Lugosi, and Pascal Massart. Concentration
inequalities: A nonasymptotic theory of independence. Oxford University
Press, 2013.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

Nader H Bshouty and Vitaly Feldman. On using extended statistical
queries to avoid membership queries. Journal of Machine Learning
Research, 2(Feb):359-395, 2002.

Sébastien Bubeck. Convex Optimization: Algorithms and Complexity.
Foundations and Trends in Machine Learning. Now, 2015.

David M Burton. Number theory. McGraw-Hill, 2005.

Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games.
Cambridge University press, 2006.

Amit Daniely. Complexity theoretic limitations on learning halfspaces.
arXiv preprint arXiv:1505.05800, 2015.

Amit Daniely and Shai Shalev-Shwartz. Complexity theoretic limitations
on learning DNFs. CoRR, abs/1404.3878, 1(2.1):2-1, 2014.

Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. From average case
complexity to improper learning complexity. In Proceedings of the Forty-
sizth Annual ACM Symposium on Theory of Computing, STOC ’14, pages
441-448, New York, NY, USA, 2014. ACM.

Ronald de Wolf. Philosophical applications of computational learning
theory : Chomskyan innateness and occam’s razor. Master’s thesis,
Erasmus Universiteit Rotterdam, 1997.

Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of measure
for the analysis of randomized algorithms. Cambridge University Press,
2009.

Yoav Freund. Boosting a weak learning algorithm by majority. In COLT,
volume 90, pages 202-216, 1990.

Yoav Freund and Robert E Schapire. A desicion-theoretic generalization
of on-line learning and an application to boosting. In Furopean conference
on computational learning theory, pages 23-37. Springer, 1995.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. In Foundations of Computer Science, 1984. 25th
Annual Symposium on, pages 464-479. IEEE, 1984.

Peter D Griinwald. The minimum description length principle. MIT press,
2007.

BIBLIOGRAPHY 125

[29]

[30]

[31]

[32]

Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58(301):13-30,
1963. ISSN 01621459. URL http://www.jstor.org/stable/2282952.

Edwin T Jaynes. Probability theory: The logic of science. Cambridge
university press, 2003.

Michael Kearns. Efficient noise-tolerant learning from statistical queries.
Journal of the ACM (JACM), 45(6):983-1006, 1998.

Michael Kearns and Leslie Valiant. Cryptographic limitations on learning
boolean formulae and finite automata. In Proceedings of the Twenty-first
Annual ACM Symposium on Theory of Computing, 1989.

Michael Kearns and Leslie Valiant. Cryptographic limitations on learning
boolean formulae and finite automata. Journal of the ACM (JACM), 41
(1):67-95, 1994.

Michael J. Kearns and Umesh K. Vazirani. An Introduction to
Computational Learning Theory. The MIT Press, 1994.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A
new linear-threshold algorithm. Machine learning, 2(4):285-318, 1988.

David JC MacKay. Information theory, inference and learning algorithms.
Cambridge university press, 2003.

Michael Mitzenmacher and Eli Upfal. Probability and computing:
Randomization and probabilistic techniques in algorithms and data
analysis. Cambridge University Press, 2017.

A. Nemirovski and D. Yudin. Problem Complexity and Method Efficiency
in Optimization. Wiley Interscience, 1983.

Albert B Novikoff. On convergence proofs for perceptrons. Technical
report, Stanford Research Institute, Menlo Park, CA, 1963.

Christos H Papadimitriou. Computational complexity. John Wiley and
Sons Ltd., 2003.

Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386,
1958.

Robert E Schapire. The strength of weak learnability. Machine learning,
5(2):197-227, 1990.

Leslie Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, 1984.

http://www.jstor.org/stable/2282952

Index

3-term-DNF, 13
AdaBoost, 40

Boole’s inequality, see union bound
boolean circuit, 18

boolean hypercube, 7

boosting, 40

Chernoff Bound, 117
clauses, see disjunctions
concept class, 5
conjunctions, 9
consistent learning, 22

DCRA, see Discrete Cube Root Assumption

decision list, 26

DFA, see Discrete Finite Automata
dichotomies, 27

Discrete Cube Root Assumption, 46
Discrete Cube Root Problem, 45
Discrete Finite Automata, 56
disjunctions, 11

disjunctive normal form, see DNF

DNF, 7

EQ, see equivalence query
equivalence query, 52
error, 6

exact learning, 52
example oracle, 5

growth function, 30

Hoeffding’s inequality, 117
hypothesis class, 16

improper learning, 17
instance size, 8
instance space, 5

127

k-CNF, 11

L* Algorithm, 59

linear threshold functions, 18, 29,
36

LTF, see linear threshold functions

membership query, 52
Monontone DNF, 54
MQ, see membership query

Noisy Oracle (RCN), 63
Occam’s Razor, 21

PAC learning, 17
Take I, 6

Take II, 7
PAC+MQ learning, 53
parities, 25

proper learning, 17

Radon’s Theorem, 37

Random Classification Noise, 63
randomised polynomial time, 13
RCN, see Random Classification Noise
representation scheme, 8
representation size, 8

RP, see randomised polynomial time

Sauer-Shelah Lemma, 30

shattering, 28

size, see representation size

SQ Learning, see Statistical Query
Learning

STAT oracle, 66

Statistical Query Learning, 66

union bound, 117
VC dimension, 28

weak learning, 40

	Contents
	Preface
	Acknowledgements
	Probably Approximately Correct Learning
	A Rectangle Learning Game
	Key Components of the PAC Learning Framework
	Learning Conjunctions
	Hardness of Learning 3-term DNF
	Learning 3-CNF vs 3-TERM-DNF
	PAC Learning
	Exercises
	Chapter Notes

	Consistent Learning and Occam's Razor
	Occam's Razor
	Consistent Learning
	Improved Sample Complexity
	Exercises
	Chapter Notes

	The Vapnik Chervonenkis Dimension
	The Vapnik Chervonenkis (VC) Dimension
	Growth Function
	Sample Complexity Upper Bound
	Sample Complexity Lower Bounds
	Consistent Learner for Linear Threshold Functions
	Exercises

	Boosting
	Weak Learnability
	The AdaBoost Algorithm
	Exercises

	Cryptographic Hardness of Learning
	The Discrete Cube Root Problem
	A learning problem based on the DCRA
	Chapter Notes

	Exact Learning using Membership and Equivalence Queries
	Exact Learning with Membership and Equivalence Queries
	Exact Learning MONOTONE-DNF using MQ+EQ
	Learning DFA
	Exercises
	Chapter Notes

	Statistical Query Learning
	Random Classification Noise Model
	Statistical Query Model
	A hard-to-learn concept class
	Exercises
	Bibliographic Notes

	Learning Real-valued Functions
	Learning Real-Valued Functions
	Projected Gradient Descent for Lipschitz functions
	Rademacher Complexity
	Linear Regression
	Generalised Linear Models

	Mistake-Bounded Learning
	Online Prediction Framework
	Relationships to Other Models of Learning
	The Halving Algorithm and Some Examples
	Perceptron
	The Winnow Algorithm

	Online Learning with Expert Advice
	Learning with Expert Advice
	Follow The Leader
	The Multiplicative Weight Update Algorithm (MWUA)
	Application: Boosting Algorithm
	Application: von Neumann's Min-Max Theorem

	Inequalities from Probability Theory
	The Union Bound
	Hoeffding's Inequality
	Chernoff Bound

	Elementary Inequalities
	Convexity of exp
	Auxilliary Lemmas

	Notation
	Basic Mathematical Notation
	The PAC Learning Framework

	Bibliography
	Index

