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ABSTRACT

TLS 1.3, the newest version of the Transport Layer Security (TLS)
protocol, provides strong authentication and confidentiality guar-
antees that have been comprehensively analyzed in a variety of
formal models. However, despite its controversial use of handshake
meta-data encryption, the privacy guarantees of TLS 1.3 remain
weak and poorly understood. For example, the protocol reveals
the identity of the target server to network attackers, allowing the
passive surveillance and active censorship of TLS connections. To
close this gap, the IETF TLS working group is standardizing a new
privacy extension called Encrypted Client Hello (ECH, previously
called ESNI), but the absence of a formal privacy model makes it
hard to verify that this extension works. Indeed, several early drafts
of ECH were found to be vulnerable to active network attacks.

In this paper, we present the first mechanized formal analy-
sis of privacy properties for the TLS 1.3 handshake. We study all
standard modes of TLS 1.3, with and without ECH, using the sym-
bolic protocol analyzer ProVerif. We discuss attacks on ECH, some
found during the course of this study, and show how they are ac-
counted for in the latest version. Our analysis has helped guide the
standardization process for ECH and we provide concrete privacy
recommendations for TLS implementors. We also contribute the
most comprehensive model of TLS 1.3 to date, which can be used by
designers experimenting with new extensions to the protocol. Ours
is one of the largest privacy proofs attempted using an automated
verification tool and may be of general interest to protocol analysts.
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1 INTRODUCTION

The Transport Layer Security (TLS) protocol is a widely-deployed
Internet standard for establishing secure channels across untrusted
networks. Notably, it is used for HTTPS connections between web
browsers and servers. A typical deployment scenario is depicted
in Figure 1: a web browser A connects to a website S; across the
Internet. In practice, S is often run by a hosting service or content-
delivery network that provides a shared client-facing server F for
multiple websites. The goal of TLS is to provide a secure channel
between A and Si, even if the attacker fully controls the network,
other clients like B, and other servers like Sy. Specifically, the proto-
col aims to provide three guarantees: authentication for the server
S1 (and optionally for the client A), as well as confidentiality and
integrity for data exchanged between the client and server.

In 2018, the Internet Engineering Task Force (IETF) standard-
ized TLS 1.3 [56], which improves on the previous version (TLS
1.2) in several significant ways. In terms of efficiency, TLS 1.3 re-
duces the latency of connection setup (called the handshake) from
two round-trips to one round-trip before the client can start send-
ing application data. In terms of security, the protocol provides
forward secrecy as default, deprecates obsolete cryptographic con-
structions [4, 19, 20, 52, 59], and improves transcript authentication
to prevent downgrade and key synchronization attacks [3, 6, 13, 18].

Perhaps most remarkably, TLS 1.3 was designed in collaboration
with the academic research community with the explicit goal of hav-
ing formal security proofs for the protocol before standardization.
Consequently, a series of publications have analyzed the security of
TLS 1.3 using a variety of proof techniques and formal definitions.
A real-world protocol standard like TLS supports dozens of protocol
flows depending on how the client and server are configured and
analyzing all these flows by hand can be tedious. As a result, pen-
and-paper cryptographic proofs tend to focus on a small subset of
features supported by the protocol [15, 23, 38, 41, 47, 49, 50]. More
comprehensive analyses of TLS 1.3 rely on semi-automated verifi-
cation tools like Tamarin [30, 31], ProVerif [14], CryptoVerif [14],
and F* [34]. All of these works focus on the three primary secure
channel goals of TLS; no prior work, with the notable exception of
[5], studies the privacy guarantees of TLS 1.3.

Privacy Goals for TLS. To provide authentication, secure channel
protocols need to exchange the identities of one or both parties
during the connection setup (or handshake). Many protocols seek
to hide these identities from passive or active network adversaries.
The SIGMA family of key exchange protocols [48], which inspired
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Figure 1: Example TLS 1.3 Deployment Scenario: two clients
A and B (e.g. web browsers) connect via a public network to
servers S; and S; (e.g. websites) that are both hosted by the
same client-facing server F (e.g. a content delivery network).

both IKEv2 [45] and TLS, includes two identity hiding variants. The
Noise framework defines multiple protocols with different levels of
identity privacy [54], including the one used in WireGuard [37].

In the TLS scenario of Figure 1, we can state two identity pri-
vacy goals. Client identity privacy says that the attacker cannot
distinguish between an authenticated connection from A to S; and
one from B to Sy. Server identity privacy says the attacker cannot
distinguish between a connection from A to S; and one from A to Sy.
In addition, we may also want to protect other sensitive handshake
metadata. We can then ask whether these privacy guarantees hold
for arbitrary sequences of connections between honest participants,
in the presence of passive or active network adversaries.

Before TLS 1.2, the identities of the client and server were sent in
the clear and hence these privacy goals were trivially false. In TLS
1.3, however, most of the handshake messages, including those con-
taining client and server certificates are encrypted. This handshake
encryption feature has raised some controversy, since it prevents
legacy network middleboxes from being able to inspect and filter
TLS connections [33, 44, 58], but it is still included in TLS 1.3 to
guarantee better privacy against censorship and surveillance [11].

Despite this goal, TLS 1.3 still leaks the server identity to passive
network attackers. In the first handshake message (ClientHello),
A sends the name of S; in the clear so that the client-facing server
F can route the connection to the right server. Even client identity
privacy can be quite subtle, since a network adversary may be able
to correlate a sequence of connections made by the same client to
the same server, if these connections use the same pre-shared key.

Encrypted Client Hello. To improve the privacy of TLS 1.3, the
IETF TLS working group is standardizing a new protocol extension
called Encrypted Client Hello (ECH) [57], which was previously
called Encrypted Server Name Indication (ESNI). The key idea of
ECH is to encrypt parts of the ClientHello in order to hide the
server name, pre-shared key, and other handshake metadata.

The main goal of ECH is to provide server identity privacy
against active network attackers. However many early designs
for ESNI and ECH proved to be vulnerable to subtle attacks, some
of which we shall detail later in this paper. The TLS working group
invited researchers to formally analyze the ECH design before stan-
dardization and this work is the first to provide such an analysis.

Safely Extending TLS 1.3. ECH is the first major extension to
TLS 1.3 since it was standardized. It introduces new cryptographic
constructions to the handshake and subtly changes the meaning
of the handshake transcript. Given that TLS 1.3 has seen such
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extensive security analysis, it is a valid concern that the changes
introduced by ECH may break the security guarantees of TLS 1.3.

We advocate a three-step analysis methodology for all new se-
curity and privacy extensions to TLS 1.3:

(1) Security Preservation: Prove that the extended protocol
preserves the authentication, confidentiality, and integrity
properties that have been previously proved for TLS 1.3;

(2) Stronger Guarantees: Define new security goals for TLS;
show that vanilla TLS 1.3 does not satisfy these goals and
prove that the extended protocol does;

(3) Downgrade Resistance: Prove that an active network at-
tacker cannot downgrade the extended protocol to vanilla
TLS 1.3, hence removing the extended guarantees.

Furthermore, we advocate that this analysis should be applied to
a model of TLS 1.3 that covers as many of its modes and optional
features as possible, to ensure that we do not miss attacks that only
appear in specific configurations of the protocol.

Our Approach and Contributions. We begin with the ProVerif
model of TLS 1.3 in [14] and make it more precise and more com-
prehensive: we carefully model all the configuration options and re-
sulting protocol branches, we add support for Hel1loRetryRequest
and post-handshake authentication, and we define stronger confi-
dentiality and integrity goals. We believe that the result of these
extensions is the most detailed formal model of TLS 1.3 to date,
which may be of independent interest to protocol designers and an-
alysts. We prove, using ProVerif, that this model satisfies the classic
secure channel goals of TLS 1.3. We note that ProVerif is a symbolic
prover based on the Dolev-Yao model [36], so proofs in ProVerif are
not directly comparable with cryptographic pen-and-paper proofs.

Next, we formally define a series of privacy goals for TLS 1.3,
including client identity privacy (for authenticated clients), client
unlinkability (for anonymous clients), server identity privacy, and
metadata privacy for additional extensions sent by the client and
server. We prove that vanilla TLS 1.3 satisfies some of these proper-
ties. Our formulation of privacy for TLS 1.3 is new, and our proofs
are the first to be machine-checked. The main prior work in this
space is [5], which presents a pen-and-paper proof of client unlink-
ability (without certificates) and a limited form of server identity
privacy for two protocol flows of TLS 1.3. Our results are for more
privacy properties and more protocol flows, albeit using the more
abstract Dolev-Yao model of cryptography.

Finally, we extend our model with ECH and prove that TLS
1.3 with ECH preserves the security properties of TLS 1.3, that it
achieves the privacy goals, and that it protects against downgrades
to TLS 1.3. We also show that previous draft versions of ECH did not
satisfy the privacy goals and demonstrate attacks on these versions.

Our analysis provides concrete feedback for the TLS ECH pro-
posal for the TLS working group and our results have already
influenced the standardization of ECH. We also provide guidelines
for implementors on how to implement TLS 1.3 and ECH safely.

Our proofs of privacy are (to our knowledge) the largest auto-
mated privacy proofs for any protocol in the literature, and at the
cutting edge of what is achievable by modern verification tools.
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‘Long—term Keys: (skc, pke), pskcys‘

Supports protocol parameters:

([TLS1.3+ECH, TLS1.3,...], DHE[Go, G1], H(), enc(),...)

Generates (x, g¥), (xi, g*) in G and computes:
C, ctx = hpkeSetupS(ekr)

ech, ctx” = hpkeSeal(ctx,ClientHello(cry, S, [(Go, g*), G1]))

ClientHello(cr, F, [(Go, g*), G1], (C, ech))
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Server (S,5, F)

Long-term Keys: (sks, pks), (sk§, pk§), (dkF, ekr)

Supports protocol parameters:
([TLS1.3+ECH, TLS1. 3], DHE[G;1], H(), enc())

ClientHello(cry, S, [(Go, g*t), G1]), ctx’ = hpkeOpen(ctx, ech)

Computes: ctx = hpkeSetupR(C, skr) and decrypts

cri
hrr

HelloRetryRequest(Gr, accept) ’ (tx1))

Generates (x', %), (xlf,g"r,) in Gy
Computes: es = kdfy and encrypts

ech’, ctx”” = hpkeSeal(ctx’,ClientHello(cr), S, [(G1,gD]))

ClientHello(cr’, F, [(G1,g* )], ech’)

Decrypts ClientHello(cr), S, [(Gi,

g)]), cix’’ = hpkeOpen(ctx’, ech’)

Generates: (y,gY) in Gy, and computes: es = kdfo

ServerHello(sr, G, gY, acceplf;’ (1x3))

Computes:
hs = kdfps(es, 1Y)
ms, kp.c, Kns» Km,e> km,s = kdf s (hs, tx3)

enckhs (Extensions(...), CertRequest(...), Certificate(s, Pks))

Computes:
hs = kdfps(es, 1Y)
ms, kp.c, Kps» Km,e> km,s = kdf s (hs, tx3)

77777 n -----txg

. enckns (CertVerify(sign®s (H(tx4)))) .

x5 - ———————— e - X5
enckrs (Finished(mackms (txs)))

g -----dj6e— - o /- s ey tx6

Computes:

enckne (Certificate(C, pke))

Computes:
ke, ks, ems = kdfy(ms, txq)

enckhe (Certverify(sign®c (H(1x7))))

enckhe (Finished(mack'“»c(txs)))

Computes:
psk’ = kdf pgx.(ms, txo)

encks (SessionTicket(id?'))

Computes:
psk’ = kdf pgx.(ms, txo)

encke (Data(my))

enck"(Data(mz))

encke (Alert(close_notify))

encks (Alert(close_notify))

Figure 2: TLS 1.3 Protocol Flow for (EC)DHE Handshake with Encrypted Client Hello (ECH) and 1-RTT Data.

This protocol flow uses a Diffie-Hellman key exchange with certificate-based server authentication. It also shows
HelloRetryRequest-based group negotiation and certificate-based client authentication. Other optional features like version
and ciphersuite negotiation, post-handshake client authentication and PSK-based mutual authentication are not depicted.
Message components in red are introduced by the ECH extension: ClientHello messages now have an inner ClientHello
encrypted with the HPKE public-key pkj of the front-end server (F). Encryption of ClientHello using SealS is bound to the
outer ClientHello as described in the specification, though omitted here for clarity. If the server accepts ECH, then the inner
ClientHello is used in the transcripts (¢xo, tx2, ...), and the inner key-share (gxz/' ) is used for Diffie-Hellman. Otherwise, the
connection falls back to standard TLS 1.3 and the outer ClientHello and its key-share (gx,) are used.
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2 TLS 1.3 PROTOCOL DESIGN AND FEATURES

TLS 1.3 is specified in IETF RFC 8446 [56] as a two-party secure
channel protocol between a client and a server. It composes three
sub-protocols: the handshake sub-protocol performs an authenti-
cated key exchange (AKE) to establish a fresh symmetric key, the
record protocol uses this key for authenticated encryption of appli-
cation data (and handshake messages), and the alert sub-protocol
is used to indicate connection closure and fatal errors.

Figure 2 shows an example flow of messages in a TLS 1.3 con-
nection. For now, we ignore the parts in red, which will be used to
explain the ECH extension in Section 4. Many of the details of TLS
1.3 have been extensively covered and analyzed in prior work. Here,
we focus on the features that are most relevant for the privacy mod-
eling and analysis in this paper. We begin with the standard TLS
1.3 handshake mode, and then describe various optional features.

Server Authenticated (EC)DHE Handshake with 1-RTT Data.
When a TLS 1.3 client (C) connects to a server (S) for the first time,
it typically runs a Diffie-Hellman key exchange (using an elliptic
curve) where the server is authenticated with an X.509 public key
certificate but the client is unauthenticated.

The protocol begins when C sends a ClientHello message
containing a nonce (cr) and a Diffie-Hellman key share (g¥) in
some group or elliptic curve (Gp). The server responds with a
ServerHello containing its own nonce (sr) and key share (g¥).
The client and server then both compute the Diffie-Hellman shared
secret (¢*Y) and use it to derive a pair of handshake encryption
keys (kp,c. kps) and a pair of MAC keys (km,c, km,s)-

The server then sends a sequence of four handshake messages
(encrypted using ky, ¢): Extensions contains additional server pa-
rameters, Certificate contains the server’s public-key certificate
(for pkg), CertVerify contains a signature over the handshake
transcript so far using the server’s private key (sks), and Finished
contains a MAC (using k,,s) over the handshake transcript up to
CertVerify. Here, The Certificate and CertVerify messages
serve to authenticate the server, while Finished provides key and
transcript confirmation, following the classic Sign-and-MAC proto-
col design pattern from SIGMA [48].

The client responds by sending its own Finished message (en-
crypted using kj, ) containing a MAC (using ks c) over the hand-
shake transcript so far (i.e. up to the server Finished).

At this point, both client and server derive a master secret (ms)
and data encryption keys (k, ks), and then switch over to these
data encryption keys to exchange a stream of encrypted application
data messages (m1, ma, . ..) in both directions. Application data sent
after Finished is typically called IRTT Data since it is sent after
one set of handshake messages has been sent in each direction.
When the data exchange is complete, the client and server send
close_notify alerts to close the connection.

Cryptographic computations for the various key derivations and
MACs in the TLS 1.3 handshake are detailed in [16, Figure 3].

Negotiating Connection Parameters. The basic handshake de-
scribed above assumes that the client and server already agree
on the TLS protocol version, Diffie-Hellman group, and the cryp-
tographic algorithms they will use for signing, MAC, encryption
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etc. In practice, the client and server negotiate the values of these
parameters in the beginning of the handshake.

If the client supports multiple protocol versions (e.g. TLS 1.3
and TLS 1.2), it lists these versions in the ClientHello and the
server chooses the version it prefers (typically the highest version it
supports). Similarly, the ClientHello lists the signature algorithms,
Diffie-Hellman groups, encryption schemes, and hash algorithms
that the client supports, and the server chooses the combination it
prefers and indicates it in the ServerHello.

If the server chooses a Diffie-Hellman group G; that the client
supports but the client has not provided a key share for G; in the
ClientHello, the server sends back an HelloRetryRequest mes-
sage with the group Gy; the client responds withanew ClientHello
containing a key-share (g* ") for Gy. The subsequent handshake tran-
script includes the full transcript with both ClientHello messages.

Certificate-based Client Authentication. Although server au-
thentication is far more common, TLS 1.3 also allows clients to be
authenticated using public key certificates. During the handshake,
between its Certificate and CertVerify messages, the server
may send a CertRequest message indicating that it wishes for the
client to authenticate itself. If the client agrees to this request, then
in its response, it sends three messages instead of just a Finished:
Certificate contains the client’s public-key certificate (for pk.),
CertVerify contains the client’s signature over the transcript (us-
ing skc), Finished contains a MAC over the transcript up to the
client’s CertVerify (using k;, c). All these messages are encrypted
using the client’s handshake encryption key (ky, .).

In some scenarios, the server may wish to request client au-
thentication after the handshake is finished. This feature is called
post-handshake authentication: the server sends a CertRequest
message in the middle of the 1RTT application data exchange, and
the client responds with the Certificate-CertVerify-Finished
message combination. These messages are encrypted under the
client’s data encryption key (k).

Pre-Shared Keys (PSK). If a client (C) and server (S) have been
configured with a pre-shared symmetric key (psk 5), then they can
avoid the expensive public-key signature operations and instead use
this PSK to authenticate each other. This pre-shared key may be an
external PSK provided by the application or it may be a resumption
PSK output by a prior handshake between the client and server.

[16, Figure 4] depicts a typical PSK-DHE handshake: the client
lists the identifiers (e.g. idPSkCS) of the PSKs (e.g. pskc ¢) that it
shares with the server in the ClientHello. It proves its knowledge
of each PSK by using it to compute a binder (binderPSkaS ),i.e.a MAC
(using pskc g) over the current transcript (including the current
ClientHello but with binders removed).

The server responds by choosing one of the PSKs from the
ClientHello and indicates its index in the ServerHello. The cho-
sen PSK is mixed into all subsequent encryption and MAC keys.
The server then sends an Extensions message followed directly
by Finished. The MAC in the Finished serves to authenticate the
server since it could only have been produced by someone who
knows the PSK. Note that if the PSK is known to someone other
than C or S, or if C is willing to use the PSK both as a client and
server, then the guarantees of this MAC are very weak [40].
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The client completes the handshake with its Finished message,
hence authenticated itself by proving its knowledge of the PSK.

Tickets and ORTT. After the end of each handshake, whether it
uses certificates or PSKs, the server may send the client a session
ticket (SessionTicket) that serves as a new PSK identifier. This
message is encrypted under the application data key (k). The client
and server then derive a fresh resumption PSK (psk’) from the master
secret (ms) and save it for use in subsequent PSK handshakes.

In a PSK handshake, the client already has a key it shares with
the server, and so it can start sending ORTT application data im-
mediately after the ClientHello message without waiting for the
server to respond. This data is called ORTT Data and is encrypted
using a key derived from the PSK. If the server does not accept
ORTT data or does not choose the PSK, then this data is discarded.

TLS Extensions. We have described the main TLS 1.3 protocol
flows and commonly-used optional features, but the protocol itself
is extensible. The ClientHello message may indicate protocol
extensions that the client supports and the server may choose some
of these extensions in the ServerHello.

A commonly used TLS extension on the Web is Server Name
Indication (SNI): the ClientHello includes the name of the server
(S) to which the client wishes to connect. SNI is needed by web
hosts and content-delivery networks that host multiple domains
and have to decide which server to use for each connection.

By default, all extensions sent in the ClientHello, ServerHello,
and HelloRetryRequest messages are unencrypted, but the server
can encrypt some extension data in its Extensions message. As
we shall see, the ECH extension allows the client to also encrypt
elements of the ClientHello, including the SNI extension.

3 TLS 1.3 GOALS AND FORMAL ANALYSES

In this section, we outline the main security and privacy goals of
TLS 1.3 and describe various formal analyses of the protocol.

Threat Model. The threat model considered by TLS 1.3 includes
passive and active network attackers and malicious or compromised
clients and servers. We say that a client or server is compromised
if any of its private keys or pre-shared keys is known to the ad-
versary; otherwise we say that it is honest. The attacker can use
compromised keys to impersonate a client or server to an honest
party. Furthermore, the attacker is free to use any cryptographic
construction to construct and decode messages.

The security assumptions on the cryptographic constructions
can be formally stated in many different ways. In the symbolic or
Dolev-Yao model [36], cryptographic functions are perfect black-
boxes that obey well-defined algebraic rules; protocol participants
and the attacker are modeled as non-deterministic processes that
can participate in an unbounded number of sessions but they cannot
violate the algebraic rules of cryptography. In the computational
or complexity-theoretic model, cryptographic constructions are
probabilistic functions over bitstrings; protocol participants and
the attacker are probabilistic polynomial-time Turing machines.
To better understand the relationship between these two models
and their applications, see [2, 8, 28]. At a high-level, computational
models are more cryptographically precise but symbolic models
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are easier to analyze and can scale up to large protocols with many
optional features. The strengths of both models are complementary.

Authentication and Integrity Goals. The main authentication
and integrity goals of TLS 1.3 can be stated informally as follows:

e Server Authentication (SAUTH): If a client C receives ap-
plication data message m over a TLS 1.3 connection (suppos-
edly) with a server S, then either there must be an honest
server S that sent the message m, or else (a long-term key
of) S must be compromised.

e Client Authentication (CAUTH): If a server S receives
application data m over a client-authenticated TLS 1.3 con-
nection (supposedly) with a client C, then either there must
be an honest client C that sent the message m, or else (a
long-term key of) C must be compromised.

e Key and Transcript Agreement (AGR): If a client (or
server) completes a handshake with an honest peer, then
both parties must agree on the connection keys (e.g. k¢, ks)
and the handshake transcript.

e Data Stream Integrity (INT): If a client (or server) receives
a sequence of messages mg, m;, ... over a TLS 1.3 connec-
tion, then either an honest peer sent the same sequence of
messages, or else the peer must be compromised.

¢ Key Uniqueness (UNIQ): Two different TLS 1.3 connections
cannot result in the same encryption keys.

e Downgrade Resilience (DOWN): If a client (or server) com-
pletes a handshake with an honest peer and both parties
prefer to use a certain protocol parameter (e.g a version or
ciphersuite or Diffie-Hellman group), then the handshake
cannot end with the less-preferred parameter.

Note that the authentication properties (CAUTH, SAUTH) apply
to both certificate-based handshakes and PSK handshakes. In the
case of certificate-based authentication, these properties forbid key
compromise impersonation (KCI): even if an attacker knows (say)
skc, it cannot impersonate S to C. The transcript agreement prop-
erty (AGR) provides different guarantees at the client and server:
after the client Finished, the server gets full transcript agreement,
whereas the client only gets transcript agreement up to the server
Finished. Data stream integrity (INT) implies that the attacker
cannot reorder or selectively drop application data messages. Key
uniqueness (UNIQ) prevents unknown key share and key synchro-
nization attacks [18]. Downgrade resilience (DOWN) prevents a
network attacker from fooling modern clients and servers into us-
ing an obsolete protocol version or cryptographic construction that
is supported only for backwards compatibility.

Confidentiality. The confidentiality guarantees of TLS 1.3 can
either be stated in terms of the keys established by the handshake
or the application data exchanged by the client and server:

e Key Secrecy (SEC): If a client (or server) completes a hand-
shake with data encryption keys (kc, ks), then either the peer
is honest and keys are unknown to the adversary, or the peer
is compromised.

¢ Key Indistinguishability (IND): If a client (or server) com-
pletes a handshake with an honest peer to obtain a new key
(e.g. psk’), then this key is indistinguishable from a fresh
random value generated at the end of the handshake.
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(EC)DHE + Server Auth Negotiation Client Auth Pre-Shared Keys Extensions

Method Handshake 1RTT VER | CS | HRR | CC | PHA | PSK-DHE | TKT | PSKO | ORTT | SNI | ECH
Pen-and-Paper [39] v X X X X v X v X v X X X
Pen-and-Paper [5] v X X X X X X v v 4 X X X
CryptoVerif [14, 21] v v X X X v X v v v v X X
F* [17, 35] X v X X X X X X X X v/ X X
Tamarin [30, 31] v 4 X X v v v v v v v X X
ProVerif [14] v v v |/ v v X v X X v X X
This work (ProVerif) v v X X 4 4 v v 4 X 4 v v

Authentication Confidentiality Privacy

Method Model | SAUTH | CAUTH | AGR | INT | UNIQ | DOWN | SEC | FS | IND | SECO | CIP | UNL | SIP | EXT
Pen-and-Paper [39] | Comp. v 4 4 X v X v (V| / X X X X | X
Pen-and-Paper [5] | Comp. X X X X X X X | X | X X X v [ V| X
CryptoVerif [14, 21] | Comp. v v v 4 X X V| 4 X X | X | X
F* [17, 35] Comp. X X X 4 X X X | X 4 X X X | X
Tamarin [30, 31] Symb. v v v v v X v I VX v X X X X
ProVerif [14] Symb. v v v v v v v (VX v X X X | X
This work (ProVerif) | Symb. v v v v v v v | V|V v | vV vV

Table 1: TLS 1.3 Features (top) and Security Properties (bottom) covered by various formal analyses.

Handshake: (EC)DHE handshake; 1RTT: 1RTT Data; VER: multiple TLS versions; CS: multiple ciphersuites; HRR: group
negotiation; CC: client certificates; PHA: post-handshake authentication; PSK-DHE: PSK-(EC)DHE handshake; TKT: session
tickets; PSKO: psk-only mode; ORTT: ORTT Data; SNI: server name indication; ECH: encrypted client hello

e 1RTT Data Forward Secrecy (FS): If a client (or server)
sends a secret 1IRTT data message m over a TLS 1.3 connec-
tion with an honest peer, then m remains secret even if the
peer is compromised after the connection has closed.

e ORTT Data Secrecy (SECO0): If a client sends secret ORTT
application data message m over a TLS 1.3 connection, then
this message remains secret unless the PSK used in the con-
nection is compromised.

In the above, indistinguishability (IND) is a strictly stronger
property than (syntactic) secrecy (SEC) and forward secrecy for
1RTT (FS) is also stronger than ORTT secrecy (SECO0). These are
four example properties taken from the literature on TLS 1.3, but
other confidentiality properties, such as data indistinguishability
and post-compromise secrecy, can also be formulated.

Privacy. Appendix E.1 of the TLS 1.3 RFC [56] mentions the “pro-
tection of endpoint identities” as one of the goals of the handshake.
We elaborate on this to state four desired privacy goals:

e Client Identity Privacy (CIP): If one of the two clients
A and B connects using client-authenticated TLS 1.3 to an
honest server S, then the attacker cannot tell which of the
two clients made the connection.

e Client Unlinkability (UNL): If both A and B make TLS 1.3
connections to an honest server S, and then one of them
makes a new TLS 1.3 connection to the same server S, then
the attacker cannot tell which of the two clients made the
new connection.

o Server Identity Privacy (SIP): If an honest server F holds
long-term keys for two servers S; and Sy and a client con-
nects to F, then the attacker cannot tell whether the connec-
tion uses the server identity S; or Ss.

o Client and Server Extension Privacy (EXT): If a client or
server sends an extension with a sensitive payload over a
TLS 1.3 handshake with an honest peer, then the attacker
cannot distinguish between different values of the payload.

Note that client identity privacy (CIP) is stated for both certificate-
based and PSK-based client authentication. Client unlinkability
(UNL) is stronger in that it works even for unauthenticated clients
that make a series of connections that are cryptographically linked
via resumption PSKs. The TLS 1.3 RFC only asks for Server iden-
tity privacy (SIP) against passive attackers, and our formulation is
stronger. Extension privacy (EXT) is stated as indistinguishability
for extension payloads, and is treated here as a privacy property
since extensions typically carry connection metadata.

Each privacy goal must hold even for partial handshakes that
may eventually fail, unlike secrecy and authentication goals, which
usually apply only to successful connections. However, each goal is
only expected to hold under some reasonable assumptions, without
which there would be trivial attacks. For example, for Client Un-
linkability, we need to assume that either both connections (A — S
and B — S) use a PSK or neither of them do; otherwise, the attacker
can trivially distinguish between the two, since the server sends
fewer messages in PSK handshakes. In Section 5, we document all
our assumptions for each privacy goal.

Although our authenticity, confidentiality, and privacy goals are
informally described here in terms of a few specific clients (A, B)
and servers (S1, S2), these goals are expected to hold in scenarios
where the target sessions run in parallel with an unbounded number
of sessions between honest or compromised clients and servers (see
Section 5.2 for more modelling details).

Prior Security Analyses. Many prior works analyze various modes
of TLS 1.3 for authentication and confidentiality properties. We
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survey a few of the most advanced works in this space and compare
the TLS 1.3 features and security properties they cover in Table 1.

Pen-and-paper cryptographic proofs of TLS 1.3 typically focus
on specific handshake modes to highlight and analyze a particular
feature of the protocol [15, 23, 38, 41, 47, 49, 50]. The most recent
cryptographic proof of the TLS 1.3 handshake appears in [39] and
subsumes many prior analyses. It covers the certificate-based DHE
handshake, the PSK-DHE handshake, and the PSK-Only handshake.
However, it does not cover data or handshake encryption, negoti-
ation, session tickets, or extensions. It proves confidentiality and
integrity properties about handshake keys, but does not prove prop-
erties about application data (e.g. integrity) or about privacy.

Suppose there were an attack that exploited a combination of
HelloRetryRequest and session tickets to only manifest in a se-
quence of three handshakes, where the resumption PSK generated
in the first handshake is used in both subsequent handshakes. Such
complex attacks have traditionally appeared in TLS (see e.g. [18]),
but are well outside the scope of [39]. Even with these limitations,
this is an impressive proof described carefully in 65 pages of text.

The problem is that pen-and-paper proofs cannot scale to the
full complexity of real-world protocols like TLS. Even if we could
write hundreds of pages of proofs covering all the optional features,
checking them would be infeasible. One option is to build machine-
checked cryptographic proofs, using tools like CryptoVerif [14,
21]. This approach covers more TLS features than pen-and-paper
analyses but the proofs have to be guided manually and do not
easily scale to the analysis of (say) extensions or group negotiation.

The most comprehensive analyses of TLS rely on automated tools
based on the symbolic Dolev-Yao model. For example, Tamarin has
been used to develop a comprehensive model of most features of
TLS 1.3 [30, 31]. This model, however, does not cover version and
ciphersuite negotiation, probably to reduce the analysis complexity.
A different symbolic model was developed in ProVerif [14], which
supports multiple versions and weak ciphersuites and hence can
find downgrade attacks on TLS 1.3. However, neither of these mod-
els analyzes stronger properties like key indistinguishability (IND)
or privacy. The probable reason is that these properties require
significant modeling effort, precision, and computation time.

A different angle of research is to analyze the security of TLS 1.3
implementations, to ensure that the proof applies to the deployed
protocol without modeling abstractions. This approach has resulted
in proofs for the TLS 1.3 and QUIC record layers in F* [17, 35], but
it has not yet been applied to the handshake.

Most prior works on TLS 1.3 do not consider privacy. A notable
exception is [5] which describes several privacy attacks on TLS
1.3, and gives a pen-and-paper proof of server identity privacy
and client unlinkability for the DHE, PSK-DHE, and PSK-Only
handshakes. The model does not cover client authentication and
does not enable SNI (which would falsify server identity privacy).
This work serves to emphasize the weak privacy guarantees of TLS
1.3. In order to get stronger privacy, a new extension to TLS 1.3
is needed, and to comprehensively analyze such an extension, we
advocate using a machine-checked symbolic model of TLS 1.3.

Our analysis results on TLS 1.3. In this paper, we present a new
configurable model of TLS 1.3 in ProVerif. Our model extends the
previous Proverif model of [14] in several ways: we add support
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for post-handshake authentication and ticket-based resumption,
we add extensions like SNI and ECH, and we make the model
significantly more configurable, so that the analyst can easily enable
and disable various features and rerun ProVerif. All the analyses in
this paper are run using automated scripts that verify the protocol
under various combinations of features, until they find the maximal
set of features under which ProVerif is able to terminate in 48 hours.

Another advance we make over the TLS 1.3 model of [14] is
to add support for equivalence-based reasoning. We prove key
indistinguishability for TLS 1.3, stated as the indistinguishability
of the resumption master secret from a random value. This kind of
strong secrecy property was not proved before for TLS 1.3 in ProVerif
or in Tamarin. We also analyze TLS 1.3 for privacy properties,
finding that TLS 1.3 with SNI immediately fails server identity
privacy (SIP), does not provide client extension privacy (C-EXT),
but does provide client identity privacy (CIP), unlinkability (UNL),
and server extension privacy (S-EXT).

Conversely, to keep the analysis feasible, we do not support
version and ciphersuite negotiation, and hence do not model down-
grade attacks to prior versions and legacy cryptographic algorithms.
We also do not support PSK-Only handshakes (without ECDHE).
The full list of features supported in our model is depicted in Table 1.

Our verification results for TLS 1.3 are depicted in the top rows
of Table 2. Reachability properties like authentication and secrecy
were fully verified without any restrictions. For equivalence-based
properties like indistinguishability and client identity privacy, the
analysis did not terminate (under 48 hours) with all features en-
abled. Hence, we used the configurability of our model to analyze
621 combinations of features to find the best combinations where
ProVerif gave us a result. These choices are discussed in Section 5.

Our model of TLS 1.3 is one of the most comprehensive symbolic
models of the protocol and is of independent interest. Its config-
urability makes it a strong foundation for automatically analyzing
extensions and advanced properties of TLS 1.3. Our verification
results for the secrecy and privacy of TLS 1.3 are also stronger
than prior symbolic analyses. The next step is to obtain the missing
privacy properties of TLS 1.3 (SIP,C-EXT) via the ECH extension.

4 TLS 1.3 WITH ENCRYPTED CLIENT HELLO

The Encrypted Client Hello (ECH) Extension [57] is an Internet
Draft currently undergoing standardization at the IETF TLS Work-
ing Group. The extension has gone through 13 revisions (earlier
versions were called ESNI for Encrypted SNI) and many of these
revisions were motivated by attacks on prior designs.

The primary goal of the ECH extension is to hide the identity of
the target TLS server (S in Figure 1). Draft 0 of ESNI proposed a
simple solution to this problem: we encrypt the SNI extension in
the ClientHello with the public-key of the client-facing server F
(say using HPKE [10]); F can then decrypt this extension before
forwarding the ClientHello to the right server. The encryption
uses the ClientHello nonce (cr) as associated data.

This simple design protects the server identity from passive
network attackers but is vulnerable to active attacks. For example,
a network attacker can simply replace the client’s key share (g*)
with its own (gxl) and it will then be able to decrypt the server’s
response to learn the server’s certificate and hence the server’s
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identity. This attack is depicted in Figure 3 and points to the crux
of the design challenge: how does one encrypt the SNI such that it
is cryptographically bound to the rest of the handshake.

Backward Binding. As the attack described above shows, an active
network attacker can try to learn the SNI value by tampering with
the ClientHello to observe the server’s reaction. We may try to
mitigate against this kind of attack by binding more of the contents
of the ClientHello to the encrypted SNI. For example, adding the
key share to the associated data of the encryption does prevent the
attack of Figure 3, but still leaves open an attack based on PSKs.
Suppose the attacker has two pre-shared keys, one that it shares
with S; and another that it shares with Sy. For example, these PSKs
may be the output of ticket-based resumption handshakes that
the attacker previously performed with S; and Sz. Then, when the
client A sends a ClientHello with an encrypted SNI for S; or Sz to
F, the attacker can add its own PSK for (say) S; to this message with
a correctly computed PSK binder. The server will decrypt the SNI
value, retrieve the PSK, verify the binder, and will throw an error if
the SNI value does not match the server name corresponding to the
PSK. This tells the attacker which server the user was connecting
to. This attack was discovered during the course of the analysis in
this paper on draft 5 of ESNI, and is depicted in [16, Figure 6].
The current version of ECH (draft-13) takes a more systematic
approach to backward binding by including the whole ClientHello
within the encryption. Hence, the name Encrypted Client Hello.

Forward Binding. Binding the ECH just to the ClientHello is not
enough to prevent active attacks. Recall the HelloRetryRequest
flow of in normal TLS 1.3 from Figure 2, where a server can ask the
client for a new ClientHello containing a new key share. Suppose
a client tried to connect to S; or Sz using ECH and the server re-
sponds with an HelloRetryRequest. Then the attacker can hijack
this flow to insert its own encrypted ClientHello (say) for Sz in
response to the HelloRetryRequest. The server F will decrypt
the attacker’s (second) ClientHello and compare the server name
with the client’s (first) ClientHello and throw an error if they do
not match, hence revealing the target server to the attacker. This
attack is depicted in [16, Figure 8].

More generally, we would like to ensure that only the client who
authored the first encrypted client hello is able to continue the
handshake, which means we need forward binding between the
ECH and the subsequent handshake. The ECH design achieves this
in two ways. First, the nonce within the encrypted ClientHello
(cri) serves as a secret unknown to the attacker that is mixed into
the key schedule via the handshake transcript. Second, the HPKE
encryptions for the first and second ClientHello must use the
same HPKE context, which strongly binds them together and proves
that both encryptions were computed by the same client.

ECH Protocol Design. The core idea behind the design of ECH
is that we encrypt the entire ClientHello with the HPKE pub-
lic key of the client-facing server. However, for practical deploy-
ments, the protocol must accommodate cases where the client-
facing server rotates or forgets its private key. This has led to
a design with two ClientHello messages, an inner one called
ClientHelloInner and an outer one called ClientHelloOuter.
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ClientHelloInner contains the private parameters for the hand-
shake with the backend server that a client wishes to keep secret
from the attacker. ClientHelloOuter carries an HPKE encryp-
tion of ClientHelloInner as an extension, in addition to public
parameters for completing the handshake with the client-facing
server that are used when the client-facing server cannot decrypt
ClientHelloInner. To prevent the attacker from tampering with
the ClientHelloOuter, the full ClientHelloOuter (with the ECH
extension replaced by a placeholder), is fed as associated data into
the HPKE encryption of ClientHelloInner. The full changes in-
troduced by ECH to the TLS 1.3 handshake are depicted (in red) in
Figure 2.

Upon receiving a ClientHelloOuter, a server takes the fol-
lowing actions. If it does not support ECH or cannot decrypt the
ClientHelloInner, it completes the handshake with ClientHello
Outer. This branch is referred to as rejecting ECH. Otherwise, if the
server successfully decrypts the extension, it forwards ClientHello
Inner to the backend server (indicated by the SNI within Client
HelloInner), which then completes the handshake. This branch is
referred to as accepting ECH. The transcript used in the TLS key
schedule varies depending on this branch. For ECH rejection the
transcript includes ClientHelloOuter, which covers ClientHello
Inner, whereas for ECH acceptance the transcript only includes
ClientHelloInner.

Upon receiving the server’s response, the client determines
whether or not ECH was accepted and proceeds with the handshake
accordingly. Servers indicate ECH acceptance in such a way that an
attacker cannot distinguish between a successful handshake where
ECH is accepted and a successful handshake where the client offered
a fake ClientHello. Indicating acceptance is done with acceptgzi,
which is computed as described in [16, Figure 3]. The output of this
PREF is placed in the ServerHello.random field. Clients re-compute
accept;:" and check it against ServerHello.random. When the val-
ues match, the client concludes acceptance, otherwise the client
concludes rejection.

Alternatively, the server may respond with an Hel1loRetryRequest
(asking for a new key share) along with an acceptance signal
accept;:" included within an extension. The client would then send a
new ClientHelloOuter with anew encrypted ClientHelloInner,
but the encryption for the new ClientHelloInner uses the same
HPKE context as the previous ClientHelloInner (using a sequence
number 1 instead of 0). The server processes this new ClientHello
Outer as before and responds with a ServerHello. In this Hello
RetryRequest HelloRetryRequest protocol flow, the handshake
transcript includes both the first and second ClientHello mes-
sages, so now we have four client hellos to reason about. The result-
ing transcript typically will either include the two ClientHello
Inner values or the two ClientHelloOuters.

The protocol design also tries to hide whether a particular con-
nection uses the ECH extension or not (a principle sometimes
called “do not stick out”). Hence, a client that does not have the
client-facing server’s public key, will still send an ECH extension
containing a random string whose contents are indistinguishable
from an encrypted ClientHelloInner. This is referred to as a fake
ClientHello or grease. We model grease in our work, but do not
try to prove any extra privacy property for this feature.



A Symbolic Analysis of Privacy for TLS 1.3 with Encrypted Client Hello

’ Client (C) ‘ ’ Adversary (A)

CH(cr, F, [G, g*'], hpke®*F (8)[ cr])
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Server (F, S, S’)

Long-term Keys: (dkr, ekr), (sks, pks), (skg, pk)

ServerHello(sr, G, gY)

Computes:
hs = kdfps(kdfo, g*'¥)
ms, kp, c. kh,s> -+« = kdf s (hs, tx1)

enckns (Extensions(...), Certificate(s, pks))

Computes:
hs = kdf s (kdfo, g*'Y)
ms, kp ¢, kp g, - -+ = kdf s (hs, tx)

Learns that|C tried to connect to S from Certificate(S’, pky)

_*

Figure 3: Cut-and-paste attack (draft-ietf-tls-esni-00). hpkeekF (x)[y] denotes fresh HPKE encryption under the public key ekr of

input x bound to value y.

To summarize, ECH significantly changes the design of TLS 1.3
(as depicted in Figure 2) by modifying the handshake transcript
and adding a new cryptographic construction (HPKE) that is bound
in complex ways to the rest of the handshake. Considering these
changes, and the attacks on prior versions of ECH, it becomes
critical to study both the security and privacy of TLS 1.3 with ECH.

5 ANALYZING TLS 1.3+ECH USING PROVERIF

In this section, we describe our ProVerif model of TLS 1.3 with the
ECH extension. We then show how we encode the security and
privacy properties in this model. Finally, we describe the results of
the analysis and its limitations. Our main goals for this analysis are
to answer the following questions:

e Does TLS 1.3, with and without ECH, preserve the secrecy
and authentication guarantees of TLS 1.3?

e Does TLS 1.3, with and without ECH, provide client identity
privacy and unlinkability?

e Does TLS 1.3 with ECH provide server identity privacy and
extension privacy?

e Can TLS 1.3 with ECH be downgraded to TLS 1.3?

We seek to answer these questions through an automated machine-
checked symbolic analysis in ProVerif, for a configurable model
that supports as many TLS 1.3 features as possible. Our full ProVerif
models, with instructions for how to run the analysis, and a techni-
cal report describing our modeling strategies in detail, along with
the full set of our results are provided in the supplementary mate-
rial [1]. Here, we only describe the novel elements of our model
and its analysis.

5.1 Modeling TLS 1.3 and ECH

Our ProVerif model consists of a series of cryptographic definitions
for various constructions used in TLS 1.3 (see [16, Figure 3]) fol-
lowed by process definitions for TLS 1.3 clients and servers that

implement the protocol flows described in Figure 2 and [16, Figure
4]. Our model follows the overall structure of the prior ProVerif
model [14] but is substantially rewritten to support configurability,
extensions like ECH, and equivalence-based reasoning.

Modeling HPKE. In terms of cryptographic constructions, we
define a new model in ProVerif of HPKE [10], an upcoming stan-
dard for hybrid public key encryption. Our model closely follows
the standard and implements the sender-unauthenticated variant
of HPKE used in ECH and in other protocols like MLS [9] and
Oblivious DNS-over-HTTPS [46].

Modeling ECH. We first modify the TLS 1.3 client and server to
include an HPKE-encrypted inner ClientHello as an extension
within the outer ClientHello (see Figure 2). The inner ClientHello
includes a nonce, a Diffie-Hellman key share, pre-shared key identi-
fiers, an SNI extension (indicating the real target server S), and other
(potentially secret) extensions. The outer ClientHello includes
a different nonce and Diffie-Hellman key-share, a SNI extension
(indicating the client-facing server F), and the encrypted inner
ClientHello. We do not enable version negotiation or ciphersuite
negotiation, although they are supported in our model and can be
easily enabled (at significant cost to verification time).

We modify the treatment of He11oRetryRequest and ServerHello
to include the ECH acceptance signal if the server supports and ac-
cepts ECH. When ECH is accepted, we use the inner ClientHello
in the transcript. Otherwise, we use the outer ClientHello. With
HelloRetryRequest, the definition of the transcript becomes more
subtle since we now have four ClientHello messages to choose
from. Depending on the protocol flow we may need to choose
between the four combinations of outer-outer, inner-inner, inner-
outer, and outer-inner, although the ECH specification admits only
outer-outer or inner-inner as valid choices. Of course, it is crucial
that the choice of transcript be the same at client and server and that
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an attacker cannot use this complexity to bypass the authentication
guarantees of TLS 1.3 such as transcript agreement (AGR). Hence,
even though ECH is a privacy-oriented extension, its secrecy and
authentication guarantees need to be formally re-analyzed.

Configurable Features. A key novelty in our model is that our
client and server processes are extensively configurable using two
kinds of boolean flags: global flags enable or disable TLS features in
all clients and processes, whereas process flags are used to enable
features in specific client and server processes.

We define global flags for all the features listed in Table 1 in a
configuration file that gets prefixed to each analyzed model. For
example, the flag allow_HRR can be set to true to globally enable
HelloRetryRequest in all clients and servers. We also define global
flags that enable and disable ECH, PSK, tickets etc. and analysis-
related flags that disable and enable the compromise of different
kinds of keys used in the model.

Each client and server process is initialized with a set of argu-
ments that can further configure their behavior. For example the
definition of our TLS server process is as follows:

let server(use_ech, use_psk, cert_req:bool, s_dom:domain,
g:group, h_alg:hash_alg, a_alg:aead_alg, s_extra:extraExt) = ...

This process defines a TLS 1.3 server configured with 8 argu-
ments: use_ech specifies whether the server supports ECH, use_psk
enables server support for PSK-DHE, cert_req says that the server
should ask for a client certificate, s_dom is the server’s domain
name, g, h_alg, and a_alg define the server’s preferred cryptographic
algorithms, and s_extra contains additional (potentially secret) in-
formation the server can use in its Extensions message. In our
model, each server process only supports one set of algorithms,
chosen by the attacker from a given set of algorithms.

5.2 Encoding Security Goals

We define security goals for all the authentication, confidentiality,
and privacy goals defined in Section 3.

Security Events. To precisely model our security goals, we anno-
tate our client and server processes with events like ClientFinished
and ServerFinished (indicating the completion of the handshake), and
ServerPreFinished (indicating that the server has sent its Finished
but not received the client Finished). We then add events like
ClientSends, ServerReceives, ServerSends, and ClientReceives that indi-
cate the sending and reception of application data. Each event is
parameterized by arguments that include all the relevant connec-
tion parameters, including the identities of the client and server,
their long-term keys, session identifiers, etc.

In addition to these protocol events, we define events that mark
the compromise of long-term keys at the client and server. The
attacker can ask for any HPKE private key, signature key, or pre-
shared key stored in a database to be compromised, before leaking
the key to the attacker, we trigger an event (e.g. CompromisedLtk).

Authentication, Integrity, and Downgrade Resilience. Each of
our authentication goals (CAUTH, SAUTH, INT, AGR) are stated
as ProVerif queries that express correspondences between events
at the client and server. For example, the server authentication
query (SAUTH) states that every time a client issues the event
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ClientReceives for a message m received from server S, it must either
be the case that there was a matching event ServerSends issued by
the server S for message m, or else either the private key of S (sks)
(if the connection uses certificates) or the pre-shared key between
Cand S (psk¢ ¢) (if the connection uses PSKs) must be known to
the adversary. The definition of CAUTH is similar.

In comparison to the prior ProVerif model of TLS 1.3 [14] our
authentication goals for application data are stronger in three re-
spects. First, we prove injective correspondence between events,
hence proving that each client and server session maps to a unique
event at a peer, whereas the prior analysis only proved non-injective
correspondence. Second, we prove a stronger guarantee for ECH
handshakes: even if the private-key or PSK of the server S is com-
promised, we obtain authentication as long as the HPKE private
key of the client-facing server F remains secret. Third, we model
and prove a novel stream integrity guarantee (INT) for application
data: if a client or server receives a message m with sequence num-
ber n, then the peer must have sent the same message at the same
sequence number, unless one of the compromise conditions hold.
Hence, the client and server agree on the sequencing of messages
in each direction, no matter how many messages they send or re-
ceive. In contrast, the prior model modeled authentication only for
a single message at a time.

For handshake authentication, we state similar queries but in
terms of ClientFinished, ServerFinished, and ServerPreFinished. We model
key and transcript integrity (AGR) and key uniqueness (UNIQ) as
correspondence queries over these events. We also define a limited
form of downgrade resilience (DOWN): we ask that if an uncom-
promised TLS 1.3 client or server finishes a handshake with an
uncompromised peer, and the connection does not use ECH, then
either the client or the server did not support ECH. In other words,
a network attacker cannot manipulate a handshake between an
ECH client and an ECH server to disable ECH.

Secrecy and Indistinguishability. Key secrecy (SEC) and forward
secrecy (FS) for 1RTT application data are written as queries over
the attackers knowledge. For example, the forward secrecy query
for 1RTT application data states that if the client issues an event
ClientSends at time j before sending a message m to a server S, and if
the attacker obtains the message m, written attacker(m), then it must
be the case that the corresponding long-term key of S (either skgs or
pskc ) was compromised at some time i < j, and (if the connection
uses ECH) then the HPKE private key of F must also have been
compromised at some time i’ < j. This formulation of forward
secrecy is quite different and more precise than the query in the
prior ProVerif model [14] since it now uses the recent timestamp
feature of ProVerif [22] instead of coarse global phases.

Another novelty in our work is that we state and prove a stronger
secrecy guarantee for the keys established by the handshake. All
prior symbolic analyses of TLS 1.3, both in ProVerif [14] and in
Tamarin [30, 31], only prove syntactic secrecy. This property means
that an attacker cannot fully compute some secret, but even if the
attacker computes all but one bit of the secret, this secrecy property
would still hold. A stronger secrecy guarantee is to prove that the
secret is indistinguishable from a random bitstring, but this kind of
equivalence property is significantly harder to prove for symbolic
tools, which is likely why it was omitted in prior work.
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We show that the resumption PSK (psk’) generated by a TLS 1.3
handshake (with or without ECH) is indistinguishable from a fresh
random PSK generated at the end of the handshake. In our model,
this property is encoded as a diff equivalence in the client process,
just before the secret is stored in the PSK database:

new psk_rand[]:preSharedKey;

let new_diff_psk = diff[new_psk,psk_rand] in

let new_diff_ticket_id = mk_idpsk(s_dom,h_alg,new_diff_psk) in

insert pre_shared_keys(c_dom,s_dom,h_alg,new_diff _ticket_id,
new_diff_psk,id_client,safe);
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allowed traces. In effect, this allows us to define a very general
model that allows all combinations of features and then restrict the
cases to consider when analyzing a specific security goal.

Server Identity Privacy: Attacks and Proofs. The main goal of
ECH is to protect the identity of the server. We encode it similarly
to client privacy by using diff-equivalence over the server names:

let server_name = diff[backendA,backendB] in
client(id_client,use_ech,use_psk,client_name,server_name,algs)

Here the PSK generated from the handshake is new_psk; we
generate a fresh random PSK called psk_rand and define new_diff_psk
as a left-or-right choice between these values, written diff[new_psk
,psk_rand]). In ProVerif syntax, this means that we would like to
prove that the process where new_diff_psk is defined as new_psk is
equivalent to the process where it is defined as psk_rand. In both
cases, the PSK is stored in the pre_shared_keys table and hence may
be used for resumption in future handshakes.

Recall that the attacker may compromise any long-term key,
including PSKs. We only want to prove this equivalence in the case
where the client and server of the current session is uncompromised.
Otherwise, it trivially fails to hold. This restriction is encoded using
flags like safe which indicate whether the keys in the current session
are known to the adversary. This kind of flag is only used to specify
security properties; it plays no part in the protocol execution.

Client Identity Privacy and Unlinkability. We model client
identity privacy and unlinkability for TLS 1.3 (with and without
ECH) also using diff-equivalences. We allow the attacker to choose
the identity of the client before running the TLS 1.3 client process:

in(io,(clientA:name,clientB:name)); (+ Attacker chooses client =)
let client_name = diff[clientA,clientB] in
client(id_client,use_ech,use_psk,client_name,server_name,algs)

This process says that running a client as clientA should be in-
distinguishable from running it as clientB, whether or not the client
uses ECH, and also whether or not it uses certificates or PSKs for
server and client authentication. Of course, this equivalence does
not hold without further restrictions on the target scenario.

First, we assume that the server the client connects to has not
been compromised (otherwise the attacker can impersonate the
server and learn the client’s identity). Second, we assume that either
both clientA and clientB have a certificate they can authenticate
with at the server, or neither of them do (otherwise the attacker
can check if one of them fails to authenticate at the server). With
these assumptions, we can prove client identity privacy. Third, we
assume that either both clients have a valid PSK shared with the
server or neither of them do (otherwise the attacker can detect the
failure of a PSK handshake at one of the clients). Fourth, for TLS
1.3 handshakes without ECH, we need to assume that each PSK is
used exactly once (otherwise the attacker can read the PSK identity
from the client hello and use it to distinguish between clients.) With
these four assumptions, we can prove both client identity privacy
and unlinkability. That is, the client’s connections cannot be linked
and if it is authenticated then its name is kept secret.

The assumptions listed above are encoded using the restrictions
syntax in ProVerif [22] that allow us to state assumptions about

Without using ECH (use_ech=false), this name is immediately
revealed to the network attacker in the SNI extension and hence
ProVerif shows that the equivalence is false. If we enable it and use
an early variant of ESNI that only encrypts the server name, again
ProVerif shows that the equivalence fails and produces the attack
in Figure 3. Similarly, ProVerif can reconstruct the attacks of [16,
Figures 6 and 8] as counter-examples to this equivalence property
on models of earlier versions of ECH. Note that these attacks only
appear when we model optional features of TLS 1.3 such as HRR,
PSK, and SNI. So, we need to prove that the server identity privacy
for ECH holds in a model that includes these features.

Server identity property only holds under the assumption that
the HPKE private key of the client-facing server is uncompromised
(otherwise the attacker can trivially decrypt the ECH extension
to learn the backend name). Other than that, we allow all long-
term keys at backend servers and clients to be compromised. When
resumption is used, we additionally require that the client does not
use a resumption PSK obtained from a session where the attacker
impersonated backendA or backendB, e.g. by compromising their
long-term keys (otherwise the attacker can detect the failure of a
PSK handshake at the server it previously impersonated).

Extension Privacy. We model server extension privacy (S-EXT)
for TLS 1.3, with and without ECH, as a diff-equivalence on the
contents of the Extensions message, as chosen by the attacker.
Client extension privacy (C-EXT) only makes sense for ECH hand-
shakes and is also stated as a diff-equivalence on the contents of the
extensions in the encrypted inner ClientHello. As expected, this
property only holds under the assumption that the HPKE private
key of the client-facing server is uncompromised.

5.3 ProVerif Analysis Results

Our full TLS 1.3 + ECH model totals 7600 lines. We set the resource
limits of ProVerif to 48 hours of execution time and 100GB of mem-
ory and ran several analyses in parallel on a Linux server with a
64-core AMD processor clocked at 3.8Ghz with 515 GB RAM. We
first ran ProVerif on our model with all supported features enabled
for all the target properties (as summarized in Table 1). ProVerif
succeeded in verifying all the reachability properties for TLS 1.3
without ECH, but ran out of time or memory in all other cases.
We then ran ProVerif on various combinations of features for each
property, resulting in 621 total analysis runs, from which we se-
lected the best successful combinations. These selected results are
depicted in Table 2, and the full results can be found in [1].

Verifying TLS 1.3. We first re-run all the classic TLS 1.3 secrecy and
authentication reachability queries on our model of TLS 1.3 without
ECH. We enable all optional features supported by our model, but
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Table 2: Selected Verification Results for TLS 1.3 with ECH:
reachability properties above, equivalence properties below.
Each row represents a successful run of ProVerif on our
model with a selection of features enabled. ECDHE hand-
shakes with SNI are enabled in all runs (and so are omitted
from the tables). For equivalence-based properties, 1-RTT
and 0-RTT data are always disabled.

recall that we disable version and ciphersuite negotiation. This
analysis completes in about 10 hours and validates our changes to
the TLS 1.3 model of [14], while providing stronger authentication
guarantees, as described above.

The analysis of equivalence-based properties typically takes
more time and memory, and since these properties only speak about
handshake elements, we disable application data (1IRTT, ORTT)
when analyzing them. ProVerif proves key indistinguishability,
server extension privacy, client identity privacy, unlinkability and
for TLS 1.3 (without ECH, PHA, or application data) in 17 hours.
We also proved CIP and UNL with HRR, PHA, CC and PSK-DHE
but without tickets in 10 hours.

Reachability Properties for ECH. We then verify properties of
TLS 1.3 with ECH. The added complexity of ECH makes the analysis
much more expensive, requiring us to selectively disable certain
features to obtain proofs for various properties. ProVerif is able to
prove key secrecy (SEC) and key uniqueness (UNIQ) with ORTT
disabled. Application data has no impact on these two handshake
properties, so disabling ORTT does not weaken this result.

Secrecy of ORTT data (SECO) is then proved with client certifi-
cates (CC) disabled. Since certificates only appear after ORTT data
has already been sent, disabling it has no impact on this property.

Forward secrecy (FS) and stream integrity (INT) for 1RTT data
are significantly more complex properties, and we can only prove
them without HRR, PHA, and ORTT. Enabling PHA would be in-
teresting for these properties, since PHA is interleaved with 1RTT
data, but ProVerif runs out of memory in this case.
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Server authentication (SAUTH) and key and transcript agree-
ment (AGR) are handshake properties and are proved with post-
handshake (client) authentication and ORTT disabled, neither of
which have an impact on these properties.

Client authentication (CAUTH) is proved either with client cer-
tificates (CC) and PSKs (within the handshake) or for PHA, but
not both at the same time. In practice, it is likely that TLS clients
will either enable CC or PHA but not both. Still, ideally we would
prove this property with all three client authentication modes
(CC,PSK,PHA) enabled, but ProVerif runs out of memory.

Finally, ECH downgrade resilience is proved with certificate-
based client authentication (CC,PHA) and ORTT data disabled.

Equivalence Properties for ECH. For TLS 1.3 with ECH, PSK-
DHE, tickets, and client certificates (but without HRR or PHA), key
indistinguishability is proved in 21 hours. PHA has no impact on
the handshake key schedule, but HRR does affect key computation.
We separately prove indistinguishability for DHE handshakes with
HRR, but without CC, PHA, and PSK-DHE. Put together, these
results cover both certificate-based DHE handshakes and sequences
of PSK-DHE handshakes with ticket-based resumption.

Server identity privacy is proved for handshakes with ECH and
HRR, hence proving that ECH is not vulnerable to the attack of
[16, Figure 8]. SIP is also proved for PSK handshakes handshakes
with ticket-based resumption (TKT), hence proving the absence of
the attack of [16, Figure 6]. Together these results cover all known
privacy attacks on previous versions of ESNI and ECH.

Client identity privacy and unlinkability are proved for clients
that use both PSKs and CC (but do not use HRR, PHA, or TKT.)
These properties are additionally proved for handshakes that enable
CC and PHA (but do not use PSK or TKT). These results cover both
unauthenticated and authenticated clients that use client certifi-
cates, or PSKs, or post-handshake authentication.

Finally, server and client extension privacy are proved for hand-
shakes with HRR, CC, and PSK-DHE but without TKT and PHA.

6 DISCUSSION

We have systematically analyzed TLS 1.3 with the ECH extension
for a series of security and privacy properties in a variety of config-
urations. This analysis gives us more confidence in the design of
ECH and our analysis has already influenced the design of the pro-
tocol. We discovered and presented attacks to the working group,
participated in the protocol design for various versions, and are
now in the process of presenting our findings to the group. Ours is
the first formal security analysis for this privacy extension.

It is important to underline, however, that our verification re-
sults only hold in our model, and there is always a gap between a
formal model and real-world deployments and concerns. Here we
discuss some of these concerns and provide implementation and
deployment guidelines for ECH implementors.

Network Configuration and Application Behavior. ECH does
nothing to hide the IP address of the client-facing server. Thus,
if client-facing servers orchestrate deployments such that each
backend server is correlated or associated with a single IP address,
then ECH offers little privacy benefits. Moreover, when considering
the privacy of higher-level application behavior, such as a web
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page load which involves opening many TLS connections for sub-
resources on a page, the set of IP addresses observed may leak
information about any one subresource load. Patil and Borisov [53]
analyze the effect of these “page load fingerprints” on the privacy
of web browsing applications. Protecting against unique page load
fingerprints requires more invasive changes either in the client
network configuration, e.g., by sending all subresource connections
over a VPN-like tunnel, or application-layer changes to alter what
subresources are required for an application.

Do not stick out. One important criteria for ESNI and ECH to
be effective is that use of it does not stick out. Indeed, early de-
ployments of ESNI have seen some blocking in certain regions [24].
In order to ease ECH into deployment, it needs to be specifically
designed so as to not obviously stick out. In other words, without
prior information, an attacker should not be able to examine a TLS
connection that uses the ECH extension and conclude that it indeed
negotiated ECH without prior knowledge about the client-facing
server or backend server. The ECH extension alone indicates sup-
port for the protocol, but does not indicate that ECH was actually
negotiated without prior knowledge about the client-facing server
configuration. Similarly, the size of the TLS handshake may leak
whether ECH was negotiated. Our analysis does not attempt to
model or prove this property, and we leave it for future work.

Traffic Analysis. More generally, most kinds of traffic analysis
are out of scope of our model. Any attacks that rely on observ-
ing patterns of application messages, including their timing and
lengths do not appear in our ProVerif analysis. Stating and proving
privacy in the presence of traffic analysis is a hard but interesting
problem, especially since it depends on network configuration and
application behavior as described above.

ECH Implementation and Deployment Guidelines. Despite
these limitations, TLS1.3+ECH implementations should still follow
some implementation and deployment guidelines to obtain the
maximal privacy guarantees from ECH.

First, our analysis shows that server privacy only holds when
the client uses the same set of protocol parameters (ciphersuites,
versions, groups) when connecting to both S; and Sz, otherwise
the choice of algorithms may reveal which server it is talking to.
This is already the case for most web browsers that offer a standard
set of ciphersuites to all websites. However, in PSK resumption
handshakes, the client may only offer the ciphersuite associated
with the PSK. In this case, privacy only holds if the client holds
PSKs with both S; and Sy and both PSKs are associated with the
same protocol parameters.

Second, the SNI extension in ClientHello can be of variable size;
so the ECH specification recommends padding this value to avoid
leaking information about the server. This should be implemented
carefully to ensure that S; and Sz have the same padded length.

Third, client-facing servers must ensure that all backend servers
support the same set of cryptographic capabilities. This means
that they all support the same set of cryptographic algorithms. In
particular, if one backend server supports ticket-based resumption,
they should all support this feature.

Fourth, the backend servers should pad their Certificate and
CertVerify messages to ensure that any differences in certificate
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chains or handshake signatures do not leak via the length of the
server’s encrypted response. In general, the length of the server’s
encrypted response must be identical for all backend servers.

7 RELATED WORK AND CONCLUSION

We already discussed related work on TLS 1.3 in Section 3. Pri-
vacy aspects of secure channel, key exchange and related protocols,
beyond TLS, have been studied in the literature. Lipp et al. [51] pro-
vided the first mechanised cryptographic proof of the WireGuard
protocol including identity-hiding. Ramacher et al. [55] defined a
privacy-preserving authenticated key exchange (PPAKE) protocol
and prove that IKEv2 satisfies this definition. However, despite
noting the importance of encrypted SNI in TLS as a step towards
making it a PPAKE, they do not further analyze encrypted SNI
designs for TLS 1.3. Zhao [60] defined an identity-concealed AKE
(CAKE), and proposed a new cryptographic construction called
higncryption to build it in the context of TLS 1.3. However, the
CAKE definition is weaker than that of PPAKE since it does not
allow one to analyze key indistinguishability separately from pri-
vacy. Dagdelen et al. [32] analyze OPACITY, though their analysis
is limited in that each participant has one identity per protocol
run. In contrast, TLS participants often have multiple identities.
Fouque et al. [42] analyze client privacy in 3GPP, defined in terms
of user identity confidentiality, service untraceability, and location
untraceability. Among these notions, identity confidentiality is only
relevant for the TLS handshake protocol.

More generally, privacy properties has been a major concern
for several kinds of cryptographic protocols. However, the tool
support for automated verification of privacy-type properties is far
less mature than for authentication and confidentiality properties.
Many recent works have improved support for equivalence-based
properties in various tools [12, 22, 25, 26] and these tools have
been used to analyse electronic voting protocols [27, 29], RFID
protocols [43], 5G-AKA protocol [7], etc.

For most of these analyses, the protocol under study was rela-
tively small or simplified for the tools to conclude. To our knowl-
edge, our work is one of the most complex models for privacy
properties ever proved for a large real-world protocol using sym-
bolic analysis. Our results are at the limits of what ProVerif was
able to prove for our model and we believe that they provide a good
benchmark for future improvements to ProVerif. In particular, our
analysis has shown that memory consumption is a bottleneck for
large protocols and even more so for equivalence-based reasoning.
We are currently experimenting with hash consing techniques to
compactly represent messages in ProVerif which should allow us
to re-enable features in our analysis. Moreover, this work led us to
suggest improvements in the treatment of lemmas and restrictions
in ProVerif, which have been accepted by the ProVerif authors for
inclusion in the next version of the tool.
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