Computational Learning Theory
Michaelmas Term 2023

Problem Sheet 3

Instructions: The problem sheets are designed to increase your understanding of the material
taught in the lectures, as well as to prepare you for the final exam. You should attempt to solve
the problems on your own after reading the lecture notes and other posted material, where
applicable. Problems marked with an asterisk are optional. Once you have given sufficient
thought to a problem, if you are stuck, you are encouraged to discuss with others in the course
and with the lecturer during office hours. You are not permitted to search for solutions online.

1 VC Dimension of Linear Halfspaces in R"

We will show that the concept class of linear halfspaces in R™ has VC-dimension n + 1.
1. Give a set of n + 1 points in R™ that is shattered by the class of linear halfspaces.

2. We want to show that no set of m = n + 2 points in R" can be shattered by the class
of linear halfspaces. For this you can use what is called as Radon’s theorem, described
below.

3.* Prove Radon’s theorem.

Given a set S = {x1,...,Xn} C R", the convex hull of S is the set,
m m
{zeR" |, A € 0,1, Ni=12=> A}
i=1 i=1

Radon’s Theorem: Let m > n + 2, then S must have two disjoint subsets S; and Ss whose
convex hulls intersect.

Hints:
1. Consider the set consisting of the origin and the basis vectors.

2. Show that if a set of points is contained in a linear halfspace of R™, then the entire convex
hull of those points is also contained in that linear halfspace.

3. For some u; € R, argue that when m > n+2, there is a non-trivial solution to the following
set of equations:

m
Z HiXi = Oa
=1
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2 Properties of AdaBoost

Consider the AdaBoost algorithm as described in the lecture notes and assume that the weak
learning algorithm succeeds with probability 1 at each iteration.

1. Show that the error of h; with respect to the distribution D,y is exactly 1/2.
2. What is the maximum possible value of Dy(x;) for some 1 <¢ < T and 1 < i < m?

3. Fix some example, say i, let ¢; be the first iteration such that h¢, (x;) = y;. How large can
ti be?

Hints
1. Use the definition of oy and simply calculate.

2. Consider what is the largest value of D;(x;) for which it may still be the case that h; is
incorrect on x; and follow the calculations from the previous part.

3. By how much must Dy(x;) increase if h; is incorrect on x;? Use this and the bound from
the previous part.

3 Weak Learning CONJUNCTIONS and PARITIES
Consider the instance space X,, = {0,1}". Consider the following hypothesis class:
HTL = {O) ]-7 21, 21) 22, 227 <oy Rn, zn}

The hypothesis class contains 2n 4 2 functions. The functions “0” and “1” are constant and
predict 0 and 1 on all instances in X,,. The function “z;” evaluates to 1 on any x € {0,1}"
satisfying z; = 1 and 0 otherwise. Likewise, the function “zZ;” evaluates to 1 on any x € {0,1}"
satisfying x; = 0 and 0 otherwise. Thus a single bit of the input determines the value of these

functions; for this reason these functions are sometimes referred to as dictator functions.
1. Show that the class CONJUNCTIONS is loin—weak learnable using H.

2. Let CONJUNCTIONS; denote the class of conjunctions on at most k literals. Give an
algorithm that PAC-learns CONJUNCTIONS;, and has sample complexity polynomial in
k, logn, % and %. What would be the sample complexity if you had used the algorithm
for learning CONJUNCTIONS discussed in the lectures?

3. Show that there does not exist a weak learning algorithm for PARITIES using H.
Hints:
1. The factor 10 is not particularly important, just a sufficiently large constant.

2. First show that the weak learning algorithm in the previous part can be modified to be a
ﬁ—weak learner in this case.
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3. Consider the uniform distribution over {0,1}" and see if any of the hypotheses in H,
would work.

Page 3



