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Abstract. Symbolic protocol verification generally abstracts probabilities away, considering computations that succeed only
with negligible probability, such as guessing random numbers or breaking an encryption scheme, as impossible. This ab-
straction, sometimes referred to as the perfect cryptography assumption, has shown very useful as it simplifies automation
of the analysis. However, probabilities may also appear in the control flow where they are generally not negligible. In this
paper we consider a framework for symbolic protocol analysis with a probabilistic choice operator: the probabilistic applied
π-calculus. We define and explore the relationships between several behavioral equivalences. In particular we show the need
for randomized schedulers and exhibit a counter-example to a result in a previous work that relied on non-randomized ones.
As in other frameworks that mix both non-deterministic and probabilistic choices, schedulers may sometimes be unrealistically
powerful. We therefore consider two subclasses of processes that avoid this problem. In particular, when considering purely
non-deterministic protocols, as is done in classical symbolic verification, we show that a probabilistic adversary has—maybe
surprisingly—a strictly superior distinguishing power for may testing, which, when the number of sessions is bounded, we
show to coincide with purely possibilistic similarity.

Keywords: security protocols, symbolic verification, probabilistic process equivalences

1. Introduction

Automated symbolic protocol verification, based on the seminal work of Dolev and Yao [1], has
nowadays reached a level of maturity enabling successful use on complex real-world security proto-
cols, including TLS [2, 3], Signal [4], authentication protocols of the 5G standard [5], or EMV’s secure
payment protocols [6] to name only a few. In the symbolic model, a non-deterministic, computation-
ally unbounded attacker is assumed to have complete control of the network, being able to intercept
any messages, and forge new ones. As a counterpart, cryptography is idealized and the attacker can
only use predefined rules to manipulate messages that are represented by terms, e.g., expressed by an
equation dec(enc(m, k), k) = m stating that a message m encrypted with k can be decrypted with the
same key. This treatment of cryptography is in opposition to computational models where we assume a
probabilistic polynomial time attacker, messages are represented by bitstrings and assumptions that an
arbitrary such attacker has at most negligible probability of breaking a cryptographic primitive. Simi-
larly, in the symbolic model, random values, such as keys or nonces, are chosen freshly from an infinite
domain, rather than chosen randomly from a sufficiently large domain. These symbolic abstractions of
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cryptography and randomness have even been shown sound [7] (under rather strong assumptions) and
significantly ease the automation of proofs. Hence, symbolic modeling of messages is arguably useful
for formally analyzing cryptographic protocols.

However, the above-described abstractions of randomness only apply to the messages, and not to the
control flow. Typical examples which crucially rely on randomized control flow are mechanisms for pro-
viding anonymity, such as the dining cryptographers protocol [8], mix-nets [9] or Crowds [10]. In this
paper, we will investigate indistinguishability properties, expressed as equivalences in a cryptographic
process calculus, the applied π-calculus [11], extended with a probabilistic choice operator. Typically,
the testing equivalence expresses that two processes are equivalent if they exhibit the same behaviour
when put in parallel with an arbitrary attacker process. Our work presents foundations for a model that
(i) extends the scope of symbolic protocol analysis to probabilistic protocols, and (ii) allows to consider
a probabilistic attacker (even on non-probabilistic protocols). In particular, when we consider purely
concurrent processes–without probabilistic behavior–the equivalence we obtain is strictly stronger than
the standard testing equivalence on such purely concurrent processes; in other terms, probabilistic ad-
versaries are–for good reasons, as we will argue–more powerful in order to distinguish such processes
than the purely concurrent adversaries considered in existing works and tools.
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Figure 1. Summary of the relationship between preorders.

Our contributions. In a first part we introduce a probabilistic applied π-calculus and its semantics,
which has similarities to [12], with two major differences. (i) We express our semantics in terms of
general non-deterministic probabilistic transition systems (NPLTS)–also called probabilistic automata
in the literature–which allows us to benefit from a large body of existing results on these systems [13–
19]. (ii) More importantly, we differ in the way non-determinism is resolved: unlike [12] we allow
for randomized schedulers—rather than choosing one particular non-deterministic choice, we allow the
scheduler to choose an arbitrary distribution on the available non-deterministic choices.

Second, we define several notions of preorders and equivalences and study their relations. The main
results are also summarized in Figure 1, focusing on preorders (with similar relations between corre-
sponding equivalences). We show, in particular, that
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• unlike in the purely non-deterministic case, the may-testing preorder (⩽may) is strictly stronger
than the trace equivalence preorder (⩽tr) (Theorem 1);
• simulation (⩽sim) and observational pre-order (⩽obs), respectively bisimilarity and observational

equivalence, coincide for randomized schedulers (Theorem 2);
• for non-randomized schedulers, these equivalences (⩽nr

sim and ⩽nr
obs ) do not coincide (Lemma 4),

which provides a counter-example to one of the main results in [12].

Third, a well-known phenomenon [20, 21] in process calculi that are both probabilistic and non-
deterministic is the existence of some nonrealistic schedulers that are able to use the internal proba-
bilistic choices done by an agent in order to schedule another agent’s non-deterministic choices, i.e.,
the scheduler leaks the probabilistic choices. Therefore, we study two important subclasses of processes
that avoid this phenomenon.

We first consider the classical class of non-probabilistic processes (denotedMPnp), as in the original
applied π-calculus, but in the presence of probabilistic adversaries. We show that, if we additionally
bound the number of sessions (denotedMP<∞,np),

• may-testing with probabilistic adversaries coincides with the classical, purely possibilistic notion
of similarity (Proposition 5 and Theorem 2). This also provides a contextual characterization of
the notion of similarity which is reminiscent of [17] in the setting of CSP;
• verification of testing equivalence with probabilistic adversaries is co-NEXPTIME complete for a

large class of cryptographic primitives, relying on results from [22].

We next consider a class of purely probabilistic processes with a bounded number of sessions (denoted
MPpp), which is reminiscent of a probabilistic version of simple processes in [23, 24], and a slight
generalization of the processes in [25]. We show that trace equivalence as considered in [25], is

• weaker than may-testing, but
• coincides with a version of may-testing with determinate attackers: attacker processes are re-

stricted by disallowing replication, parallel, and non-deterministic choice, but allowing proba-
bilistic choices (Theorem 3).

Next, we present an algorithm for deciding trace equivalence by extending the procedure of the
DEEPSEC verifier [22]. Our procedure inherits some limitations (bounded number of sessions, the class
of admissible rewrite systems) but provides a more general setting than Bauer et al. [26] who addi-
tionally bound the size of input messages. We have implemented our procedure in the open-source tool
DEEPSEC available at [27].

Finally, we illustrate our framework by studying the Dining Cryptographers protocol. We notably
provide a pen and paper proof that the protocol guarantees anonymity (expressed as may-testing equiv-
alence). Using the DEEPSEC tool we also show that anonymity is not provided when coins are biased.

For readability, we often only provide proof sketches and omit some of the most technical proofs. A
full version with more detailed proofs is available at [28].

2. Probabilistic Applied π-calculus

In this section we introduce the probabilistic applied π-calculus, a probabilistic variant of the applied
π-calculus introduced by Goubault-Larrecq et al. [12].
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2.1. Message as terms

Atomic values such as keys and nonces are modelled by names. We assume an infinite set of such
names N = {a, b, . . . , } and partition it into two disjoint infinite sets Npub and Npriv. The set of private
names Npriv is a priori unknown to the attacker and models, e.g., honest keys in a protocol. The set
of public names Npub models public values, known to the attacker. The distinction between public and
private names is analogous to the distinction between free and bound names in the original applied
π-calculus. We also define an infinite set of variables X . Finally, we consider a finite set of function
symbols each equipped with their arity F = { f /n, g/m, . . .}. Function symbols model cryptographic
operations, e.g., enc/2 is a binary symbol that could be used to model encryption. Terms are defined as
names, variables, and function symbols applied to other terms. For instance, given two names a, k ∈ N ,
enc(a, k) represents the encryption of a with the key k. For any F ⊆ F , N ⊆ N and V ⊆ X , the set of
terms built from N and V by applying function symbols in F is denoted by T (F,N ∪ V).

We also suppose that terms are equipped with a binary relation .
= that expresses that two terms evaluate

to the same result, and a predicate Msg(·) that is intended to hold when evaluation succeeds. How .
= and

Msg(·) are precisely defined is not relevant for the results of this paper and we wish to capture several
formalisms. .

= can for instance be defined by an equational theory, as in the applied π-calculus [11]
(where Msg(·) would evaluate to true on any term), by a constructor-destructor rewrite system, allowing
evaluation to fail when a destructor application does not reduce, as in the DEEPSEC tool [22], or a
combination of these as in the ProVerif tool [29].

Formally, we require that .= is symmetric, transitive, and closed under substitution of terms for names
and variables, as well as application of function symbols. Moreover, for all a, b ∈ N , a = b if and only
if a .

= b. Msg(·) is supposed to hold on any names, be closed under renamings and t1
.
= t2 implies that

Msg(t1) and Msg(t2). Finally, we require that Msg(t) implies t .
= t.

For example, the .
= relation could capture that dec(enc(m, k), k) .

= m for any m, k modelling that
decryption cancels out encryption when the same key k is used; one may also define Msg(dec(n, k)) as
false to express that decryption fails if the ciphertext argument is not an encryption with the matching
key.

2.2. Syntax of the process calculus

The syntax for processes is defined as follows:

P, Q ::= processes
0 nil
in(u, x); P output
out(u, v); P input
P | Q parallel composition
!P replication
new a; P restriction
if u = v then P else Q conditional
P + Q non-deterministic choice
P +p Q probabilistic choice
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where u, v ∈ T (F ,N ∪ X ), x ∈ X , a ∈ N and p ∈]0; 1[. As usual, in examples we will omit trailing 0
processes and else 0 branches. A process P is closed when all variables in P are bound by an input. We
also denote by fn(P) the set of free names in P, i.e., the names not bound by a restriction, and by n(P)
the set of all names occurring in P.

Example 1. As an example, consider the process P:

(out(c, k) + 1
3

out(c, a)) | in(c, x); if x = k then out(c, ok)

P consists of two parallel processes. The left process outputs on a channel c with probability 1
3 the name

k and with probability 2
3 the name a. The right process inputs a value on channel c and binds this value

to x. If x equals k then it outputs the constant ok.

We denote by SP the set of all processes in the probabilistic applied π-calculus, and byMP the set
of all multisets over SP .

2.3. Operational semantics

We will now define the semantics of the probabilistic applied π-calculus. We opt for a different pre-
sentation of the semantics than Goubault-Larrecq et al. [12] relying on existing formalisms for transition
systems. Moreover, we allow for a more general class of schedulers.

Notation 1. Let S be an arbitrary set. We denote by D(S) the set of all finitely supported probability
distributions over S and by D⩽1(S) the set of all sub-probability distributions over S (observe that
D(S) ⊆ D⩽1(S)). For p, q ⩾ 0, and sub-distributions D, E, we define the measure

(p · D + q · E)(x) = p · D(x) + q · E(x).

When q = 0, the resulting sub-distribution does not depend on E, and we simply write p · D instead of
p · D + 0 · E.

If D ∈ D(S), we denote by supp(D) the support of D, i.e., the set of all elements s ∈ S such that
D(s) > 0. If S ′ ⊆ S, we define D(S ′) =

∑
s∈S′ D(s). Finally, we denote by δx the Dirac distribution on

x.

The operational semantics of processes is defined by a relation between multisets of processes and
probability distributions on multisets of processes, denoted P →τ µ. This relation is defined in Figure 2.

Remark 1. One may note that our calculus offers a non-deterministic choice operator that is resolved
internally. This differs from the standard π-calculus [30] where the non-deterministic choice operator
is resolved externally. Note that the original applied π-calculus [11] does not contain non-deterministic
choice.

In the following, we define the operational semantics of our calculus using well studied probabilis-
tic systems. We choose the formalism of non-deterministic probabilistic labelled transition systems
(NPLTS) used for instance in [16]. A NPLTS allows to represent states that allow both internal and
external non-deterministic behavior. It can be noted that it coincides with the notion of simple proba-
bilistic automata of Segala et al. [13].
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P ∪ {{0}} →τ δP

P ∪ {{if u = v then P else Q}} →τ δP∪{{P}} if u .
= v

P ∪ {{if u = v then P else Q}} →τ δP∪{{Q}} if u ̸ .= v
P ∪ {{out(u, t).P, in(v, x).Q}} →τ δP∪{{P,Q{x 7→t}}} if Msg(t) ∧ u .

= v
P ∪ {{P | Q}} →τ δP∪{{P,Q}}
P ∪ {{!P}} →τ δP∪{{!P,P}}
P ∪ {{new a; P}} →τ δP∪{{P{a′/a}}} where a′ ∈ Npriv is fresh
P ∪ {{P + Q}})→τ δP∪{{P}}
P ∪ {{P + Q}} →τ δP∪{{Q}}
P ∪ {{P +p Q}} →τ p · δP∪{{P}} + (1− p) · δP∪{{Q}}

Figure 2. Semantics of the calculus

Definition 1. A NPLTS is a triple (S,A, trans), where

• S is a set of states,
• A = {τ} ⊔ Aext is a set of labels, and
• trans : S → A → P(D(S)) is a transition function: for each state in S, and each label in A,

trans(s)(a) is a set of (finitely supported) distributions.

The label τ is the internal action and the labels in Aext are the external actions. For s ∈ S , a ∈ A, we
write s a−→ D when D ∈ trans(s, a).

In the remaining of this paper, we may define a NPLTS by only its transition function, i.e., we will say
that trans : S → A → P(D(S)) is the NPLTS (S,A, trans).

We now express our operational semantics as a NPLTS without external actions, i.e., Aext = ∅.
External actions will be used to express our labeled semantics in Section 4.1.

Definition 2. The operational semantics is the NPLTS No = (MP , {τ}, transo) where for every s ∈
MP , transo(s)(τ) = {D | s→τ D}.

Note that the states of the NPLTS No contain all possible multisets of processes and how they are
executed. Obviously, No is thus an infinite transition system. In examples illustrating transitions of a
multiset of processes P , we only show the relevant fragment of No that contains P .

Example 2. The complete execution of the process P, introduced in Example 1 is given in Figure 3.

3. Behavioral equivalences

In this section we define probabilistic versions of two classical equivalences: may-testing and the
stronger observational equivalence. In order to do so we first introduce the notion of resolution (also
known as scheduler), i.e., how internal non-determinism is resolved, and the notion of barb, which
models an observational action.



V. Cheval et al. / Symbolic protocol verification with dice 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

{{P}}

{{A, B}}

τ

{{out(c, k), B}}

{{out(c, a), B}}

1/3

2/3

τ

{{0, B1}}
τ {{0, 0}}τ

{{B1}}

τ

{{0}}τ

τ

∅τ

{{0, B2}}
τ {{B2}}

τ

{{0, B3}}

τ

{{B3}}

τ

τ

A = out(c, k) + 1
3

out(c, a)

B = in(c, x); if x = k then out(c, ok)

B1 = if a = k then out(c, ok)

B2 = if k = k then out(c, ok)

B3 = out(c, ok)

Figure 3. Semantics of the process P from Example 2

3.1. Resolving the internal non-determinism

Resolutions express how internal non-determinism of a NPLTS is resolved. Intuitively, resolving the
non-determinism means, for each state, restricting the transition system either by choosing one particular
internal transition, or else by leaving the choice of a non-deterministic external action. The resulting
transition system is called a Reactive Probabilistic Labelled Transition System (RPLTS) and has still
external, but no internal, non-determinism. It can be noted that this model is equivalent to Labelled
Markov Chains when extended with internal actions.

Definition 3. A RPLTS is a triple (S,A, trans), where

• S is a set of states,
• A = {τ} ⊔ Aext a set of labels, and
• trans : S → D(S) ⊔ (Aext → D(S) ∪ {⋆}) is a transition function that assigns to each state in S

* either a unique distribution for the label τ (the deterministic internal action);
* or a function mapping labels in Aext to a failure (⋆) or a distribution over S (the non deter-

ministic external actions).

States s ∈ S such that trans(s) : Aext → D(S)∪ {⋆} are called external states, while the ones such that
trans(s) : D(S) are called internal states. Given a RPLTS R, we denote by Sext(R) and Sint(R) the sets
of external and internal states of R respectively. For a more homogeneous notation, when s is an internal
state, we sometimes write trans(s)(τ) = D instead of trans(s) = D.

Remark 2. In the particular case of a NPLTS N with no external action, resolving the internal non-
determinism results in a RPLTS without any non-determinism. This is the case of the operational se-
mantics No. Such a purely probabilistic system is typically equivalent to the notion of Markov Chain. By
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abuse of notation, the transition function

trans : S → D(S) ⊔ (∅→ D(S) ∪ {⋆})

of such RPLTS is rewritten as

trans : S → D(S) ⊔ {⋆}

as for any set X, the cardinality of the set (∅→ X) is 1.

Before defining the notion of resolution–or schedulers–, we need to introduce two classical notions in
probabilistic models: the convex hull of a set of distributions and the probabilistic lifting of a function.

Notation 2. Let S be a set of states. The convex hull of ∆ ⊆ D(S), denoted conv(∆), is the set of
distributions D ∈ D(S) such that

∃α1, . . . , αn ∈ R. ∃D1, . . . ,Dn ∈ ∆.

n∑
i=1

αi = 1 and D =

n∑
i=1

αi · Di

Intuitively, rather than choosing one distribution in ∆, each element in conv(∆) corresponds to a
distribution over the distributions in ∆. This will be useful for defining randomized schedulers.

Next, we lift functions to distributions: applying a function f to a distribution simply defines a new
distribution that transfers, according to f , the probability weight of elements in the domain of f to its
image, possibly summing these weights when f maps several inputs to a same output.

Notation 3. Let S,S ′ be two sets of states and f : S → S ′. We define the function f : D(S)→ D(S ′)
to be the probabilistic lifting of f , where

f (D) =
∑
s∈S

D(s) · δ f (s)

When obvious from context, we will overload the notation and write f instead of f .

We now define resolutions for a NPLTS that allow to solve the internal, but not external, non-
determinism: a resolution describes one of the possible ways of turning an NPLTS into a RPLTS. It
means that for each state s, a resolution should choose whether s is an internal state or external state; in
the first case, a unique post-transition distribution must be chosen; in the second case, for each external
action a, the resolution must choose to either stop (i.e., trans(s) = ⋆) or a unique distribution D such that
s a−→ D (i.e., trans(s) = D). Due to the possible existence of cycles in the NPLTS, a scheduler that visits
multiple times a certain state s must be able to choose differently how to resolve the non determinism
every time it visits s. This leads to the notion of correspondence function.

Definition 4 ([16]). A randomized resolution for a NPLTS N = (S,A, trans) is a pair (corr,R) where

• R = (S ′,A, trans′) is a RPLTS, and
• corr : S ′ → S is the correspondence function such that for all states s′ ∈ S ′, trans′(s′)(a) = D

implies corr(D) ∈ conv(trans(corr(s′))(a)).

Given a NPLTS N we denote by Rr(N) the set of randomized resolutions. Additionally, we denote
Ro

r = Rr(No). Figure 4 shows an example of a resolution fromRo
r for the process P from Example 2.
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{{P}}

{{A, B}}

τ

{{out(c, k′), B}}

{{out(c, a), B}}

1/3

2/3

τ

{{0, B1}}
τ {{0, 0}}

{{B1}} {{0}}τ

τ

∅τ

1/43/4

τ

{{0, B2}}
τ {{B2}}

τ {{B3}}
τ

Figure 4. Example of a randomized resolution for process P from Example 2 where the correspondence function corr is the
identity.

3.2. Computing the probability to reach a barb

The notion of barb is a classical way of expressing observables. Intuitively a state of No, i.e., a multiset
of processes, exhibits a barb c whenever an output on channel c is possible.

Definition 5. For c ∈ Npub and P ∈ MP , we say that P exhibits barb c when there exists a process
out(u, t).Q in P where c .

= u and Msg(t). We denote by ↓ c the set of all multisets of processes that
exhibit the barb c.

We next define the probability of reaching a state in a set of target states, in a fully probabilistic
transition system, i.e., in a transition system where all non-determinism–internal or external–has already
been resolved. We first define the probability of reaching such a state in at most n steps, and then we
take the probability of reaching them eventually as the limit of the n-step reaching probabilities.

Definition 6. Let R = (S,A, trans) be a RPLTS, T ⊆ S a set of states, and s an initial state. For every
n ∈ N we define the probability of reaching T from s in at most n steps as:

RProb⩽0
R (s, T ) =

{
1 if s ∈ T
0 otherwise.

RProb⩽n+1
R (s, T ) =


1 if s ∈ T
0 if s ̸∈ T ∧ s ∈ Sext(R)∑

u∈supp(D) D(u) · RProb⩽n
R (u, T )

if s ̸∈ T ∧ trans(s)(τ) = D

We define the probability of reaching T from s as:

RProbR(s, T ) = lim
n→+∞

RProb⩽n
R (s, T ).

Note that, as RProb⩽n
R (s, T ) is an increasing function in n we can replace the limit by the supremum

on n ∈ N.
Given N = (SN,A, transN), we denote by RProbRr(N)(s, T ) the probability:

sup

{
RProbR(s′, corr−1(T ))

∣∣∣∣(corr,R) ∈ Rr(N),
corr(s′) = s

}
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3.3. Defining May Testing Equivalence

Intuitively, two processes are may-testing equivalent if they exhibit the same observations when ex-
ecuted in the presence of any attacker process. This models the inability of an arbitrary process to
distinguish them. More formally, two multisets of processes P and Q are may testing equivalent when
the attacker has the same probability over all schedulers to exhibit the barb c in both P and Q.

Definition 7 (May testing equivalence). Let P ,Q ∈MP . We say that P ⩽may Q iff:

∀Adv ∈MP s.t. fn(Adv) ⊆ Npub.
∀c ∈ Npub.

RProbRo
r (P ∪ Adv, ↓c) ⩽ RProbRo

r (Q∪ Adv, ↓c)

We say that P ,Q are may testing equivalent, denoted P ≈may Q, when P ⩽may Q and Q ⩽may P .

Remark 3. One could also consider a more fine-grained definition of may testing pre-order that guar-
antees the equality of probabilities between two schedulers rather than comparing the probabilities over
all schedulers. Formally, this pre-order, denoted ⩽′may, requires that for all resolutions (corr,R) ∈ Rr(N)
and state s of R such that corr(s) = P ∪ Adv, there exist a resolution (corr′,R′) and a state s′ of R′ such
that corr′(s′) = Q∪ Adv and

RProbR(s, corr−1(↓c)) = RProbR′(s′, corr′−1(↓c))

However, the resulting relation is counter-intuitive and distinguishes processes

P := {{out(a, 0)}} and Q := {{out(a, 0) + 1
2
(out(a, 0) + 1

2
out(a, 0))}}.

Indeed, we can show that Q ⩽̸′may P: for Adv = {{0}}, there exists a resolution (corr,R) such that

corr(s) = P ∪ Adv and RProbR(Q, ↓a) =
1

2

but for every resolution (corr′,R′) such that corr′(s′) = Q∪ Adv,

RProbR′(P , ↓a) = 1.

3.4. Defining Observational Equivalence

In this section, we define observational preorders and equivalence which are stronger than may test-
ing. When studying cryptographic protocols we suppose that internal actions are not observable and
therefore only study weak equivalences hiding whether such internal actions take place or not. To define
the observational preorder we need to introduce a weak relation for internal actions. In a purely non-
deterministic system this simply corresponds to the reflexive, transitive closure τ−→

∗
. However, in our

setting we need to compute the corresponding distributions.

Definition 8. Let N be a NPLTS and D, E ∈ D⩽1(SN).
We write D τ

==⇒Rr(N) E when there exists (corr,R) ∈ Rr(N) and D′, E′ ∈ D⩽1(SR) such that
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• corr(D′) = D, corr(E′) = E, supp(E′) ⊆ Sext(R),
• ∀u ∈ Sext(R). E′(u) =

∑
s′∈SR

D′(s′) · RProbR(s′, {u}).

To define the observational preorder, we additionally need to lift relations defined on a given set to
relations on sub-distributions over this set.

Definition 9 (Lifting of a relation). Let R be a binary relation on a discrete set S. We define the lifting
of R to sub-distributions as the binary relation on D⩽1(S), denoted R̂, defined as:

D R̂ E when ∀S ′ ⊆ S,D(S ′) ⩽ E(R(S ′))

where R(S ′) = {s ∈ S | s′ ∈ S ′ ∧ s′ R s}.

Using these notions of weak transition and lifting of relations to sub-distributions we can define ob-
servational equivalence.

Definition 10. The observational preorder ⩽obs is the largest relation R on MP such that P R Q
implies :

• ∀c ∈ Npub. RProbRo
r (P , ↓c) ⩽ RProbRo

r (Q, ↓c);
• if P τ

==⇒Ro
r D and D ∈ D(SNo) then Q τ

==⇒Ro
r E, E ∈ D(SNo) and D R̂ E;

• ∀ closed Adv ∈MP such that fn(Adv) ⊆ Npub. {Adv} ∪ P R {Adv} ∪ Q.

The observational equivalence ≈obs is defined by additionally requiring R to be symmetric.

Remark 4. Note that we slightly diverge from the original definition of observational equivalence [11]
where an evaluation context C[_] is of the form

new n1; . . . ; new nk; (_ | A)

In our definition we simply consider a parallel process, and no additional name restriction. However,
we now show that these two definitions coincide. Intuitively, restricting names whose scope includes the
adversarial process A does not provide additional distinguishing power and these names could as well
be public. While this result is of independent interest, the reader may safely skip the remainder of this
section without hindering their understanding of the rest of the paper.

Our distinction between private and public names enforces that all restricted names n1, . . . , nk are
in Npriv. Applying an adversarial context with restriction in our formalism corresponds to applying a
renaming from public to fresh private names. Hence, in our formalism the original observational equiv-
alence can be defined as follows.

Definition 11. The original observational preorder ⩽Rori is the largest relation R on MP such that
P R Q implies :

• for all c ∈ Npub, RProbR(P , ↓c) ⩽ RProbR(Q, ↓c);
• if P τ

==⇒r D then Q τ
==⇒r E and D R̂ E;

• for all closed Adv ∈MP , for all renaming ρ, if fn(Adv) ⊆ Npub, dom(ρ) ⊆ Npub, img(ρ) ⊆ Npriv
and img(ρ) ∩ n(P ,Q, Adv) = ∅ then {Advρ} ∪ Pρ R {Advρ} ∪ Qρ.
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The original observational equivalence≈Rori is defined by additionally requesting R to be symmetric and
in the second bullet point, by requesting both D R̂ E and E R̂ D to hold.

We now show that the two notions coincide. Intuitively, restricting names whose scope includes the
adversarial process Adv corresponds to making previously public channels invisible to the attacker at
later steps, which does not provide additional distinguishing power.

Lemma 1. ⩽Rori = ⩽Robs and ≈Rori = ≈Robs.

Proof. Taking ρ to be the empty renaming, we have that ⩽Rori ⊆ ⩽Robs and ≈Rori ⊆ ≈Robs.
Define the relationR as P RQ iff there exists P ′,Q′ and a renaming ρ such that P = P ′ρ,Q = Q′ρ,
P ′ ⩽Robs Q′, dom(ρ) ⊆ Npub, img(ρ) ⊆ Npriv and img(ρ) ∩ n(P ′,Q′, Adv) = ∅.

As .
= is closed under substitution of names by terms, we can show that Pρ →τ Dρ iff P →τ D. This

can be propagate to schedulers, i.e. (corr,R) ∈ Ro
r if and only if (corrρ,R) ∈ Ro

r . Hence, we derive that

• RProbRo
r (P , T ) = RProbRo

r (Pρ, T ρ)
• D τ

==⇒Ro
r E if and only if Dρ τ

==⇒Ro
r Eρ

We now show thatR satisfies the three items in Definition 11:

• Let c ∈ Npub. If c ∈ dom(ρ) then c does neither occur in P ′ρ nor in Q′ρ. Hence, RProbRo
r (P ′, ↓

c) = 0 = RProbRo
r (Q′, ↓c). Otherwise, ↓c =↓cρ∪T where for all P ′ ∈ T , fn(P ′)∩dom(ρ) ̸= ∅.

Since, P ′ρ and Q′ρ do not contain public names from dom(ρ), they can never reach states from
T . Hence, RProbRo

r (P ′ρ, ↓ c) = RProbRo
r (P ′ρ, ↓ cρ) = RProbRo

r (P ′, ↓ c). Since P ′ ⩽Robs Q′, we
deduce that

RProbRo
r (P
′, ↓c) ⩽ RProbRo

r (Q
′, ↓c) ⩽ RProbRo

r (Q
′ρ, ↓cρ) ⩽ RProbRo

r (Q
′, ↓c)

• If Pρ τ
==⇒Ro

r Dρ then P ′ τ
==⇒Ro

r D. By P ′ ⩽Robs Q′, we have Q′ τ
==⇒Ro

r E and D ⩽̂Robs E. This
implies that Dρ R̂ Eρ with Q′ρ τ

==⇒Ro
r Eρ.

• Let Adv ∈MP and ρ′ be a renaming such that fn(Adv) ⊆ Npub, dom(ρ′) ⊆ Npub, img(ρ′) ⊆ Npriv

and img(ρ′) ∩ n(P ′ρ,Q′ρ) = ∅. Note that the domains of ρ and ρ′ may not be disjoint. Similarly,
the process Adv may contain public names from dom(ρ).
Hence, let ρpub be a renaming such that dom(ρpub) = dom(ρ)∩ (dom(ρ′)∪ fn(Adv)), img(ρpub) ⊆
Npub \ fn(P ′,Q′, Adv). Hence, we define ρ1 = ρρ−1pubρ

′.
We have P ′ρ1 = (P ′ρ)ρ′ since img(ρpub) ⊆ Npub \ fn(P ′,Q′, Adv). Moreover, as dom(ρpub) =
dom(ρ) ∩ (dom(ρ′) ∪ fn(Adv)), we have that

(Advρpub)ρ = Advρpubρ|dom(ρ)\dom(ρpub) = Advρ|dom(ρ)\dom(ρpub)ρpub = Advρpub

Therefore, Advρpubρ1 = Advρpubρ
−1
pubρ

′ = Advρ′. This allows us to deduce that {Advρ′} ∪ P ′ρ′ =
({Advρpub} ∪ P ′)ρ1. Similarly, we have {Advρ′} ∪ Q′ρ′ = ({Advρpub} ∪ Q′)ρ1.
We know thatP ′ ⩽Robs Q′. Hence {Advρpub}∪P ′ ⩽Robs {Advρpub}∪Q′ which allows us to conclude
that {Advρpubρ1} ∪ P ′ρ1R{Advρpubρ1} ∪ Q′ρ1 and so {Advρ′} ∪ Pρ′R{Advρ′} ∪ Qρ′. □
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(P , ϕ)→τ (D, ϕ) if P →τ D

({{in(u, x); P}} ∪ P , ϕ)→in(ξ,ζ) δ({{P{ζϕ/x}}}∪P ,ϕ) if u .
= ξϕ,Msg(ζϕ) and vars(ξ, ζ) ⊆ dom(ϕ)

({{out(u, t); P}} ∪ P , ϕ)→out(ξ,axn+1) δ({{P}}∪P ,ϕ{axn+1 7→t}) if u .
= ξϕ,Msg(t), vars(ξ) ⊆ dom(ϕ) and |ϕ| = n

(P , ϕ)→(ξ∼ζ) δ(P ,ϕ) if vars(ξ, ζ) ⊆ dom(ϕ), ξϕ ∼ ζϕ and ∼ ∈ { .=, ̸ .=}

Figure 5. Labelled semantics: definition of →a

4. Labelled semantics and equivalences

As usual in π-calculi, and in the applied π-calculus, we can define a labelled semantics. The intent
of the labels is to capture adversarial actions and avoid the universal quantification over processes in
equivalence definitions.

4.1. Labelled semantics

A state in this labeled semantics is defined by associating a multiset of processes with a frame, mod-
eling the adversary’s knowledge. We consider a new set of variables AX = {ax1, ax2, . . .} distinct from
X that will act as pointers to messages that were previously output.

Definition 12. An extended process is a pair (P , ϕ), where P ∈MP and ϕ is a ground substitution

{ax1 7→ t1; . . . ; axn 7→ tn}

such that axi ∈ AX , ti ∈ T (F ,N ) and Msg(ti) for 1 ⩽ i ⩽ n.
We denote by SPℓ the set of all extended processes.

A recipe is a term from T (F ,Npub ∪ AX} representing how an attacker can deduce a message.

Notation 4. If D is a distribution over MP , and ϕ a frame, we write (D, ϕ) for the distribution over
extended processes defined as (D, ϕ) =

∑
P∈supp(D) D(P) · δ(P ,ϕ).

We now define the NPLTS Nℓ for the labelled semantics. External actions model interactions with the
attacker.

Definition 13. The labelled semantics is the NPLTS Nℓ = (SPℓ, {τ} ∪ Aℓ
ext, transℓ) where

• Aℓ
ext is the set of labels in(ξ, ζ), out(ξ, ax), (ξ ?

= ζ) and (ξ ̸ ?= ζ) with ξ, ζ recipes and ax ∈ AX ;
• transℓ((P , ϕ))(a) = {D | (P , ϕ)→a D} where→a is defined in Figure 5.

Note that when we lift→τ to extended processes we suppose that the freshness requirement of a new
name a′ in the (NEW) rule of Figure 2 also applies to the frame ϕ, i.e., a′ must not appear in ϕ.

Remark 5. It should be noted that we deal with static equivalence in a different way as done usually
in the applied π-calculus, or implicitly in the probabilistic applied π-calculus [12]: we encode static
equivalence into the NPLTS Nℓ by a countable set of actions–all the tests (ξ ?

= ζ) and their negations–
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instead of just one action testing static equivalence. The motivation behind this choice is to be able to
represent every action from the NPLTS by an elementary action of the adversary. As shown later, this
choice has no effect on the definition of the simulation pre-orders or on bisimulation, but it leads to a
slightly different notion of trace equivalence, that is closer to may testing equivalence.

4.2. Defining Trace Equivalence

We first define the probability of executing a trace for a given resolution. As we are interested in weak
trace preorder (where internal actions cannot be observed), traces are sequences of external actions
only. Our definition uses the previously introduced notation RProbR(s, {t}): recall that this denotes the
probability of reaching state t from state s using only internal actions for some resolution (corr,R).

Definition 14. Let R = (S, {τ} ⊔ Aext, trans) be a RPLTS. Let w ∈ Aext
∗ be a trace, i.e., a finite word

on the alphabet Aext. For all states s ∈ S, we define the probability of executing w starting from s in R
as:

• ProbR(s, ϵ) = 1

• ProbR(s, a.w) =
∑
t∈S

trans(t)(a)=D

RProbR(s, {t}) ·
∑

s′∈supp(D)

D(s′) · ProbR(s′,w)

Given a NPLTS N = (S,A, trans), we denote by ProbRr(N)(s,w) the probability:

sup{ProbR(s′,w) | (corr,R) ∈ Rr(N), corr(s′) = s}

This allows us to define trace equivalence of (P , ϕ) and (P ′, ϕ′): intuitively any trace that can be
executed in (P , ϕ) can be executed with at least the same probability in (P ′, ϕ′) and vice-versa.

Definition 15 (trace equivalence). Let (P , ϕ), (P ′, ϕ′) ∈ SPℓ. We say that (P , ϕ) ⩽tr (P ′, ϕ′) iff

for all w ∈ Aℓ
ext
∗
. ProbRr(Nℓ)((P , ϕ),w) ⩽ ProbRr(Nℓ)((P

′, ϕ′),w)

(P , ϕ) and (P ′, ϕ′) are trace equivalent, denoted (P , ϕ) ≈tr (P ′, ϕ′), iff

(P , ϕ) ⩽tr (P ′, ϕ′) and (P ′, ϕ′) ⩽tr (P , ϕ).

Unlike, in the purely possibilistic case, in our probabilistic setting trace preorder is (strictly) weaker
than the may testing preorder.

Theorem 1. Let P ,Q ∈MP be two processes.

P ⩽may Q ⇒ (P ,∅) ⩽tr (Q,∅)

Moreover there exist processes P ,Q ∈MP such that

(P ,∅) ⩽tr (Q,∅) and P ⩽̸may Q
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P = {{new k; (P(0) | P(0) | P(1) | Pdec)}}
andQ= {{new k; (P(0) | P(1) | P(1) | Pdec)}}

where P(x) = new r; out(c, enc(x, r, k))
and Pdec = in(d, y); out(d, dec(y, k))

Figure 6. P ,Q such that (P ,∅) ⩽tr (Q,∅) and P ̸⩽may Q

Figure 6 witnesses that the implication is strict. P and Q output each 3 encrypted bits (in a non-
deterministic order). P outputs twice the encryption of 0;Q twice the encryption of 1. The (randomized)
encryption ensures that these three values are indeed indistinguishable. We give the adversary a single
access to a decryption oracle Pdec. Intuitively, trace equivalence holds, as the scheduler can ensure that
matching encryptions are sent to Pdec. However, may-testing does not hold: the attacker chooses uni-
formly at random one of the three encryptions to submit. The probability to hit 0 will be 2

3 in P and only
1
3 in Q.

Observe that Theorem 1 holds for any processes and does not require them to be image-finite, contrary
to usual results in the literature, e.g., [23]. This discrepancy comes from our choice of labelled actions
for static equivalence (see Remark 5): a trace cannot test directly static equivalence, but can only do a
finite numbers of recipe tests. We believe this variant definition of trace equivalence to be of independent
interest as it provides an exact characterization of may testing in the purely non-deterministic case.

4.3. Defining (bi)simulations

In this section, we define simulations on probabilistic processes and corresponding equivalences. Our
definition of simulation preorder is similar to the definition of randomized weak simulation preorder
introduced by Segala and Lynch for probabilistic automata [13]. We reuse the lifting of a relation and
the weak relation for internal actions defined in Section 3.4 but applied to the NPLTS Nℓ. In particular,
given an action a ∈ Aℓ

ext and two distributions D,D′ ∈ D(S), we write D a
==⇒Rℓ

r
D′ when D τ

==⇒Rℓ
r

E1,
E1

a−→ E2 and E2
τ

==⇒Rℓ
r

D′ for some E1, E2 and whereRℓ
r denotesRr(Nℓ). Here E1

a−→ E2 is the natural
lifting of the transition function of Nℓ, i.e., E2 =

∑
s E1(s) · D with s a−→ D.

Definition 16. A relation R ⊆ (SNℓ × SNℓ) is

• a simulation if s1 R s2 implies that for all a ∈ Aℓ
ext ∪ {τ}, D1 ∈ D(SNℓ)

if s1
a−→ D1 then s2

a
==⇒Rℓ

r
D2, D2 ∈ D(SNℓ) and D1 R̂ D2

• a bisimulation if R is a simulation and R is symmetric.

The simulation preorder, denoted ⩽sim, is the largest simulation and bisimilarity, denoted ≈bi, is the
largest bisimulation. We define similarity, denoted ≈sim, as ⩽sim ∩⩽−1sim.

As usual in the field of (bi)simulation, it can be shown that ⩽sim, respectively ≈bi, exists [19] and
that it is a pre-order, i.e., a reflexive and transitive relation, respectively an equivalence, i.e., a reflexive,
symmetric and transitive relation [18].
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The following proposition from [18] states that, as usual in the non-probabilistic case, the weak arrow
a

==⇒Rℓ
r

can replace the single arrow a−→ in the definition of simulation.

Proposition 1. Let R be the largest binary relation on SNℓ such that s1 R s2 implies that for every
a ∈ Aext ∪ {τ},

if s1
a

==⇒Rℓ
r

D1 then s2
a

==⇒Rℓ
r

D2, D2 ∈ D(SNℓ) and D1 R̂ D2

We have R = ⩽sim.

Remark 6. Observe that our choice of labelled actions for static equivalence (see Remark 5) has no
impact on the resulting simulation and bisimulation. Indeed, if two Nℓ-states (P , ϕ) and (Q, ψ) are in the

simulation pre-order or bisimulation, then ϕ is statically equivalent to ψ. Indeed, for all a ∈ {ξ ?
= ζ, ξ

?
̸=

ζ}, δ(P ,ϕ)
a−→ δ(P ,ϕ) implies that δ(Q,ψ)

a
==⇒Rℓ

r
D and δ(P ,ϕ) ⩽̂sim D. Since neither the a transition or τ

transition modifies the frame, the former indicates that δ(Q,ψ)
τ

==⇒Rℓ
r

E1, E1
a−→ E2 and E2

τ
==⇒Rℓ

r
D,

with for all (Q′, ψ′) ∈ supp(E1), ψ = ψ′. The former ensures that supp(E1) ̸= ∅. Therefore, for all ξ, ζ,

if ξ ?
= ζ or ξ

?
̸= ζ holds on ϕ then it also holds on ψ respectively. It implies that ϕ and ψ are statically

equivalent.

We now show that observational preorder and equivalence are exactly characterized by the simulation
preorder and bisimilarity.

Theorem 2. Let P ,Q two processes inMP .

P ⩽obs Q iff (P ,∅) ⩽sim (Q,∅) and P ≈obs Q iff (P ,∅) ≈bi (Q,∅)

Proof sketch. We here provide the main intuitions of the proof that P ⩽obs Q iff (P ,∅) ⩽sim (Q,∅).

(⇒). To show that observational preorder implies simulation, we need to represent the frame of an
extended process (P , ϕ) as a process: we output in parallel the terms axiϕ, with axi ∈ dom(ϕ), on a
public channel ci, distinct for each i and not occurring anywhere in (P , ϕ). Thus, we build the relation
R such that

(P , ϕ) R (Q, ϕ′) if P ∪ {{out(ci, axiϕ)}}n
i=1 ⩽obs Q∪ {{out(ci, axiϕ

′)}}n
i=1

with |dom(ϕ)| = |dom(ϕ′)| = n and c1, . . . , cn ∈ Npub pairwise distinct and not occurring in P ,Q, ϕ, ϕ′.
As the public channels ci do not occur anywhere else, any internal transition on

P1 = P ∪ {{out(ci, axiϕ)}}n
i=1

must correspond to an internal transition on P; and similarly for Q.
For all visible actions, we rely on ⩽obs being closed by composition with an adversarial process. For

example, when the action is the test ξ ?
= ζ, we compose with the adversarial process that (i) reads the

frame, (ii) applies the test, and (iii) outputs on a fresh public channel ok if the test succeeds:

Adv = in(c1, x1); . . . ; in(cn, xn); if ξρ = ζρ then out(ok, ok)
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where x1, . . . , xn are fresh variables and ρ = {axi 7→ xi}n
i=1. We then consider the transition

{{Adv}} ∪ P1
τ

==⇒Ro
r δP∪out(ok,ok)

and the fact that RProbRr(P ∪ out(ok, ok), ↓ok) = 1 to conclude. Indeed, for

{{Adv}} ∪ Q ∪ {{out(ci, axiϕ
′).0}}n

i=1
τ

==⇒r E

to exist with δP∪out(ok,ok) R̂ E, {{Adv}}∪Q∪{{out(ci, axiϕ
′); 0}}n

i=1 must also have passed the test ξρ = ζρ

in the conditional branching. Hence ξϕ′ = ζϕ′ and so (Q, ϕ′) ξ
?
=ζ−−→ δ(Q,ϕ′).

When the visible action is an output or an input, the process is more complicated. The adversarial
process starts by reading the frame as before and executing the action. The last part of the adversarial
process consists in outputting again the frame so that we re-enter the relation R. Assume for instance

the action in(ξ, ζ). By definition, P = P1 ∪ {{in(c, x); P}} with ξϕ .
= c, (P , ϕ) in(ξ,ζ)−−−→ δP1∪{{Pσ}} and

σ = {ζϕ/x}.
We consider the following adversarial process Adv:

Adv = in(c1, x1); . . . ; in(cn, xn); out(ξρ, ζρ); (out(ok, ok) +0.5 (out(c′1, x1) | · · · | out(c′n, xn)))

where c′1, . . . , c
′
n are fresh public names pairwise distinct not occurring anywhere else. We will conclude

by considering the transition

{{Adv}} ∪ P ∪ {{out(ci, axiϕ); 0}}n
i=1

τ
==⇒r D

where D = 0.5 · δP1∪{{P{ζϕ/x},out(ok,ok)}} + 0.5 · δP1∪{{P{ζϕ/x}}}∪{{out(c′i ,axiϕ);0}}n
i=1
. Indeed, for

{{Adv}} ∪ Q ∪ {{out(ci, axiϕ
′); 0}}n

i=1
τ

==⇒r E

to exist with D R̂ E, {{Adv}} ∪ Q ∪ {{out(ci, axiϕ
′); 0}}n

i=1 must also have applied an internal transition
executing the construct out(ξρ, ζρ) which allows for the labeled action in(ξ, ζ) to be executed on (Q, ϕ′).

(⇐). Showing that simulation implies observational preorder is more straightforward. We build a re-
lation R such that P RQ when there exist two extended processes (P1, ϕ), (Q1, ϕ

′) with compatible
frames (i.e. dom(ϕ) = dom(ϕ′)), a renaming ρ from Npub to Npriv, and a multiset of adversarial pro-
cesses PAtt such that:

• names in img(ρ) do not occur in P1, ϕ,Q1 and ϕ′;
• P = P1ρ ∪ PAtt{axiϕ/xi}n

i=1ρ;
• Q = Q1ρ ∪ PAtt{axiϕ

′
/xi}n

i=1ρ;
• (P1, ϕ) ⩽sim (Q1, ϕ

′).

The renaming ρ replaces the private names that are generated by the processes in PAtt (through the
construct new a; P) with public names that are chosen fresh (i.e. not in P1, ϕ,Q1 and ϕ′). □
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4.4. Randomized vs non-randomized schedulers

All our equivalence notions are based on randomized schedulers where the non-determinism is solved
by picking a distribution from the convex hull of the available distributions. In the literature, more re-
strictive non-randomized schedulers have also been considered when defining observational equivalence
and bisimilarity [12]. A non-randomized scheduler solves the non-determinism by choosing directly one
of the available distributions. Formally, in Definition 4, instead of requiring that trans′(s′)(a) = D im-
plies corr(D) ∈ conv(trans(corr(s′))(a)), a non-randomized resolution requires that trans′(s′)(a) = D
implies corr(D) ∈ trans(corr(s′))(a) and corr is injective on the support of D.

Denoting by Rnr(N) the set of all non-randomized schedulers of N, we can naturally update the no-
tions used to define behavioural equivalences to non-randomized schedulers. For instance, we denote
by RProbRnr(N)(s, T ) the probability of reaching T from s over all non randomized schedulers Rnr(N).
Similarly, ProbRnr(N)(s,w) denotes the probability of executing the trace w from s over all schedulers
from Rnr(N). Updating the definitions results into may-testing and trace preorder for non-randomized
schedulers, denoted ⩽nr

may and ⩽nr
tr respectively. We now show that ⩽may and ⩽tr do not depend on the

whether schedulers are randomized or not (unlike simulation based notions as we will see below).

Lemma 2. May testing and trace preorders with randomized and non-randomized resolutions coincide:

⩽may = ⩽nr
may and ⩽tr = ⩽nr

tr

Proof sketch. The core of the proof is the following fact: when we fix a randomized resolution R,
an initial state s, and n ∈ N, it is possible to decompose the behaviour of R from state s and during
the n first execution steps into a weighted family of non-randomized resolution (αi,Ri)i∈I (where the
weight αi is a coefficient in [0, 1], in the sense that for every set of processes P , RProb⩽n

R (s,P) =∑
i∈I αiRProb⩽n

Ri
(s,P). The construction of this decomposition is defined inductively on n. □

This result is of interest as it is often easier to manipulate non-randomized schedulers, and we expect
automated verification to be more convenient as well.

When considering observational equivalence, simulation and bisimulation, non-randomized sched-
ulers raise a number of issues. First, as highlighted for instance in [19, 31], when considering bisim-
ulation or simulation on general NPLTSs, non-randomized resolutions result into relations that are not
transitive. We show that even on the specific NPLTS Nℓ, simulation is not transitive.

Simulation for non-randomized scheduler is naturally defined by extending the notation D τ
==⇒Rr(N) E

to non-randomized scheduler, denoted D τ
==⇒Rnr(N) E: from Definition 8, we require (corr,R) to be

in Rnr(N) and additionally require an injectivity property on the correspondence function, i.e., corr is
injective on the support of D′. We denote the resulting simulation with non-randomized schedulers by
⩽nr

sim (and similarly for ⩽nr
obs, ≈nr

obs and ≈nr
bi).

Lemma 3. ⩽nr
sim is not transitive.
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({{R}},∅)

α ({{Q}},∅)

α

({{Q′}},∅)

α

0.5

0.5

τ

(Pab(0.9),∅)
τ

τ

α

(Pab(0.1),∅)

τ

α

(out(a, c),∅)

(out(b, c),∅)0.1

0.9
τ

(out(a, c),∅)

(out(b, c),∅)

0.1

0.9

τ

α

α

α

α

For readability, α stands for all labels (ξ ∼ ξ′), with closed recipes ξ, ξ′ such that ξ ∼ ξ′ (∼ ∈ { .=, ̸ .=})
and Pab(p) = {{out(a, c) +p out(b, c)}}

(a) The fragment of Nℓ corresponding to ({{Q}},∅) and ({{R}},∅).

sR

sQ,1

sQ′ sQ,2

0.5

0.5

τ

sab,0.9
τ

τ sab,0.1
τ

sa,1

sb,10.1

0.9
τ

sa,2

sb,2

0.1

0.9

τ

(b) The resolution for ({{R}},∅)
τ

==⇒Rnr 0.5 · δout(a,c) + 0.5 · δout(b,c).

Figure 7. Fragments of Nℓ showing ({{P}},∅) ⩽nr
sim ({{R}},∅) ⩽nr

sim ({{Q}},∅) but ({{P}},∅) ̸⩽nr
sim ({{Q}},∅)

Proof sketch. Consider processes

P = out(a, c) +0.5 out(b, c)
Q = (out(a, c) +0.9 out(b, c)) + (out(a, c) +0.1 out(b, c))
Q′ = if c = c then Q else 0

R = Q +0.5 Q′

The corresponding fragment of Nℓ is displayed in Figure 7a. We will show that

({{P}},∅) ⩽nr
sim ({{R}},∅) and ({{R}},∅) ⩽nr

sim ({{Q}},∅) but ({{P}},∅) ̸⩽nr
sim ({{Q}},∅)

It is easy to see that ({{Q}},∅) ≈nr
bi ({{Q′}},∅) and so ({{R}},∅) ⩽nr

sim ({{Q}},∅). The difficult part of
the proof of ({{P}},∅) ⩽nr

sim ({{R}},∅) is to match

({{P}},∅)
τ−→ 0.5 · δ({{out(a,c)}},∅) + 0.5 · δ({{out(b,c)}},∅)

This is achieved by the scheduler displayed in Figure 7b.
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({{Q}},∅)

α(∅)

({{P}},∅)

α(∅)

({{P′}},∅)

α(∅)

0.5

0.5τ

τ

(Pda,∅)

α(∅)

τ
(Pa+, ϕ)

α(ϕ)

out(d, ax1)
(Pa, ϕ)

α(ϕ)

(∅, ϕ) α(ϕ)0.1

0.9τ

(∅, ϕ′)

out(a, ax2)

α(ϕ′)

(Pdb,∅)

α(∅)

τ

(Pb+, ϕ)

α(ϕ)

out(d, ax1)
(Pb, ϕ)

α(ϕ)

out(b, ax2)

0.1

0.9

τ

For readability, α(ϕ) stands for all labels ξ ∼ ξ′ with ξ, ξ′ closed recipes such that ξϕ ∼ ξ′ϕ and
∼ ∈ { .=, ̸ .=}.

(a) The fragment of Nℓ corresponding to ({{Q}},∅) and ({{P}},∅)

Pda = out(d, c); (out(a, c) +0.9 0)
Pdb = out(d, c); (out(b, c) +0.9 0)

Pa+ = {{out(a, c) +0.9 0}}
Pb+ = {{out(b, c) +0.9 0}}

Pa = {{out(a, c)}}
Pb = {{out(b, c)}}

ϕ = {ax1 → c} ϕ′ = {ax1 → c, ax2 → c}

{{Q; in(d, x).0}} {{P; in(d, x).0}}

{{P′; in(d, x).0}}
0.5

0.5τ

τ

Pda ∪ {{in(d, x).0}}
τ Pa+

τ Pa

∅0.1

0.9τ

(Pdb ∪ {{in(d, x).0}}

τ

Pb+
τ Pb

0.1

0.9

τ

(b) The fragment of No corresponding to {{P; in(d, x).0}} and {{Q; in(d, x).0}}

Figure 8. Fragments of NPLTS showing ({{Q}},∅) ≈nr
bi ({{P}},∅) and {{Q}} ⩽̸nr

obs {{P}}.

Finally, we prove ({{P}},∅) ̸⩽nr
sim ({{R}},∅) by showing that the transition ({{P}},∅)

τ−→ 0.5 ·
δ({{out(a,c)}},∅) + 0.5 · δ({{out(b,c)}},∅) cannot be simulated in ({{Q}},∅). □

Note that the definitions of bisimilarity in [12] rely on non-randomized schedulers. Even though this
does not necessarily imply that their relation is not transitive (as they focus directly on the semantics of
processes) we show in the next lemma that≈nr

bi and≈nr
obs do not coincide, hence disproving [12, Theorem

2]. This reenforces our belief that it is preferable to use randomized schedulers in our definition.

Lemma 4. There exist processes P,Q ∈ SP such that

• ({{Q}},∅) ≈bi ({{P}},∅),

• ({{Q}},∅) ≈nr
bi ({{P}},∅), and

• {{Q}} ̸⩽nr
obs {{P}}.
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Proof sketch. We consider the following processes:

P = out(d, c); (out(a, c) +0.9 0) +
out(d, c); (out(b, c) +0.9 0)

P′ = if c = c then P else 0

Q = P + 1
2

P′

Both ({{Q}},∅) ≈nr
bi ({{P}},∅) and ({{Q}},∅) ≈nr

bi ({{P}},∅) are proved by showing that the bi-
nary relation R, defined as the reflexive, symmetric and transitive closure of {(({{Q}},∅), ({{P}},∅)),
(({{P}},∅), ({{P′}},∅))}, is a bisimulation (see Figure 8a).

To prove that {{Q}} ⩽̸nr
obs {{P}}, we show that {{Q; in(d, x).0}} ⩽̸nr

obs {{P; in(d, x).0}}. In particu-
lar (see Figure 8b), we build a non-randomized scheduler such that {{Q; in(d, x).0}} τ

==⇒Rnr(No) D
where D = 0.45 · δPa + 0.45 · δPb + 0.1 · δ∅. However, there is no distribution E such that
{{P; in(d, x).0}} τ

==⇒Rnr(No) E, and D ⩽̂nr
obs E. □

Remark that we have cast the definitions of [12] in our own framework. In the full version [28] we
show that processes P,Q in Lemma 4 can be adapted to obtain the counterpart of Lemma 4 in the exact
framework of [12]. The failure of the proof of [12, Theorem 2] can be traced back to the auxilliary
lemma [12, Lemma 3] that states that bisimilarity is closed under application of closing evaluation
contexts. No proof of this lemma is however provided, and it is actually false: as shown in the proof of
(our) Lemma 4, the extended processes ({{Q}},∅) and ({{P}},∅) defined there are bisimilar (with respect
to non-randomized schedulers), but it is not the case of the extended processes ({{Q | in(d, x).0}},∅) and
({{P | in(d, x).0}},∅).

5. Well behaved subclasses of protocols

It is a well-known phenomenon that non-determinism and probabilistic choices do not interact well:
a particular scheduler may for instance leak a secret probabilistic choice. Such schedulers are generally
deemed unrealistic, and several papers aim at restricting schedulers, e.g., [20, 21]. We illustrate this
phenomenon on the following example.

Example 3. Consider the processes

P := (in(c, x). if x = 0 then out(ok, 1) else out(bad, 1)) + 1
2

(in(c, x). if x = 0 then out(bad, 1) else out(ok, 1))
Q := in(c, x).(out(ok, 1) + 1

2
out(bad, 1))

One may, intuitively, consider that these two processes exhibit the same behaviour. Q takes an input
and then with probability 1

2 decides to either output on ok or on bad. P on the other hand first choses
a branch with probability 1

2 . Each branch performs an input and, depending on the input value, outputs
either on ok or on bad. As the two branches make opposite choices on the output according to the input
value, one might expect the probability to output on ok to be 1

2 .
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However, P and Q are not may testing equivalent and can be distinguished by the adversary Adv =
{{out(c, 0) | out(c, 1)}}. Indeed, we can show that:

RProbRo
r (P ∪ Adv, ↓ok) = 1 RProbRo

r (Q∪ Adv, ↓ok) =
1

2

Intuitively, this results from the fact that the resolution may leak the probabilistic choice through the
non-deterministic choice of the attacker to output 0 or 1. The resolution chooses the attacker to output 0
in the first probabilistic branch of P and 1 in the second.

In this section we identify two subclasses of processes that avoid this problem. The first such subclass
is that of non-probabilistic processes, i.e., without the +p operator (we denote byMPnp all the multisets
of such processes). This is the class of the original applied π-calculus which also enjoys good tool
support. Figure 6 already illustrated that even on non-probabilistic processes, probabilistic adversaries
have a stronger distinguishing power for the may testing equivalence. We formally characterize this
distinguishing power when restricting protocols to a bounded number of sessions (denotedMP<∞,np),
i.e., considering processes without replication: for this subclass, may-testing coincides with similarity.
We therefore inherit from [22] the fact that deciding may-testing is coNEXP complete for a large class
of cryptographic primitives.

The second subclass considers purely probabilistic processes with (nearly) no non-determinism. We
show that trace equivalence in this class (as considered for instance in [25]) corresponds to may-testing
with a restricted, determinate adversary process. We also sketch how the algorithms of the DEEPSEC
prover [22] could be adapted to check trace equivalence in this probabilistic setting.

5.1. Non-probabilistic processes

5.1.1. May-testing with non-probabilistic adversaries and trace equivalence coincide
Our definitions of may testing and trace equivalence coincide with the classical definitions of the

original, purely non-deterministic applied π-calculus when all processes are non probabilistic. As a first
step, we observe that the weak operational semantics we defined in Section 4.3 is a conservative exten-
sion of the weak (non-probabilistic) operational semantics: indeed, when considering non-probabilistic
processes, all distributions in the (labeled) operational semantics are Dirac distributions.

Notation 5. We write SPnp
ℓ for the set of all non-probabibilistic extended processes We write −→np,

respectively a−→np, for the one-step reduction relation we obtain when we restrict the NPLTS No toMPnp,
respectively Nℓ to SPnp

ℓ . For P ,Q ∈ MPnp, we write P ⇒np Q when there exists a sequence P =
P0 −→np . . . −→np Pn = Q.

Lemma 5. Let P ,Q ∈MPnp.

P ⇒np Q iff RProbRnr(No)(P , {Q}) = 1

We look now at preorder relations between non-probabilistic processes. We first recall formally how
may testing, trace equivalence and bisimulation are defined for non-probabilistic processes (Defini-
tion 17 below). Those definitions are coherent with those from the literature, e.g [23], (up to the dif-
ference on static equivalence, discussed in Remark 5).
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Notation 6. If b is a barb, we write P ⇓b when there exists Q such that P ⇒np Q, and Q ↓b. For
a ∈ Aℓ

ext, we write (P , ϕ) a
==⇒np (Q, ψ) when (P , ϕ) τ−→np . . .

a−→np . . .
τ−→np (Q, ψ). If α = a1, . . . , an is a

trace, we write (P , ϕ) α
==⇒np (Q, ψ) when there exists a sequence (P , ϕ) a1==⇒np . . .

an==⇒np (Q, ψ).

Definition 17. We define the binary relations ⩽np
may, ⩽

np
tr , ⩽np

sim onMPnp as follows:

• P ⩽np
may Q when ∀Adv ∈MPnp s.t. fn(Adv) ⊆ Npub. ∀c ∈ Npub. Adv∪P ⇓c implies Adv∪Q ⇓c;

• (P , ϕ) ⩽np
tr (Q, ψ) when for every trace α, (P , ϕ) α

==⇒np (P ′, ϕ′) implies (Q, ψ) α
==⇒np (Q′, ψ′);

• ⩽np
sim is the largest reflexive and transitive relation R such that (P , ϕ) R (Q, ψ) implies that for every

a ∈ Aℓ
ext ∪ {τ}, and (P , ϕ) a−→np (P ′, ϕ′), there exists (Q′, ψ′) such that (Q, ψ) a

==⇒np (Q′, ψ′) and
(P ′, ϕ′) R (Q′, ψ′).

The preorders ⩽sim and ⩽tr–and the corresponding equivalence relations–are conservative extensions
of ⩽np

sim and ⩽np
tr . As expected, the preorder ⩽may is not a conservative extension of ⩽np

may, because of
the additional expressive power of probabilistic adversaries. Nonetheless, we can recover ⩽np

may when we
restrict the adversaries in the definition of ⩽may to non-probabilistic adversaries.

Proposition 2. Let P ,Q ∈MPnp.

• (P ,∅) ⩽np
sim (Q,∅) iff (P ,∅) ⩽sim (Q,∅);

• (P ,∅) ⩽np
tr (Q,∅) iff (P ,∅) ⩽tr (Q,∅);

• (P ,∅) ⩽np
may (Q,∅) iff

∀Adv ∈MPnp s.t. fn(Adv) ⊆ Npub. ∀c ∈ Npub.
RProbRnr(No)(P ∪ Adv, ↓c) ⩽ RProbRnr(No)(Q∪ Adv, ↓c)

Proof sketch. For may-testing and trace preorder, the proof uses crucially the fact that it is enough
to consider non-randomized distributions (thanks to Lemma 2), and from there, we conclude using
Lemma 5. Since it is not possible to consider only non-randomized schedulers in the definition of simula-
tion, the proof of the first point in Proposition 2 is more subtle, and uses well-structured properties of the
lifting of a relation from Definition 9. We need to show (1) that the (non-probabilistic) simulation ⩽np

sim
is a probabilistic simulation in the sense of Definition 16, and (2) that ⩽sim is also a non-probabilistic
simulation in the sense of Definition 17.

• Suppose that P ⩽np
sim Q for P ,Q ∈ SPnp

ℓ . Let a ∈ Aℓ
ext ∪ {τ}, D ∈ D(SNℓ) such that P a−→r D.

Looking at the way we defined a−→r (and since P is non-probabilistic), we also see that P a−→np P ′i
for every P ′i is the support of D. From there, we obtain that for each i, there exists Q′i such that
Q a

==⇒np Q′i, and P ′i ⩽np
sim Q′i. At that point, we build E =

∑
i D(P ′i ) · δQ′

i
, and we can see that

Q a
==⇒r E. Moreover, the structural properties of the lifting allows us to go from (∀i, P ′i ⩽

np
sim Q′i)

to D ⩽̂np
sim E. Hence, we have shown that ⩽np

sim is indeed a probabilistic simulation in the sense of
Definition 16.
• Suppose that P ⩽sim Q for P ,Q ∈ SPnp

ℓ . Let a ∈ Aℓ
ext∪{τ}, and P ′ ∈ SPnp

ℓ such that P a−→np P ′.
This transition carries over to Nℓ, i.e., P a−→r δP ′ . We obtain that there exists a distribution E such
that Q a

==⇒r E, and δP ′⩽̂simE. But by structural property of the lifting, we have that P ′ ⩽sim Q′
for every element Q′ in the support of E. Moreover, since Q is non-probabilistic, it holds that
Q a

==⇒np Q′ for every elementQ′ in the support of E. Since E is a distribution, there exists at least
one such element Q′, thus we can conclude. □
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The following result indicates that may testing and trace equivalence coincide in non-probabilistic
settings. In particular, we recover the fact that for the classical definitions in non-probabilistic settings,
trace equivalence implies may-testing, as shown in [23].

Proposition 3. Let P ,Q ∈MPnp.

(P ,∅) ⩽tr (Q,∅) iff
∀Adv ∈MPnp s.t. fn(Adv) ⊆ Npub. ∀c ∈ Npub.

RProbRnr(No)(P ∪ Adv, ↓c) ⩽ RProbRnr(No)(Q∪ Adv, ↓c)

5.1.2. May-testing and simulation coincide for bounded processes
We rely on a modal characterization of strong simulation on image finite labeled transition systems

(LTS) by a Hennessy-Milner logic [32] (HML).
We can rely on strong simulation as it is a well-known fact ([33]) that simulation for a LTS can

be expressed as strong simulation on the corresponding weak LTS, that is, in our case all transitions
(P , ϕ) τ−→

∗ a−→ τ−→
∗
(Q, ψ) are merged into a single transition.

A LTS is image finite when the LTS cannot infinitely branch from a state and a label. Therefore, as we
consider only bounded processes and by denoting ⩽L

ssim the strong simulation relation on a LTS L, we
can build an image finite LTS Lℓ such that for all P ,Q ∈MPnp:

(P ,∅) ⩽sim (Q,∅) iff (P ,∅) ⩽Lℓ
ssim (Q,∅)

Our HML characterization consists in expressing strong simulation preorder by the means of satisfac-
tion of logical formulas by the LTS.

Definition 18. Let A be a countable set of actions. We define the set of logical formulas as:

F ∈ F := ⊤ | a.F | F1 ∧ F2, where a ∈ A

In our case, the set of actions corresponds to Aℓ
ext that is indeed countable. The satisfaction of such

formulas by a LTS is defined as follows.

Definition 19. Let L = (S,A,→) be a LTS. We say that L satisfies a formula F, written s |= F, if for
all s ∈ S,

• s |= ⊤;
• s |= a.F when s a−→ t and t |= F;
• s |= F1 ∧ F2 when s |= F1 and s |= F2.

The following proposition shows how to relate strong simulation with satisfiability of logical formulas.

Proposition 4 (HML caracterisation of simulation). For an image finite LTS L,

s ⩽L
ssim t iff ∀F ∈ F . s |= F implies t |= F

In order to prove that simulation coincides with may-testing for bounded non-probabilistic processes,
we show that we can emulate any logical formula by a probabilistic adversary: for all formulas F, we
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build a probabilistic adversary Advc
F such that for all bounded non-probabilistic extended processes

(P , ϕ),

(P ,∅) |= F iff RProbRr(P ∪ {{Advc
F}}, ↓c) = 1

The construction of Advc
F is defined as follows.

Definition 20. Let F be a formula in F , ok ∈ Npub such that ok ̸∈ fn(F) and n ∈ N. We let {{Advc
F}} =

Advok
F,0 and define Advok

F,n by induction on the syntax of F:

• if F = ⊤ then Advok
F,n = out(ok, ok).

• if F = in(ξ, ζ).F′ then Advok
F,n = out(ξ, ζ); Advok

F′,n when vars(ξ, ζ) ⊆ AX n and Advok
F,n = 0

otherwise.
• if F = out(ξ, ax).F′ then Advok

F,n = in(ξ, ax); Advok
F′,n+1 when ax = axn+1, vars(ξ) ⊆ AX n and

Advok
F,n = 0 otherwise.

• if F = (ξ
?
= ζ).F′ then Advok

F,n = if ξ = ζ then Advok
F′,n when vars(ξ, ζ) ⊆ AX n and Advok

F,n = 0
otherwise.

• if F = (ξ
?
̸= ζ).F′ then Advok

F,n = if ξ = ζ then 0 else Advok
F′,n when vars(ξ, ζ) ⊆ AX n and

Advok
F,n = 0 otherwise.

• if F = F1 ∧ F2, then Advok
F,n = Advok

F1,n + 1
2

Advok
F2,n.

In Definition 20, the integer n and the conditions on the variables of ξ, ζ ensure that the adversarial
process Advok

F,n is closed (no free variables). This is not a restriction as (P ,∅) |= F implies that F
satisfies these conditions. In particular, we note that conjunction is encoded by probabilistic choice and
on formula ⊤, the adversary process exhibits the barb c. The main result of this section follows almost
directly.

Proposition 5. Let P ,Q ∈MP<∞,np.

(P ,∅) ⩽sim (Q,∅) iff P ⩽may Q

Cheval et al. have shown [22] that both deciding trace equivalence and bisimilarity is coNEXPTIME
complete when cryptographic primitives are modelled by a subterm convergent destructor rewrite system
and the number of sessions is bounded. (We refer the reader to [22] for a precise definition of this class of
rewrite systems.) The hardness proof reduces SUCCINT 3SAT to both trace equivalence and bisimilarity
using a same encoding which also proves hardness of similarity. The coNEXPTIME decision procedure
for bisimilarity can be directly adapted to the case of similarity, hence, we have the following result.

Corollary 1. Let P ,Q ∈ MP<∞,np. Deciding P ≈may Q is coNEXPTIME complete when .
= is defined

by a subterm convergent destructor rewrite system.

5.1.3. May-testing and simulation do not coincide for unbounded processes
We consider the following two simple LTS L1 and L2, that are an asymetric variant of the LTSs used

in [34] to show that the finitary HML does not characterize bisimulation.
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s0 s1 s2 . . . sn . . .L1:
a a a a a

s00 s11

s21 s21

s31 s32 s33
. . .

L2:
a
a

aa

a aa

Though both L1 and L2 may produce an unbounded number of a transitions, the initial transition in L2
decides on an arbitrary, but fixed number of a transitions in the rest of the execution. This in particular
shows that L2 does not simulate L1, i.e., L1 ̸⩽sim L2.

In the applied π-calculus, L1 can be represented by the process !out(c, a). Modeling L2 is more com-
plex: we non-deterministically choose an integer n ⩾ 0, and output n+1 times a. The non deterministic
choice of n is realized through the following process that outputs the unary encoding hn(b) of n:

Qcount(e) = new d. (out(d, b) | !in(d, x). (out(e, x) + out(d, h(x))))

Channel d represents a memory cell initiated with a public name b (encoding 0). When reading on d the
current value x, the process non deterministically chooses to increment x (updating the cell with h(x))
or to select the value x by outputting it on channel e.

It remains to model the process that given an integer x, produces x + 1 outputs of a:

Qout(e) = new d′.in(e, x).
(
out(d′, b) | !in(d′, y).out(c, a).if x = y then 0 else out(d′, h(y))

)
Similarly to Qcount(e), Qout(e) relies on a private d′ to increment b until reaching the value x read on e.
It is easy to see that the process outputs x + 1 times a.

Lemma 6. Let Q = new e.(Qcount(e) | Qout(e)). We have:

(!out(c, a),∅) ̸⩽Nℓ
sim (Q,∅) but !out(c, a) ⩽may Q

Proof sketch. (!out(c, a),∅) ̸⩽Nℓ
sim (Q,∅) is shown by relying on the same idea used to show L1 ̸⩽sim L2.

Before the first output on c, Q must produce a communication on e, hence fixing the value of x used in
Qout(e) which bounds the number of following outputs on c by x + 1. As !out(c, a) may output on c an
unbounded number of times, we conclude.

To prove that !out(c, a) ⩽may Q, we unfold the definition of RProbR({{!out(c, a)}} ∪ Adv, ↓ ch)
and focus on RProb⩽n

R (s, corr−1(↓ ch)) where (corr,R) is a resolution, n ∈ N and corr(s) =
{{!out(c, a)}} ∪ Adv. One can notice that by definition, the number of transitions from s in the com-
putation of RProb⩽n

R (s, corr−1R (↓ch)) is bounded by n. Thus, the resolution R may at most unfold n times
the process !out(c, a). By denoting Pn = out(c, a); . . . ; out(c, a)︸ ︷︷ ︸

n times

, we can build a resolution whose proba-

bility to exhibit the barb ch from {{Pn}} ∪ Adv is the same as RProb⩽n
R (s, corr−1R (↓ch)). We then rely on

(Pn,∅) ⩽sim (Q,∅) and Theorem 2 to conclude that RProb⩽n
R (s, corr−1R (↓ch)) ⩽ RProbR({{Q}}∪Adv, ↓

ch) which allows us to conclude. □
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5.2. Purely probabilistic processes

At the opposite of the spectrum of purely non-deterministic processes, we study purely probabilistic
processes with (nearly) no non-determinism. A similar class of processes has been considered in [25, 26]
to model various protocols relying on randomization (e.g., Crowds [10], mix-net [9], electronic vot-
ing [35]). They consider systems that are built as the parallel composition of independant agents, called
roles, and where all communications are mediated by the adversary. Moreover, the internal behavior of
each role is deterministic; the only non-determinism is controlled by the adversary–thus external–and
consists in the adversary’s choice for scheduling the communications. We model purely probabilistic
processes as follows.

Definition 21. A process is fully determinate if it does not contain the operators +, |, nor !.
P = {P1, . . . , Pn} ∈ MP is purely probabilistic when:

• each Pi is fully determinate;

• there exist distinct public channels c1, . . . , cn ∈ Npub such that for all i ∈ {1, . . . , n}, all input and
output actions in Pi are on ci.

The class of purely probabilistic multisets of processes is denoted byMPpp.

MPpp can also be seen as a probabilistic extension of the class of simple processes introduced in [36]
to show that trace equivalence coincides with observational equivalence for such processes.

5.2.1. Removing scheduling of τ-actions
In [25, 26], the authors consider trace equivalence for a slightly restricted fragment of purely proba-

bilistic processes. More precisely, all processes have exactly the same control structure which removes
the necessity of scheduling honest τ-actions and allows to directly consider strong trace equivalence, as
exactly the same τ-actions occur. In this work, we lift this restriction on the shape of the processes and
show instead that the non-determinism related to honest τ actions is inconsequential when deciding trace
equivalence. Indeed, in a multiset of processes {P1, . . . , Pn}, a τ action may be available simultaneously
in multiple components. However, all such τ-action are in fact purely deterministic (e.g., conditional
branching, probabilistic choice). Moreover, as the Pis do not contain parallel composition and all input
and output occur on distinct channels ci, no internal communication between processes Pi and P j is
possible.

We show that to compute the probability of executing a trace w, we only need to consider a single
maximal resolution on the NPLTS Nℓ. Such a resolution always executes an action when at least one
is available. Formally, a resolution (corr,R) with R = (S ,A, trans) on purely probabilistic processes is
maximal when for all s ∈ S , if there exists corr(s) a−→ D in Nℓ for some a,D then trans(s)(a) = D′ for
some D′.

Proposition 6. Let (P , ϕ) be an extended purely probabilistic process. For all maximal resolutions
(corr,R) on Nℓ, for all s ∈ S(R) with corr(s) = (P , ϕ),

∀w ∈ A⋆
ext. ProbR(s,w) = ProbRℓ

r
((P , ϕ),w).
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5.2.2. May-testing and trace equivalence coincide for fully determinate adversaries
As illustrated in Example 3, may-testing is strictly stronger than trace equivalence even on purely

probabilistic processes due to the non-determinism in the adversarial process. However, by restricting the
adversarial process to be fully determinate, we can show that may-testing and trace equivalence coincide.
We define the resulting determinate may testing preorder, denoted ⩽d-may, exactly as in Definition 7 but
additionally restrict the adversary process Adv to be a singleton {{A}} where A is fully determinate.

Theorem 3. Let P ,Q ∈MPpp.

P ⩽d-may Q iff (P ,∅) ⩽tr (Q,∅)

Proof sketch. To prove that (P ,∅) ⩽d-may (Q,∅) implies P ⩽tr Q we encode any trace w into a
determinate adversary Advc

w where c is fresh. Advc
w is defined in a similar way as Advc

F (Section 5.1),
e.g.,

Advc
in(ξ,ζ).w′ = out(ξ, ζ); Advc

w′ and Advc

(ξ
?
=ζ).w′

= if ξ = ζ then Advc
w′

In particular, on the empty trace the adversary process exhibits the barb c: Advc
ε = out(c, c). We obtain

that

ProbRr(Nℓ)((P ,∅),w) = RProbRo
r (P ∪ Adv, ↓c)

The other implication is more difficult as the adversarial process Adv is allowed to use probabilistic
choices which cannot be directly encoded in a trace. Instead, we show that any adversarial process Adv
aiming to exhibit a barb c corresponds to a multiset of weighted traces Tr(Adv), built inductively on Adv.
For instance, when Adv = Adv1 +p Adv2 and

Tr(Advi) = {{(pi
k,w

i
k)}}

ni
k=1 for i = 1, 2

then

Tr(Adv) = {{(p · p1k ,w
1
k )}}

n1
k=1 ∪ {{((1− p) · p2k ,w

2
k )}}

n2
k=1

For other constructs, the set of weighted traces is built as expected, e.g., Tr(0) = ∅ and Tr(new a; Adv′) =
Tr(Adv′). For outputs or inputs, we additionally test if the channel corresponds to the barb c, i.e., when
Adv = out(ξ, ζ); Adv′ and Tr(Adv′) = {{(pk,wk)}}n

k=1,

Tr(Adv) = {{(pk, (ξ ̸
?
= c).in(ξ, ζ).wk)}}n

k=1 ∪ {{(1, ξ
?
= c)}}

This construction yields the following property:

RProbRnr(No)(P ∪ Adv, ↓c) =RProbRnr(No)(P, ↓c)

+ (1− RProbRnr(No)(P, ↓c)) ·
∑

(α,w)∈Tr(Adv)

α · ProbRnr(Nℓ)((P,∅),w)

Intuitively, exhibiting the barb on c does not require any interaction with the adversary, or this interaction
is correctly encoded in Tr(Adv). Using this property we easily conclude. □
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6. Deciding trace equivalence and tool support

As previous mentioned, Cheval et al. [22] designed a decision procedure for trace equivalence when
cryptographic primitives are modelled by a subterm convergent destructor rewrite system and a bounded
number of sessions. This procedure is based on constraint solving techniques that represent the infinite
set of all possible concrete executions of the processes and an arbitrary attacker as a finite symbolic
tree, called the partition tree. Intuitively, each node of this symbolic tree represents the state of the
two processes after executing a trace tr. Due to non-determinism, a node may contain several constraint
systems corresponding to every possible interleaving allowing the execution of a given trace tr. Deciding
trace equivalence between processes A and B, in the original, non-probabilistic setting, requires to check
that each node of the symbolic tree contains at least one constraint system derived from process A and
one from process B; or the node is empty.

We show how to extend this procedure in order to decide trace equivalence in a general setting where
both probabilistic and non-determinism behavior may co-exist in the process. Obviously, we inherit the
setting of a bounded number of sessions and cryptographic primitives modeled by a subterm convergent
destructor rewrite system.

Following Lemma 2, proving (P , ϕ) ⩽tr (P ′, ϕ′) is equivalent to proving (P , ϕ) ⩽nr
tr (P ′, ϕ′). Thus,

by definition, we focus on the computation of ProbRnr(Nℓ)((P , ϕ),w) for all w ∈ Aℓ
ext
∗. A main difficulty

stems from the presence of universal quantification over resolutions. However, as P is bounded, we can
completely ignore resolutions and focus on the labelled semantics, as shown by the following property.

Lemma 7. Let (P , ϕ) ∈ SP<∞ℓ . Let a ∈ Aℓ
ext. Let w ∈ Aℓ

ext
∗.

ProbRnr(Nℓ)((P , ϕ), ϵ) = 1 ProbRnr(Nℓ)((P , ϕ), a.w) = max(p1, p2)

where

p1 = max
(P ,ϕ)→τD

∑
(P ′,ϕ′)∈supp(D)

D((P ′, ϕ′)) · ProbRnr(Nℓ)((P , ϕ), a.w)

p2 = max
(P ,ϕ)→aD

∑
(P ′,ϕ′)∈supp(D)

D((P ′, ϕ′)) · ProbRnr(Nℓ)((P , ϕ),w)

Note that this inductive definition is well founded as the size of the processes strictly decreases at each
semantics step since there is no replication.

As mentioned above, partition trees [22] are a finite symbolic representation of the concrete executions
of the two initial processes. Each node contains all reachable states of the two processes after executing
some trace w. However, to compute the probability ProbRnr(Nℓ)((P , ϕ),w), Lemma 7 also requires to
know the different semantics steps that led to the process states after executing w. In other words, it
requires the history of each extended processes. Therefore, to simplify the probability computation, we
extended the labelled semantics by adding the history of transitions leading to the extended process. To
further simplify, we assume that each input, output, probabilistic choice and non-deterministic choice
are decorated with a label ℓ ∈ L, denoted inℓ(u, x); P, outℓ(u, v); P and P +ℓ

p Q, P +ℓ Q respectively.
Additionally, we assume that all labels are distinct in the initial processes.

Definition 22. We define history entries as elements from {h1(ℓ), h2(ℓ, ℓ′), h+(ℓ, p, i), hc(ℓ, i) | i ∈
{0, 1}, p ∈]0, 1[, ℓ label}. A history, usually denoted H, is a sequence of history entries.
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Extended processes and the labelled semantics can naturally be extended to include history. In partic-
ular when (P , ϕ)→a D and (P ′, ϕ′) ∈ supp(D), we define (P , ϕ,H) a−→ (P ′, ϕ′,H′) where:

• H′ = H · h+(ℓ, p, 0) when P = Q∪ {{P +ℓ
p Q}} and P ′ = Q∪ {{P}};

• H′ = H · h+(ℓ, p, 1) when P = Q∪ {{P +ℓ
p Q}} and P ′ = Q∪ {{Q}};

• H′ = H · hc(ℓ, 0) when P = Q∪ {{P +ℓ Q}} and P ′ = Q∪ {{P}};
• H′ = H · hc(ℓ, 1) when P = Q∪ {{P +ℓ Q}} and P ′ = Q∪ {{Q}};
• H′ = H · h2(ℓ, ℓ′) when P = Q∪ {{outℓ(u, t).P, inℓ

′
(v, x).Q}}, P ′ = Q∪ {{P,Q{x 7→ t}}};

• H′ = H · h1(ℓ) when P = Q∪ {{outℓ(u, t).P}} and a = out(ξ, axn) and P ′ = Q∪ {{P}};
• H′ = H · h1(ℓ) when P = Q∪ {{inℓ(u, x).P}} and a = in(ξ, ζ) and P ′ = Q∪ {{P{x 7→ ζϕ}}};
• H′ = H otherwise.

Given w ∈ Aℓ
ext
∗, we write (P , ϕ,H) w

=⇒ (P ′, ϕ′,H′) when (P , ϕ,H) a1−→ . . .
an−→ (P ′, ϕ′,H′) and w is

a1 . . . an with the τ labels removed.
Since labels occur at most once in the initial process, intuitively, two extended processes with a shared

prefix executed the same semantics steps. In other words, if

(P , ϕ,H) w
=⇒ (P1, ϕ1,H0 · H1) and (P , ϕ,H) w

=⇒ (P2, ϕ2,H0 · H2)

then there exist w0,w1 and an extended process (P0, ϕ0,H0) such that w = w0w1 and

(P , ϕ,H) (P0, ϕ0,H0)

(P1, ϕ1,H0 · H1)

(P2, ϕ2,H0 · H2)

w0

w1

w1

We now describe how we can compute the probability that (P , ϕ) executes a trace w from the set
of histories obtained after executing w, i.e. {H′ | (P , ϕ, []) w

=⇒ (P ′, ϕ′,H′)} where [] denotes the empty
sequence.

Definition 23. Let S be a set of histories. We denote by S |h = {H′ | (h·H′) ∈ S }. We define compute(S )
inductively as follows:

• compute(∅) = 0

• compute({[]}) = 1, i.e., if S is the singleton containing the empty sequence
• otherwise

compute(S ) = max



max
ℓ

compute(S |h1(ℓ))

max
ℓ,ℓ′

compute(S |h2(ℓ,ℓ′))

max
ℓ,i

compute(S |hc(ℓ,i))

max
ℓ,p

(p · compute(S |h+(ℓ,p,0)) + (1− p) · compute(S |h+(ℓ,p,1)))
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The correspondence between ProbRnr(Nℓ)((P , ϕ),w) and the function compute(·) is given in the fol-
lowing lemma.

Lemma 8. Let (P, ϕ) be an extended process, w ∈ Aℓ
ext
∗ and S = {H′ | (P , ϕ, []) w

=⇒ (P′, ϕ′,H′)}. We
have that ProbRnr(Nℓ)((P , ϕ),w) = compute(S ).

This lemma provides the core property that allows us to update the partition trees generated by the
procedure in [22] as well as the test performed on each node of this partition tree to conclude trace
preorder.

Theorem 4. Let P,Q ∈ MP<∞ and .
= be defined by a subterm convergent destructor rewrite system.

Trace preorder ({{P}},∅) ⩽tr ({{Q}},∅) is decidable.

Proof sketch. First, we show that we can restrict the set of traces we need to verify. In particular, it
suffices to look at traces w ∈ Aℓ

ext
∗ that can be split in two parts: w = w1 · w2 where w2 only consists

of actions of the form ξ
.
= ζ or ξ ̸ .= ζ, and w1 of any other kind of actions. In other words, we can push

static equivalence tests towards the end of traces. Moreover, for all concrete traces w1 not containing
static equivalence tests, it suffices to check a finite number of concrete traces w1

2, . . . ,w
n
2 built only

on static equivalence tests. To do this, we use a proof technique similar to the proof in [23] showing
that trace equivalence and may testing coincide for processes with bounded number of sessions. Let us
define the sets S P(w1) = {(P ′, ϕ′,H′) | ({{P}},∅, []) w1=⇒ (P ′, ϕ′,H′)} and S Q(w1) = {(P ′, ϕ′,H′) |
({{Q}},∅, []) w1=⇒ (P ′, ϕ′,H′)}. Since P and Q are bounded processes, S P(w1), S Q(w1) and (S P(w1) ∪
S Q(w1))\∼ are finite (here ∼ refers to static equivalence of frames). Therefore, for all (P ′, ϕ′,H′) ∈
S P(w1) ∪ S Q(w1), we can define a finite sequence of actions w2 built only on actions of the form
ξ

.
= ζ or ξ ̸ .= ζ that exactly defines the equivalence class of (P ′, ϕ′,H′) in (S P ∪ S Q)\∼, i.e., for

all (P ′′, ϕ′′,H′′) ∈ S P(w1) ∪ S Q(w1), ϕ′ ∼ ϕ′′ if and only if (P ′′, ϕ′′,H′′) w2=⇒ (P ′′, ϕ′′,H′′). Thus, if we
denote by W this set of traces sufficient for proving trace preorder, we have that ({{P}},∅) ⩽tr ({{Q}},∅)
if and only if for all w ∈ W, ProbRnr(Nℓ)(({{P}},∅),w) ⩽ ProbRnr(Nℓ)(({{Q}},∅),w).

Second, similarly to how we augmented our labelled semantics with histories, we also augment the
symbolic semantics used in [22] to generate partition trees with histories. As the addition of histories
in symbolic extended processes does not impact in any way the generation of the partition trees, we
can deduce from [22] that there exists a partition tree from P and Q, denoted PTree(P,Q). Thus, each
node η of the partition tree will now contain a set Γ(η) of symbolic processes of the form (Pc, ϕc, C,H)
where (Pc, ϕc) is an open extended processes, C is a set of constraints and H is a history. The set Γ(η)
can furthermore be divided into the sets of symbolic processes coming from P and from Q, respectively
ΓP(η) and ΓQ(η). If we denote by H(S ) the set of histories of the (symbolic) extended processes in S ,
our decision procedure consists in checking that for all nodes η ∈ PTree(P,Q), compute(H(ΓP(η))) ⩽
compute(H(ΓQ(η))).

To show that it indeed decides trace preorder, we recall that soundness of partition trees ensures that
the nodes of the partition tree rooted by ({{P}},∅, []) and ({{Q}},∅, []) contain the symbolic processes
representing all concrete extended processes reached after executing some trace w and that are statically
equivalent. Moreover, completeness of partition trees ensures that for all concrete traces w ∈ W, there
exists a node in the partition tree such that if ({{P}},∅, []) w

=⇒ (P ′, ϕ′,H′) or ({{Q}},∅, []) w
=⇒ (P ′, ϕ′,H′)

then Γ(η) contains a symbolic process representing (P ′, ϕ′,H′).
Formally, we show that:
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• Soundness: ∀η ∈ PTree(P,Q), ∃w ∈ W s.t. H(S P(w)) = H(ΓP(η)) and H(S Q(w)) = H(ΓQ(η))
• Completeness: ∀w ∈ W, ∃η ∈ PTree(P,Q) s.t. H(S P(w)) = H(ΓP(η)) and H(S Q(w)) = H(ΓQ(η))

Applying Lemma 8, we obtain that

∀w ∈ W,ProbRnr(Nℓ)(({{P}},∅),w) ⩽ ProbRnr(Nℓ)(({{Q}},∅),w)
if and only if

∀η ∈ PTree(P,Q), compute(H(ΓP(η))) ⩽ compute(H(ΓQ(η)))

which allows us to conclude the proof. □

As a direct corollary we obtain that we can decide determinate may testing for purely probabilistic
processes as it coincides with trace equivalence.

Corollary 2. Let P,Q ∈ MPpp and .
= be defined by a subterm convergent destructor rewrite system.

Determinate may testing preorder ({{P}},∅) ⩽d-may ({{Q}},∅) is decidable.

We have implemented the procedure described above in the DEEPSEC tool. The input language has
been extended with a probabilistic choice operator +p where p is a real number in ]0, 1[. When trace
equivalence between 2 processes is queried, the tool uses the above procedure for verification. The
development is available on DEEPSEC’s official github repository at [27].

As we will see in Section 7, we can use DEEPSEC to show that the dining cryptographers protocol
does not provide anonymity when coins are biased.

7. An example: dining cryptographers

In this section, we illustrate our framework by proving anonymity of the well-known dining cryp-
tographers protocol. This protocol has been designed to solve the following problem: three participants
have a secret bit bi ∈ {0, 1}, such that at most one of these bits equals 1, i.e. the sum s of the three bits
is either 0 or 1. The goal is to determine whether s = 1 while hiding any additional information of each
bi; in particular, if s = 1, it must be impossible to identify for which i bi = 1. To do so, we suppose that
each pair of participants {ai, a j} has a private coin, that they can toss privately, i.e., only ai and a j can
read the result. To solve the above described problem, participants proceed as follows:

(1) each pair (ai, a j) of participants tosses its coin, and privately shares the result ci, j;
(2) each participant ai outputs their result ri, computed as the exclusive or (xor) of their secret bit bi,

and the result of both their left and right coins;
(3) each participant can compute s by doing the xor of all the three ri.

We suppose that the secret bits bi of each participant are determined by an assignment B :
{a1, a2, a3} → {0, 1}, and denote by DCB the process (defined below) modeling the protocol with
the given assignment. As we are interested in anonymity we focus on the case where one secret bit is
1 and we denote by W1 the set of 1-weighted assignment functions, that is those functions that assign
map exactly one participant to 1. Then, the security property for the dining cryptographers protocol can
be stated as

∀B, B′ ∈ W1. DCB ≈may DCB′
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that is no adversary should be able to distinguish the systems DCB and DCB′ whenever one of the secret
bits equals 1.

Our contributions in this section are the following. First, we model the dining cryptographers protocol
as a process DCB in the probabilistic applied π-calculus. Then we give a manual proof that (when coins
are unbiased) DCB and DCB′–where B, B′ are assignment functions as above–are may-testing equivalent.
Finally, we show, using the tool DEEPSEC, that when the coins are biased those systems are not trace
equivalent, thus not may-testing equivalent (Theorem 1).

7.1. Dining cryptographers in the probabilistic applied π-calculus

We split the definition of DCB in several components. First, we model the fact that two adjacent
participants can toss a coin, and privately share the result. We model this by the oracle process Ocl,cr

(indexed by channels cl, cr): it performs a fair probabilistic choice, and sends the result in parallel on
channel cr on its right, and channel cl on its left.

Ocl,cr := (out(cl, 0) | out(cr, 0)) +1/2 (out(cl, 1) | out(cr, 1))

We now define the process that models one agent Acl,cr ,c(b): it is indexed by three channels–(private)
channels cl and cr for communicating with the oracle placed to its left, respectively to its right, and a
(public) channel c for sending its final result. It also depends on the agent’s secret bit b ∈ {0, 1}.

Acl,cr ,c(b) := in(cr, xr); in(cl, xl); out(c, xl ⊕ xr ⊕ b)

where ⊕ models bitwise xor.

Notation 7. We fix a set of public namesA = {a1, a2, a3} ⊆ Npub and we will identify each participant
to their public channel ai.

Moreover, we define the set of oracles (or edges), that we note E := {{ai, a j} | i ̸= j, ai, a j ∈ A}.
Observe that E has three elements, that we call e1, e2, e3 for convenience.

We also fix a set of 6 private names C = {c1, ...., c6} ⊆ Npriv that will serve as the private channels
between oracles and participants; each of the three participants has access to two oracles. We formalize
the association between channels, oracles and participants by three functions

c : A ∪ E → C × C e : C → E a : C → A

Function c associates to an agent or an edge the pair of channels (we denote by c.l and c.r the first and
second projection of c respectively). Functions e and a associate to a channel, the corresponding agent,
respectively edge.

The overall system using these notations is depicted in Figure 9. Given B ∈ W1 we can now define the
process DCB that puts in parallel three participants, and their three coin toss oracles. The agent channels
used by the participants to communicate their final results are public. By contrast, the channels used to
communicate with the oracles are hidden from the adversary, thus private and bound by new .

DCB := new c1, . . . , c6
(
||e∈E Ocl(e),cr(e) | ||a∈A Acl(a),cr(a),a(B(a))

)
We can now formally state that the dining cryptographers protocol does ensure anonymity.
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a1

a2 a3

e1e2

e3

c1c2

c3

c4 c5

c6

Figure 9. Dining cryptographers: graph representation

Theorem 5. ∀B, B′ ∈ W1. DCB ≈may DCB′

In order to show Theorem 5, we are going to show use the labelled semantics and show a stronger
result, i.e. that DCB and DCB′ are bisimilar.

7.2. Labelled semantics for the dining cryptographers protocol

The labelled semantics for our model of the dining cryptographers protocol is however complex: one
of the reasons is that we do not enforce a particular order for the communications between the oracles
Oi and the participants Ai. Thus, we have both probabilistic and non-deterministic concurrent behaviors.
As a consequence, it is difficult to prove our equivalence result directly in the NPLTS Nℓ. To solve this
problem, we define an auxiliary simplified NPLTS NDC , and show that:

(1) NDC is bisimilar to Nℓ;
(2) for every B, B′ ∈ W1 the NDC-states corresponding to DCB and DCB′ are bisimilar in NDC .

The main idea for the construction of the auxiliary NPLTS NDC is that only relevant steps should appear.
More precisely, we note that a run of the protocol should be entirely characterized by the oracles’ proba-
bilistic choices, and the order in which participants output their results. By contrast, the order of internal
communications between participants and oracles occur–on the private channels ci–is irrelevant.

Definition 24. We define sets of internal events Λ and external events Λext as :

Λ := {e[← b] | e ∈ E , b ∈ {0, 1}} Λext := {a[→ b] | a ∈ A, b ∈ {0, 1}}

The event e[← b] means that oracle e ∈ E is sampling b ∈ {0, 1}. The event a[→ b] means that
participant a ∈ A is outputting b on their public channel. We call history a pair h = (s, l), where s is a
set of internal events in Λ and l is a list of external events in Λext such that no participant a ∈ A occurs
twice in l. We denote byH the set of all such h.

Notation 8. To each history h = (s, l), we associate a frame ϕh := {ax1 = b1, . . . axn = bn} when
l = (a1[→ b1], . . . an[→ bn]). Moreover, for e ∈ E , and history h = (s, l), we write e ∈ s when
e[← b] ∈ s for some boolean b, and e ̸∈ h otherwise. We define similarly a ∈ l and a ̸∈ l for a ∈ A. We
denote the empty history by ϵH := (∅, ϵ).

We are now ready to define our simplified NPLTS NDC .NDC has exactly the same set of actions as Nℓ,
the NPLTS built from the labelled semantics. A state of NDC encapsulates information about both the
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(relevant) history, and the assignment function of secret bits A → {0, 1}. These information are enough
to decide how a history is modified by an action. More precisely three kinds of actions can be enabled
in a given state.

The first kind are actions of the form (ξ
?
= ζ), (ξ ̸ ?= ζ) that in Nℓ perform an equality test on the frame.

In NDC the equality test is performed on ϕh, the frame built unambiguously from the history as defined
in Notation 8. The second kind of action is the internal action τ: in NDC τ-actions correspond to a step
where an oracle, that does not already appear in the history, randomly samples a boolean b. After such
a τ-action, which is inherently probabilistic, the information that this oracle has sampled b is added to
the history. The last kind of actions are the (external) output actions: some participant a ∈ A can output
a result b–if no output by a is already recorded in the history–when the history contains the information
of the boolean chosen by both oracles adjacent to a, and that moreover b is equal to the xor of these two
booleans with the secret bit of a.

Definition 25. We define a NPLTS NDC = (SDC ,ADC , transDC) where SDC := {(h, B) | h ∈ H, B ∈
W1}, ADC := {τ} ∪ Aℓ

ext, and the transition function transDC is defined as:

((s, l), B) τ−→ 1

2
· δ(s∪(e[←0],l),B) +

1

2
· δ(s∪(e[←1],l),B) when e ̸∈ s

((s, l), B)
out(a,b)−−−−→ δ(s,l::(a[→b]),B) when a ̸∈ l, ∃bl, br ∈ {0, 1}, el(a)[← bl] ∈ s ∧ er(a)[← br] ∈ s

∧ b = br ⊕ bl ⊕ B(a)

(h, B)
(ξ

?
=ζ)−−−→ δ(h,B) when vars(ξ, ζ) ⊆ dom(ϕh) ∧ ξϕh

.
= ζϕh

(h, B)
(ξ ̸ ?=ζ)−−−→ δ(h,B) when vars(ξ, ζ) ⊆ dom(ϕh) ∧ ξϕh ̸

.
= ζϕh.

We now follow the road-map that we outlined in the beginning of the present section: first we show
that we can replace the study of the labelled semantics for DCB by the study of NDC , by exhibiting a
bisimilarity between those two NPLTSs (Proposition 7). Then, we show that the NDC states (correspond-
ing to) DCB and DCB′ are bisimilar as soon as B, B′ ∈ W1 (Proposition 8).

Proposition 7. There exists an NPLTS bisimulation R on NDC ∪Nℓ such that for every B ∈ W1, it holds
that (ϵH, B)R (DCB,∅).

Proposition 8. If B, B′ ∈ W1 then the NDC-states (ϵH, B) and (ϵH, B′) are bisimilar.

From Propositions 7 and 8, we can show that the process DCB and DCB′ are equivalent for the labelled
bisimulation from Definition 16 in Section 4. We state this result formally below.

Corollary 3 (Security for the dining cryptographers protocol). IfB, B′ ∈ W1 then DCB ≈bi DCB′ .

Proof. Recall that by definition of ≈bi, we need to show that the states sB := (DCB,∅) and sB′ :=
(DC′B,∅) are bisimilar in Nℓ. Since we know by Proposition 8 that tB := (ϵH, B) and tB′ = (ϵH, B′) are
bisimilar in NDC , we also have (tB, tB′) ∈ (∼NDC∪Nℓ) (because Nℓ and NDC have disjoint state spaces). By
Proposition 7, we also have that tB ∼NDC∪Nℓ sB, and tB′ ∼NDC∪Nℓ sB′ . Since ∼NDC∪Nℓ is an equivalence
relation, we can combine all this to obtain that sB ∼NDC∪Nℓ sB′ . From here (again because Nℓ and NDC
have disjoint state spaces), we conclude that sB ∼Nℓ , sB′ . □
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As an immediate consequence of Corollary 3, and since labelled bisimulation is stronger than may-
testing equivalence, we obtain a proof of Theorem 5, i.e. that ∀B, B′ ∈ W1, DCB ≈may DCB′ .

7.3. Analysis with DEEPSEC

We have analyzed the Dining Cryptographers protocol using our probabilistic extension of the
DEEPSEC tool [27]. The encoding of processes DCB for B ∈ W1 is straightforward and follows di-
rectly the modeling above. Although DEEPSEC does not support xor in general, we can easily encode
the ternary version using 8 rewrite rules xor(b1, b2, b3)→ b for b1, b2, b3 ∈ {0, 1} and b = b1⊕b2⊕b3.
Restricting to a ternary xor is not a loss of generality as the protocol does not take any input from the
adversary and only honest users construct xor-terms.

As a first result we can show that

∀B, B′ ∈ W1. DCB ≈tr DCB′

This result is actually not satisfactory, as trace equivalence is strictly weaker than may testing (which
also motivated the pen and paper proof of the previous section). More interesting is the fact that we can
show that anonymity is broken when we use a biased coin, i.e., we replace the probability 0.5 in the coin
tossing oracle by a probability p ̸= 0.5. If we denote the modified process by DCp

B we can for instance
show, using DEEPSEC, that, as expected,

DC0.4
B1
̸≈tr DC0.4

B2

where Bi assigns bi to 1 and remaining bits to 0. Given that trace equivalence is strictly weaker than
may-testing this implies that may testing does not hold either.

Given the rather small size of the processes DEEPSEC performs these verifications in about 1 second
each.

8. Conclusion and future work

In this paper we introduced a framework to reason about indistinguishability properties, modelled as
process equivalences, in symbolic models enhanced with probabilities. Defining such a framework turns
out to rely on subtle technicalities such as the need for randomized schedulers, overlooked in previ-
ous attempts. In addition to solving technical problems, we believe that randomized schedulers capture
more faithfully the idea that one cannot predict how non-determinism is resolved. Randomized sched-
ulers generalize the idea that a schedulers chooses a particular distribution among the ones available by
allowing an arbitrary combination (in the convex hull) of the available distributions.

We define different, classical behavioral and labelled equivalences and show their precise relations. As
usual in models mixing non-determinism and probabilities, the resulting equivalences may be considered
as too strong: indeed arbitrary schedulers may leak the (private) probabilistic choices of the processes
and give the attacker an unrealistically strong distinguishing power. Defining more restricted schedulers
that are only allowed partial knowledge of the current state, such as in [20], is orthogonal to our work.
We however believe that our work provides a convenient framework for defining such more fine-grained
notions of schedulers and consider this an interesting direction for future work.
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We therefore study two classes of protocols where this problem is avoided. First, we study protocols
that do not make probabilistic choices, but allow the adversary to do so. This class of non-probabilistic
protocols corresponds to the classical setting and captures all major case studies performed in the context
of symbolic models. Our results highlight that the classical notion of may-testing, considered rather intu-
itive as it models an arbitrary attacker running in parallel, does not take into account attackers that make
probabilistic choices. Interestingly, when bounding the number of sessions, (non-probabilistic) similar-
ity exactly captures such probabilistic attackers and offers an attractive target for automated analysis.
Second, we study a class of fully probabilistic protocols, also considered in [25], and show that trace
equivalence on such protocols coincides with may testing in the presence of a (syntactic) class of deter-
minate attackers. One may indeed argue that determinacy removes artificial non-deterministic choices
that the attacker could exploit and that correspond to unrealistic behaviors. When protocols can be ex-
pressed in the class of purely probabilistic processes, from a formal analysis point, it seems appealing to
do so as it also simplifies the analysis.

We also show how deciding trace equivalence can be automated in the presence of probabilities.
We propose a decision procedure that extends previous work by Cheval el al [22] and implement this
procedure in the DEEPSEC tool. Hence, we provide tool support for proving determinate may-testing on
the class of purely probabilistic processes when the number of sessions is bounded and cryptographic
primitives are modeled as a subterm destructor rewrite system. On more general classes of processes, our
tool can be used for attack finding: disproving trace equivalence implies that may testing (and all stronger
equivalences) does not hold either, therefore violating security properties stated as an equivalence.

Finally, we illustrate our framework by studying the well-known Dining Cryptographers protocol. We
model the protocol and its anonymity property in the probabilistic applied π-calculus. Then, we use
our framework to prove that anonymity holds, and demonstrate DEEPSEC’s attack finding ability on a
variant of the protocol that uses a biased coin.

Our work paves the road towards several future works, in addition to exploring restricted schedulers
mentioned above. The insight that (purely possibilistic) similarity takes into account probabilistic ad-
versaries (as it coincides with may testing) when the number of sessions is bounded and protocols are
non-deterministic motivates adding support for (bi)similarity in a tool such as DEEPSEC (which cur-
rently only verifies trace equivalence). A different direction going beyond the subclasses considered
in this paper is to investigate restrictions of the scheduler (building, e.g., on ideas from [20, 21]) in
our framework to limit the adversary’s power without restricting the class of protocols. Finally, a more
prospective direction is the use of more quantitative equivalences, i.e., distances between processes, that
might be interesting to compare different protocols that try to achieve a same property.
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